Library UniMath.Algebra.Modules.Multimodules
Require Import UniMath.Foundations.All.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.Algebra.Modules.Core.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.Algebra.Modules.Core.
Require Import UniMath.Algebra.RigsAndRings.
Definition arecompatibleactions {R S G}
(mr : module_struct R G) (ms : module_struct S G) :=
let m1 := module_mult (G,, mr) in
let m2 := module_mult (G,, ms)
in ∏ (r1 : R) (r2 : S), (m1 r1 ∘ m2 r2 = m2 r2 ∘ m1 r1)%functions.
Definition multimodule_struct {I : UU} {rings : I -> ring} {G : abgr}
(structs : ∏ i : I, module_struct (rings i) G) :=
∏ (i1 i2 : I) (ne : (i1 = i2) -> hfalse),
arecompatibleactions (structs i1) (structs i2).
Definition multimodule {I : UU} (rings : I -> ring) : UU
:= ∑ G (ms : ∏ i : I, module_struct (rings i) G), multimodule_struct ms.
(mr : module_struct R G) (ms : module_struct S G) :=
let m1 := module_mult (G,, mr) in
let m2 := module_mult (G,, ms)
in ∏ (r1 : R) (r2 : S), (m1 r1 ∘ m2 r2 = m2 r2 ∘ m1 r1)%functions.
Definition multimodule_struct {I : UU} {rings : I -> ring} {G : abgr}
(structs : ∏ i : I, module_struct (rings i) G) :=
∏ (i1 i2 : I) (ne : (i1 = i2) -> hfalse),
arecompatibleactions (structs i1) (structs i2).
Definition multimodule {I : UU} (rings : I -> ring) : UU
:= ∑ G (ms : ∏ i : I, module_struct (rings i) G), multimodule_struct ms.
We define a few things in the same way for multimodules as we did for modules
Definition pr1multimodule {I : UU} {rings : I -> ring} (MM : multimodule rings) : abgr
:= pr1 MM.
Coercion pr1multimodule : multimodule >-> abgr.
Definition pr2multimodule {I : UU} {rings : I -> ring} (MM : multimodule rings)
: ∏ i : I, module_struct (rings i) (pr1multimodule MM) := (pr1 (pr2 MM)).
Definition pr3bimodule {I : UU} {rings : I -> ring} (MM : multimodule rings)
: multimodule_struct (pr2multimodule MM) := (pr2 (pr2 MM)).
Definition ith_module {I : UU} {rings : I -> ring} (MM : multimodule rings) (i : I)
: module (rings i) := (pr1multimodule MM,, pr2multimodule MM i).
Propositions
Lemma isaproparecompatibleactions
{R S G} (mr : module_struct R G) (ms : module_struct S G) :
isaprop (arecompatibleactions mr ms).
Proof.
do 2 (apply impred_isaprop; intro).
refine ((_ : isaset _) _ _).
apply funspace_isaset.
apply setproperty.
Qed.
Lemma isapropmultimodule_struct {I : UU} {rings : I -> ring} {G : abgr}
(structs : ∏ i : I, module_struct (rings i) G) :
isaprop (multimodule_struct structs).
Proof.
apply (impredtwice 1); intros i1 i2.
apply impredfun.
apply isaproparecompatibleactions.
Qed.
2. Multimodule morphisms
2.1. Multilinearity
Definition ismultilinear {I : UU} {rings : I -> ring} {MM NN : multimodule rings} (f : MM -> NN)
:= ∏ i : I, @islinear (rings i) (ith_module MM i) (ith_module NN i) f.
Definition multilinearfun {I : UU} {rings : I -> ring} (MM NN : multimodule rings)
: UU := ∑ f : MM -> NN, ismultilinear f.
Definition make_multilinearfun {I : UU} {rings : I -> ring} {MM NN : multimodule rings}
(f : MM -> NN) (is : ismultilinear f) : multilinearfun MM NN
:= tpair _ f is.
Definition pr1multilinearfun {I : UU} {rings : I -> ring} {MM NN : multimodule rings}
(f : multilinearfun MM NN) : MM -> NN := pr1 f.
Coercion pr1multilinearfun : multilinearfun >-> Funclass.
Definition ith_linearfun {I : UU} {rings : I -> ring} {MM NN : multimodule rings}
(f : multilinearfun MM NN) (i : I) :
linearfun (ith_module MM i) (ith_module NN i) :=
(pr1 f,, pr2 f i).
Definition ismultilinearfuncomp {I : UU} {rings : I -> ring}
{MM NN PP : multimodule rings} (f : multilinearfun MM NN)
(g : multilinearfun NN PP) : ismultilinear (pr1 g ∘ pr1 f)%functions :=
(fun i => islinearfuncomp (ith_linearfun f i) (ith_linearfun g i)).
Definition multilinearfuncomp {I : UU} {rings : I -> ring}
{MM NN PP : multimodule rings} (f : multilinearfun MM NN)
(g : multilinearfun NN PP) : multilinearfun MM PP :=
(funcomp f g,, ismultilinearfuncomp f g).
Definition ismultimodulefun {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : MM -> NN) : UU :=
(isbinopfun f) × (ismultilinear f).
Lemma isapropismultimodulefun {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : MM -> NN) : isaprop (ismultimodulefun f).
Proof.
refine (@isofhleveldirprod 1 (isbinopfun f) (ismultilinear f)
(isapropisbinopfun f) _).
do 3 (apply (impred 1 _); intros ?).
apply setproperty.
Defined.
Definition multimodulefun {I : UU} {rings : I -> ring}
(MM NN : multimodule rings) : UU := ∑ f : MM -> NN, ismultimodulefun f.
Definition make_multimodulefun {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : MM -> NN) (is : ismultimodulefun f) :
multimodulefun MM NN := tpair _ f is.
Definition pr1multimodulefun {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : multimodulefun MM NN) : MM -> NN := pr1 f.
Coercion pr1multimodulefun : multimodulefun >-> Funclass.
Definition multimodulefun_to_isbinopfun {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : multimodulefun MM NN) :
isbinopfun f := pr12 f.
Definition multimodulefun_to_binopfun {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : multimodulefun MM NN) :
binopfun MM NN := make_binopfun (pr1multimodulefun f)
(multimodulefun_to_isbinopfun f).
Definition multimodulefun_to_ith_islinear {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : multimodulefun MM NN) (i : I) :
islinear (M := ith_module MM i) (N := ith_module NN i) f := pr22 f i.
Definition multimodulefun_to_ith_linearfun {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : multimodulefun MM NN) (i : I) :
linearfun (ith_module MM i) (ith_module NN i) :=
make_linearfun (M := ith_module MM i) (N := ith_module NN i) f (multimodulefun_to_ith_islinear f i).
Definition ith_modulefun {I : UU} {rings : I -> ring} {MM NN : multimodule rings}
(f : multimodulefun MM NN) (i : I) :
modulefun (ith_module MM i) (ith_module NN i)
:= make_modulefun _
(make_ismodulefun (M := ith_module MM i) (N := ith_module NN i) (multimodulefun_to_isbinopfun f) (multimodulefun_to_ith_islinear f i)).
Definition multimodule_ith_mult {I : UU} {rings : I -> ring}
(MM : multimodule rings) (i : I) : (rings i) -> MM -> MM :=
@module_mult (rings i) (ith_module MM i).
If you take the underlying group of the ith module, its the same as the
underlying group of the multimodule.
Definition multimodule_same_abgrp {I : UU} {rings : I -> ring}
(MM : multimodule rings) (i : I)
: (MM : abgr) = (ith_module MM i)
:= idpath _.
(MM : multimodule rings) (i : I)
: (MM : abgr) = (ith_module MM i)
:= idpath _.
Multiplying something by 0 always gives you the identity.
Equationally, 0R * x = 0G for all x.
Definition multimodule_ith_mult_0_to_0 {I : UU} {rings : I -> ring}
{MM : multimodule rings} (i : I) (x : MM) :
multimodule_ith_mult MM i (@ringunel1 (rings i)) x = @unel MM :=
@module_mult_0_to_0 (rings i) (ith_module MM i) x.
Definition multimodulefun_unel {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : multimodulefun MM NN)
: f (unel MM) = unel NN
:= binopfun_preserves_unit f (multimodulefun_to_isbinopfun _).
{MM : multimodule rings} (i : I) (x : MM) :
multimodule_ith_mult MM i (@ringunel1 (rings i)) x = @unel MM :=
@module_mult_0_to_0 (rings i) (ith_module MM i) x.
Definition multimodulefun_unel {I : UU} {rings : I -> ring}
{MM NN : multimodule rings} (f : multimodulefun MM NN)
: f (unel MM) = unel NN
:= binopfun_preserves_unit f (multimodulefun_to_isbinopfun _).