Library UniMath.MoreFoundations.Nat

Natural Numbers
This file gives further basic results on the natural numbers extending those provided in Foundations.NaturalNumbers:
1. Formulation of the recursion property as a unique existence statement for functions on ℕ hNatRecursionUniq, hNatRecursion_weq 2. The recursive definition of the path family over ℕ nat_discern 3. Definition and properties of the distance function on ℕ nat_dist 4. Miscellaneous arithmetic lemmas 5. Bounded quantification over ℕ, including uniqueness/searchibility of (minimal) witnesses 6. Complete (or strong) induction, where the induction step for N assumes that the property holds for all n < N complete_induction

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.MoreFoundations.Propositions.

Local Open Scope nat.

Notation := nat.

1. Formulation of the recursion property as a unique existence statement for functions on ℕ

Section Uniqueness.

  Local Lemma nat_recursion_helper_A (P: nat Type) (p0: P 0) (IH: n, P n P(S n))
        (f: n, P n) :
    ( n, f n = nat_rect P p0 IH n)
     (f 0 = p0 × n, f (S n) = IH n (f n)).
  Proof.
    intros. simple refine (_,, isweq_iso _ _ _ _).
    { intros h. split.
      { exact (h 0). } { intros. exact (h (S n) @ maponpaths (IH n) (! h n)). } }
    { intros [h0 h'] ?. induction n as [|n' IHn'].
      { exact h0. } { exact (h' n' @ maponpaths (IH n') IHn'). } }
    { simpl. intros h. apply funextsec; intros n; simpl. induction n as [|n IHn].
      { simpl. reflexivity. }
      { simpl. rewrite <- path_assoc. simple refine (_ @ pathscomp0rid _).
        rewrite <- maponpathscomp0. rewrite IHn. rewrite pathsinv0l.
        simpl. reflexivity. } }
    { intros [h0 h']. apply maponpaths. apply funextsec; intro n; simpl.
      rewrite <- path_assoc. rewrite <- maponpathscomp0. rewrite pathsinv0r.
      apply pathscomp0rid. }
  Defined.

  Local Lemma nat_recursion_helper_B (P: nat Type) (p0: P 0) (IH: n, P n P(S n))
        (f: n, P n) :
    (f = nat_rect P p0 IH)
     ((f 0 = p0) × ( n, f (S n) = IH n (f n))).
  Proof.
    intros.
    exact (weqcomp (weqtoforallpaths _ _ _) (nat_recursion_helper_A _ _ _ _)).
  Defined.

  Local Lemma nat_recursion_helper_C (P: nat Type) (p0: P 0) (IH: n, P n P(S n)) :
    ( f: n, P n, f = nat_rect P p0 IH)
     ( f: n, P n, f 0 = p0 × n, f (S n) = IH n (f n)).
  Proof.
    intros. apply weqfibtototal. intros f. apply nat_recursion_helper_B.
  Defined.

  Lemma hNatRecursionUniq (P: nat Type) (p0: P 0) (IH: n, P n P(S n)) :
    ∃! (f: n, P n), f 0=p0 × n, f(S n) = IH n (f n).
  Proof.
    intros. exact (iscontrweqf (nat_recursion_helper_C _ _ _) (iscontrcoconustot _ _)).
  Defined.

  Local Lemma nat_recursion_helper_D (P: nat Type) (p0: P 0) (IH: n, P n P(S n)) :
     ( f: n, P n, (f 0=p0) × ( n, f(S n)=IH n (f n)))
       
        (@hfiber
           ( (f: n, P n), n, f(S n)=IH n (f n))
           (P 0)
           (λ fh, pr1 fh 0)
           p0).
  Proof.
    intros. simple refine (make_weq _ (isweq_iso _ _ _ _)).
    { intros [f [h0 h']]. exact ((f,,h'),,h0). }
    { intros [[f h'] h0]. exact (f,,(h0,,h')). }
    { intros [f [h0 h']]. reflexivity. }
    { intros [[f h'] h0]. reflexivity. }
  Defined.

  Lemma hNatRecursion_weq (P: nat Type) (IH: n, P n P(S n)) :
    ( (f: n, P n), n, f (S n) = IH n (f n)) P 0.
  Proof.
    intros. exists (λ f, pr1 f 0). intro p0.
    apply (iscontrweqf (nat_recursion_helper_D _ _ _)). apply hNatRecursionUniq.
  Defined.

End Uniqueness.

2. The recursive definition of the path family over ℕ

The standard recursive definition of a type family equivalent to equality on ℕ — that is, a code-decode method characterisation of equality on ℕ

Section NatDiscern.

Definition nat_discern (m n: nat) : UU.
Proof.
  revert n.
  induction m as [| m IHm];
    intro n;
    induction n as [| n IHn].
  - exact unit.
  - exact empty.
  - exact empty.
  - exact (IHm n).
Defined.

Goal m n, nat_discern m n nat_discern (S m) (S n).
Proof.
  intros ? ? e.
  exact e.
Defined.

Lemma nat_discern_inj m n : nat_discern (S m) (S n) nat_discern m n.
Proof.
  intro e. induction m.
  { induction n. { exact tt. } { simpl in e. exact (fromempty e). } }
  { induction n. { simpl in e. exact (fromempty e). } { simpl in e. exact e. } }
Defined.

Lemma nat_discern_isaprop m n : isaprop (nat_discern m n).
Proof.
  revert n; induction m as [|m IHm].
  { intros n. induction n as [|n IHn].
    { apply isapropifcontr. apply iscontrunit. }
    { simpl. apply isapropempty. } }
  { intros n. induction n as [|n IHn].
    { simpl. apply isapropempty. }
    { simpl. apply IHm. } }
Defined.

Lemma nat_discern_unit m : nat_discern m m = unit.
Proof.
  induction m as [|m IHm]. { reflexivity. } { simpl. apply IHm. }
Defined.

Lemma nat_discern_iscontr m : iscontr (nat_discern m m).
Proof.
  apply iscontraprop1.
  { apply nat_discern_isaprop. }
  { induction m as [|m IHm]. { exact tt. } { simpl. exact IHm. } }
Defined.

Fixpoint nat_discern_to_eq m n : nat_discern m n m = n.
Proof.
  destruct m as [|m'].
  { destruct n as [|n'].
    { intros _. reflexivity. } { simpl. exact fromempty. } }
  { destruct n as [|n'].
    { simpl. exact fromempty. }
    { simpl. intro i. assert(b := nat_discern_to_eq _ _ i); clear i.
      destruct b. reflexivity. } }
Defined.

Goal m n (e: nat_discern m n), maponpaths S (nat_discern_to_eq m n e) = nat_discern_to_eq (S m) (S n) e.
Proof.
  reflexivity.
Defined.

Fixpoint eq_to_nat_discern m n : m = n nat_discern m n.
Proof.
  intro e. destruct e.
  exact (cast (! nat_discern_unit m) tt).
Defined.

Lemma apSC m n (e: m=n) : eq_to_nat_discern m n e = eq_to_nat_discern (S m) (S n) (maponpaths S e).
Proof.
  apply proofirrelevance. apply nat_discern_isaprop.
Defined.

Definition isweq_nat_discern_to_eq m n : isweq (nat_discern_to_eq m n).
Proof.
  simple refine (isweq_iso _ (eq_to_nat_discern _ _) _ _).
  { intro e. assert(p := ! nat_discern_to_eq _ _ e). destruct p.
    apply proofirrelevancecontr. apply nat_discern_iscontr. }
  { intro e. destruct e. induction m as [|m IHm].
    { reflexivity. }
    { exact ( maponpaths (nat_discern_to_eq (S m) (S m)) (! apSC _ _ (idpath m))
                          @ maponpaths (maponpaths S) IHm). } }
Defined.

Definition weq_nat_discern_eq m n : (nat_discern m n) (m = n).
Proof.
  exact (make_weq (nat_discern_to_eq _ _) (isweq_nat_discern_to_eq _ _)).
Defined.

End NatDiscern.

3. Definition and properties of the distance function on ℕ

Section NatDist.

Definition nat_dist (m n: nat) : nat.
Proof.
  revert n.
  induction m as [| m IHm];
    intro n.
  - exact n.
  - induction n as [| n IHn].
    + exact (S m).
    + exact (IHm n).
Defined.

Fixpoint nat_dist_helper_A m n : nat_dist m n = 0 nat_discern m n.
Proof.
  destruct m as [|m'].
  { destruct n as [|n'].
    { intros _. exact tt. } { simpl. exact (negpathssx0 n'). } }
  { destruct n as [|n'].
    { simpl. exact (negpathssx0 m'). } { simpl. exact (nat_dist_helper_A m' n'). } }
Defined.

Definition nat_dist_anti m n : nat_dist m n = 0 m = n.
Proof.
  intro i. exact (nat_discern_to_eq _ _ (nat_dist_helper_A _ _ i)).
Defined.

Fixpoint nat_dist_symm m n : nat_dist m n = nat_dist n m.
Proof.
  destruct m as [|m'].
  { destruct n as [|n']. { reflexivity. } { simpl. reflexivity. } }
  { destruct n as [|n'].
    { simpl. reflexivity. }
    { simpl. apply nat_dist_symm. } }
Defined.

Fixpoint nat_dist_ge m n : m n nat_dist m n = m-n.
Proof.
  induction m as [|m'].
  { induction n as [|n']. { reflexivity. } { intro f. now induction (!natleh0tois0 f). } }
  { induction n as [|n']. { reflexivity. } { exact (nat_dist_ge m' n'). } }
Defined.

Definition nat_dist_0m m : nat_dist 0 m = m.
Proof.
  reflexivity.
Defined.

Definition nat_dist_m0 m : nat_dist m 0 = m.
Proof.
  destruct m. { reflexivity. } { reflexivity. }
Defined.

Fixpoint nat_dist_plus m n : nat_dist (m + n) m = n.
Proof.
  revert m n; intros [|m'] ?.
  { simpl. apply nat_dist_m0. }
  { simpl. apply nat_dist_plus. }
Defined.

Fixpoint nat_dist_le m n : m n nat_dist m n = n-m.
Proof.
  destruct m as [|m'].
  { destruct n as [|n']. { reflexivity. } { simpl. intros _. reflexivity. } }
  { destruct n as [|n'].
    { intro f. now induction (!natleh0tois0 f). }
    { exact (nat_dist_le m' n'). } }
Defined.

Definition nat_dist_minus m n : m n nat_dist (n - m) n = m.
Proof.
  intro e. set (k := n-m). assert(b := ! minusplusnmm n m e).
  rewrite (idpath _ : n-m = k) in b. rewrite b.
  rewrite nat_dist_symm. apply nat_dist_plus.
Qed.

Fixpoint nat_dist_gt m n : m > n S (nat_dist m (S n)) = nat_dist m n.
Proof.
  destruct m as [|m'].
  { unfold natgth; simpl. intro x.
    apply fromempty. apply nopathsfalsetotrue. exact x. }
  { intro i. simpl.
    destruct n as [|n'].
    { apply (maponpaths S). apply nat_dist_m0. }
    { simpl. apply nat_dist_gt. exact i. } }
Defined.

Definition nat_dist_S m n : nat_dist (S m) (S n) = nat_dist m n.
Proof.
  reflexivity.
Defined.

Definition natminuseqlr m n x : mn n-m = x n = x+m.
Proof.
  intros i j.
  rewrite <- (minusplusnmm _ _ i). rewrite j. reflexivity.
Defined.

Definition nat_dist_between_le m n a b : m n nat_dist m n = a + b
   x, nat_dist x m = a × nat_dist x n = b.
Proof.
  intros i j. exists (m+a). split.
  { apply nat_dist_plus. }
  { rewrite (nat_dist_le m n i) in j.
    assert (k := natminuseqlr _ _ _ i j); clear j.
    assert (l := nat_dist_plus (m+a) b).
    rewrite nat_dist_symm. rewrite (natpluscomm (a+b) m) in k.
    rewrite (natplusassoc m a b) in l. rewrite <- k in l. exact l. }
Defined.

Definition nat_dist_between_ge m n a b :
  n m nat_dist m n = a + b x: nat, nat_dist x m = a × nat_dist x n = b.
Proof.
  intros i j.
  rewrite nat_dist_symm in j.
  rewrite natpluscomm in j.
  exists (pr1 (nat_dist_between_le n m b a i j)).
  apply (weqdirprodcomm _ _).
  exact (pr2 (nat_dist_between_le n m b a i j)).
Defined.

Definition nat_dist_between m n a b :
  nat_dist m n = a + b x: nat, nat_dist x m = a × nat_dist x n = b.
Proof.
  intros j.
  induction (natgthorleh m n) as [r|s].
  { apply nat_dist_between_ge. apply natlthtoleh. exact r. exact j. }
  { apply nat_dist_between_le. exact s. exact j. }
Defined.

Definition natleorle m n : (mn) ⨿ (nm).
Proof.
  induction (natgthorleh m n) as [r|s].
  { apply ii2. apply natlthtoleh. exact r. }
  { apply ii1. exact s. }
Defined.

Definition nat_dist_trans x y z : nat_dist x z nat_dist x y + nat_dist y z.
Proof.
  induction (natleorle x y) as [r|s].
  { rewrite (nat_dist_le _ _ r).
    induction (natleorle y z) as [t|u].
    { assert (u := istransnatgeh _ _ _ t r). rewrite (nat_dist_le _ _ t).
      rewrite (nat_dist_le _ _ u). apply (natlehandplusrinv _ _ x).
      rewrite (minusplusnmm _ _ u). rewrite (natpluscomm _ x).
      rewrite <- natplusassoc. rewrite (natpluscomm x).
      rewrite (minusplusnmm _ _ r). rewrite (natpluscomm y).
      rewrite (minusplusnmm _ _ t). apply isreflnatleh. }
    { rewrite (nat_dist_ge _ _ u).
      induction (natleorle x z) as [p|q].
      { rewrite (nat_dist_le _ _ p). apply (natlehandplusrinv _ _ x).
        rewrite (minusplusnmm _ _ p). rewrite natpluscomm.
        rewrite <- natplusassoc. rewrite (natpluscomm x).
        rewrite (minusplusnmm _ _ r). apply (natlehandplusrinv _ _ z).
        rewrite natplusassoc. rewrite (minusplusnmm _ _ u).
        apply (istransnatleh (m := y+z)).
        { apply natlehandplusr. exact u. }
        { apply natlehandplusl. exact u. } }
      { rewrite (nat_dist_ge _ _ q). apply (natlehandplusrinv _ _ z).
        rewrite (minusplusnmm _ _ q). rewrite natplusassoc.
        rewrite (minusplusnmm _ _ u). rewrite natpluscomm.
        apply (natlehandplusrinv _ _ x). rewrite natplusassoc.
        rewrite (minusplusnmm _ _ r). apply (istransnatleh (m := x+y)).
        { apply natlehandplusl. assumption. }
        { apply natlehandplusr. assumption. } } } }
  { rewrite (nat_dist_ge _ _ s).
    induction (natleorle z y) as [u|t].
    { assert (w := istransnatleh u s). rewrite (nat_dist_ge _ _ w).
      rewrite (nat_dist_ge _ _ u). apply (natlehandplusrinv _ _ z).
      rewrite (minusplusnmm _ _ w). rewrite natplusassoc.
      rewrite (minusplusnmm _ _ u). rewrite (minusplusnmm _ _ s).
      apply isreflnatleh. }
    { rewrite (nat_dist_le _ _ t).
      induction (natleorle x z) as [p|q].
      { rewrite (nat_dist_le _ _ p). apply (natlehandplusrinv _ _ x).
        rewrite (minusplusnmm _ _ p). apply (natlehandpluslinv _ _ y).
        rewrite (natplusassoc (x-y)). rewrite <- (natplusassoc y).
        rewrite (natpluscomm y (x-y)). rewrite (minusplusnmm _ _ s).
        apply (natlehandplusrinv _ _ y). rewrite (natplusassoc x).
        rewrite (natplusassoc _ x y). rewrite (natpluscomm x y).
        rewrite <- (natplusassoc _ y x). rewrite (minusplusnmm _ _ t).
        rewrite (natpluscomm z x). rewrite <- (natplusassoc x).
        rewrite (natplusassoc y). rewrite (natpluscomm z y).
        rewrite <- (natplusassoc y). apply (natlehandplusr _ _ z).
        apply (istransnatleh (m := x+y)).
        { apply natlehandplusr. assumption. }
        { apply natlehandplusl. assumption. } }
      { rewrite (nat_dist_ge _ _ q). apply (natlehandplusrinv _ _ z).
        rewrite (minusplusnmm _ _ q). apply (natlehandpluslinv _ _ y).
        rewrite (natplusassoc (x-y)). rewrite <- (natplusassoc y).
        rewrite (natpluscomm y (x-y)). rewrite (minusplusnmm _ _ s).
        apply (natlehandplusrinv _ _ y). rewrite (natplusassoc x).
        rewrite (natplusassoc _ z y). rewrite (natpluscomm z y).
        rewrite <- (natplusassoc _ y z). rewrite (minusplusnmm _ _ t).
        rewrite (natpluscomm y x). rewrite (natplusassoc x).
        apply natlehandplusl. apply (istransnatleh (m := z+y)).
        { apply natlehandplusr. assumption. }
        { apply natlehandplusl. assumption. } } } }
Defined.

End NatDist.

4. Miscellaneous arithmetic lemmas

Section Arithmetic.

Lemma plusmn0n0 m n : m + n = 0 n = 0.
Proof.
  intros i. assert (a := natlehmplusnm m n). rewrite i in a.
  apply natleh0tois0. assumption.
Defined.

Lemma plusmn0m0 m n : m + n = 0 m = 0.
Proof.
  intros i. assert (a := natlehnplusnm m n). rewrite i in a.
  apply natleh0tois0. assumption.
Defined.

Lemma natminus0le {m n} : m-n = 0 n m.
Proof.
  intros i. apply negnatgthtoleh. intro k.
  assert (r := minusgth0 _ _ k); clear k.
  induction (!i); clear i. exact (negnatgth0n 0 r).
Defined.

Lemma minusxx m : m - m = 0.
Proof.
  induction m as [|m IHm]. reflexivity. simpl. assumption.
Defined.

Lemma minusSxx m : S m - m = 1.
Proof.
  induction m as [|m IHm]. reflexivity. assumption.
Defined.

Lemma natminusminus n m : m n n - (n - m) = m.
Proof.
  intros i. assert (b := plusminusnmm m (n-m)).
  rewrite natpluscomm in b. rewrite (minusplusnmm _ _ i) in b.
  exact b.
Defined.

Lemma natplusminus m n k : k = m + n k - n = m.
Proof.
  intros i. rewrite i. apply plusminusnmm.
Defined.

Lemma natleplusminus k m n : k + m n k n - m.
Proof.
  intros i.
  apply (natlehandplusrinv _ _ m).
  rewrite minusplusnmm.
  { exact i. }
  { change (m n).
    simple refine (istransnatleh _ i); clear i.
    apply natlehmplusnm. }
Defined.

Lemma natltminus1 m n : m < n m n - 1.
Proof.
  intros i. assert (a := natlthp1toleh m (n - 1)).
  assert (b := natleh0n m). assert (c := natlehlthtrans _ _ _ b i).
  assert (d := natlthtolehsn _ _ c). assert (e := minusplusnmm _ _ d).
  rewrite e in a. exact (a i).
Defined.

Fixpoint natminusminusassoc m n k : (m - n) - k = m - (n + k).
Proof.
  destruct m. { reflexivity. }
                      { destruct n. { rewrite natminuseqn. reflexivity. }
                                    { simpl. apply natminusminusassoc. } }
Defined.

Definition natminusplusltcomm m n k : k n m n - k k n - m.
Proof.
  intros i p.
  assert (a := natlehandplusr m (n-k) k p); clear p.
  assert (b := minusplusnmm n k i); clear i.
  rewrite b in a; clear b. apply natleplusminus.
  rewrite natpluscomm. exact a.
Qed.

Theorem nat_le_diff
        {n m : }
        (p : n m)
  : (k : ), n + k = m.
Proof.
  exists (m - n).
  rewrite natpluscomm.
  exact (minusplusnmm _ _ p).
Qed.

End Arithmetic.

5. Bounded quantification over ℕ, including uniqueness/searchibility of (minimal) witnesses

Some results on bounded quantification


Lemma weqforallnatlehn0 (F : nat hProp) :
  ( (n : nat), n 0 F n) F 0.
Proof.
  use (weqimplimpl _ _ _ (propproperty (F 0))).
  - intro f.
    apply (f 0 (isreflnatleh 0)).
  - intros f0 n l.
    set (e := natleh0tois0 l).
    rewrite e.
    apply f0.
  - apply impred.
    intro n.
    apply impred.
    intro l.
    apply (pr2 (F n)).
Defined.

Lemma weqforallnatlehnsn' (n' : nat) (F : nat hProp) :
  ( (n : nat), n S n' F n)
   ( (n : nat), n n' F n) × F (S n').
Proof.
  use weqimplimpl.
  - intro f.
    apply (make_dirprod (λ n, λ l, (f n (natlehtolehs _ _ l)))
                        (f (S n') (isreflnatleh _))).
  - intro d2.
    intro n. intro l.
    destruct (natlehchoice2 _ _ l) as [ h | e ].
    + simpl in h.
      apply (pr1 d2 n h).
    + destruct d2 as [ f2 d2 ].
      rewrite e.
      apply d2.
  - apply impred.
    intro n.
    apply impred.
    intro l.
    apply (pr2 (F n)).
  - apply isapropdirprod.
    + apply impred.
      intro n.
      apply impred.
      intro l.
      apply (pr2 (F n)).
    + apply (pr2 (F (S n'))).
Defined.

Lemma weqexistsnatlehn0 (P : nat hProp ) :
  ( (n : nat), n 0 × P n) P 0.
Proof.
  refine (weqimplimpl _ _ (propproperty _) (propproperty _)).
  - simpl.
    apply (@hinhuniv _ (P 0)).
    intro t2.
    destruct t2 as [ n d2 ].
    destruct d2 as [ l p ].
    set (e := natleh0tois0 l).
    clearbody e.
    destruct e.
    apply p.
  - intro p.
    apply hinhpr.
    split with 0.
    split with (isreflnatleh 0).
    apply p.
Defined.

Lemma weqexistsnatlehnsn' (n' : nat) (P : nat hProp ) :
  ( (n : nat), n S n' × P n)
   (( (n : nat), n n' × P n) P (S n')).
Proof.
  refine (weqimplimpl _ _ (propproperty _) (propproperty _)).
  - apply hinhfun.
    intro t2.
    destruct t2 as [ n d2 ].
    destruct d2 as [ l p ].
    destruct (natlehchoice2 _ _ l) as [ h | nh ].
    + simpl in h.
      apply ii1.
      apply hinhpr.
      split with n.
      apply (make_dirprod h p).
    + destruct nh.
      apply (ii2 p).
  - simpl.
    apply (@hinhuniv _ (ishinh _)).
    intro c.
    destruct c as [ t | p ].
    + generalize t.
      simpl.
      apply hinhfun.
      clear t.
      intro t.
      destruct t as [ n d2 ].
      destruct d2 as [ l p ].
      split with n.
      split with (natlehtolehs _ _ l).
      apply p.
    + apply hinhpr.
      split with (S n').
      split with (isreflnatleh _).
      apply p.
Defined.

Lemma isdecbexists (n : nat) (P : nat UU) (is : n', isdecprop (P n')) :
  isdecprop ( n', n' n × P n').
Proof.
  set (P' := λ n' : nat, make_hProp _ (is n')).
  induction n as [ | n IHn ].
  - apply (isdecpropweqb (weqexistsnatlehn0 P')).
    apply (is 0).
  - apply (isdecpropweqb (weqexistsnatlehnsn' _ P')).
    apply isdecprophdisj.
    + apply IHn.
    + apply (is (S n)).
Defined.

Lemma isdecbforall (n : nat) (P : nat UU) (is : n', isdecprop (P n')) :
  isdecprop ( n', n' n P n').
Proof.
  set (P' := λ n' : nat, make_hProp _ (is n')).
  induction n as [ | n IHn ].
  - apply (isdecpropweqb (weqforallnatlehn0 P')).
    apply (is 0).
  - apply (isdecpropweqb (weqforallnatlehnsn' _ P')).
    apply isdecpropdirprod.
    + apply IHn.
    + apply (is (S n)).
Defined.

The following lemma finds the largest n' such that neg (P n') . It is a stronger form of (neg ∏) → (exists neg) in the case of bounded quantification of decidable propositions.

Lemma negbforalldectototal2neg (n : nat) (P : nat UU)
  (is : (n' : nat), isdecprop (P n')) :
  ¬ ( (n' : nat), n' n P n')
   n', (n' n × ¬ P n').
Proof.
  set (P' := λ n' : nat, make_hProp _ (is n')).
  induction n as [ | n IHn ].
  - intro nf.
    set (nf0 := negf (invweq (weqforallnatlehn0 P')) nf).
    split with 0.
    apply (make_dirprod (isreflnatleh 0) nf0).
  - intro nf.
    set (nf2 := negf (invweq (weqforallnatlehnsn' n P')) nf).
    set (nf3 := fromneganddecy (is (S n)) nf2).
    destruct nf3 as [ f1 | f2 ].
    + set (int := IHn f1).
      destruct int as [ n' d2 ].
      destruct d2 as [ l np ].
      split with n'.
      split with (natlehtolehs _ _ l).
      apply np.
    + split with (S n).
      split with (isreflnatleh _).
      apply f2.
Defined.

Accessibility - the least element of an inhabited decidable subset of nat


Definition natdecleast (F : nat UU) (is : n, isdecprop (F n)) :=
   (n : nat), (F n × (n' : nat), F n' n n').

Lemma isapropnatdecleast (F : nat UU) (is : n, isdecprop (F n)) :
  isaprop (natdecleast F is).
Proof.
  set (P := λ n' : nat, make_hProp _ (is n')).
  assert (int1 : n : nat, isaprop ((F n) × ( n' : nat, F n' n n'))).
  { intro n.
    apply isapropdirprod.
    - apply (pr2 (P n)).
    - apply impred.
      intro t.
      apply impred.
      intro.
      apply (pr2 (n t)).
  }
  change (isaprop ( (n : nat), make_hProp _ (int1 n))).
  apply isapropsubtype.
  intros x1 x2. intros c1 c2.
  simpl in *.
  destruct c1 as [ e1 c1 ].
  destruct c2 as [ e2 c2 ].
  set (l1 := c1 x2 e2).
  set (l2 := c2 x1 e1).
  apply (isantisymmnatleh _ _ l1 l2).
Defined.

Print isapropnatdecleast.

Theorem accth (F : nat UU) (is : n, isdecprop (F n))
        (is' : n, F n) : natdecleast F is.
Proof.
  revert is'.
  simpl.
  apply (@hinhuniv _ (make_hProp _ (isapropnatdecleast F is))).
  intro t2.
  destruct t2 as [ n l ].
  simpl.
  set (F' := λ n' : nat, n'', (n'' n') × (F n'')).
  assert (X : n', F' n' natdecleast F is).
  { intro n'.
    induction n' as [ | n' IHn' ].
    - apply (@hinhuniv _ (make_hProp _ (isapropnatdecleast F is))).
      intro t2.
      destruct t2 as [ n'' is'' ].
      destruct is'' as [ l'' d'' ].
      split with 0.
      split.
      + set (e := natleh0tois0 l'').
        clearbody e.
        destruct e.
        apply d''.
      + apply (λ n', λ f : _, natleh0n n').
    - apply (@hinhuniv _ (make_hProp _ (isapropnatdecleast F is))).
      intro t2.
      destruct t2 as [ n'' is'' ].
      set (j := natlehchoice2 _ _ (pr1 is'')).
      destruct j as [ jl | je ].
      + simpl.
        apply (IHn' (hinhpr (tpair _ n'' (make_dirprod jl (pr2 is''))))).
      + simpl.
        rewrite je in is''.
        destruct is'' as [ nn is'' ].
        clear nn. clear je. clear n''.
        assert (is' : isdecprop (F' n')) by apply (isdecbexists n' F is).
        destruct (pr1 is') as [ f | nf ].
        * apply (IHn' f).
        * split with (S n').
          split with is''.
          intros n0 fn0.
          destruct (natlthorgeh n0 (S n')) as [ l' | g' ].
          -- set (i' := natlthtolehsn _ _ l').
             destruct (nf (hinhpr (tpair _ n0 (make_dirprod i' fn0)))).
          -- apply g'.
  }
  apply (X n (hinhpr (tpair _ n (make_dirprod (isreflnatleh n) l)))).
Defined.

6. Complete (or strong) induction, where the induction step for N assumes that the property

holds for all n < N
Lemma complete_induction
  (P : nat UU)
  (H : n, ( m, m < n P m) P n)
  : n, P n.
Proof.
  intros n.
  apply H.
  induction n as [| n IHn].
  - intros m Hm.
    induction (negnatlthn0 _ Hm).
  - intros m Hm.
    apply H.
    intros l Hl.
    apply IHn.
    apply (natlthlehtrans _ m).
    + exact Hl.
    + exact Hm.
Defined.

Definition complete_induction_to_induction
  (P : nat UU)
  (H0 : P 0)
  (Hn : n, P n P (S n))
  : n, P n.
Proof.
  intro n.
  apply complete_induction.
  intros m IHm.
  induction (natchoice0 m) as [Hm' | Hm'].
  - induction Hm'.
    exact H0.
  - induction m as [| m Hm].
    + induction (negnatlthn0 _ Hm').
    + apply Hn.
      apply IHm.
      apply natlthnsn.
Defined.