Library UniMath.SubstitutionSystems.LamFromBindingSig
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.categories.HSET.Core.
Require Import UniMath.CategoryTheory.categories.HSET.Limits.
Require Import UniMath.CategoryTheory.categories.HSET.Colimits.
Require Import UniMath.CategoryTheory.categories.HSET.Structures.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.products.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.coproducts.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.SumOfSignatures.
Require Import UniMath.SubstitutionSystems.BinProductOfSignatures.
Require Import UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.LamSignature.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Require Import UniMath.SubstitutionSystems.BindingSigToMonad.
Require Import UniMath.SubstitutionSystems.LiftingInitial_alt.
Local Open Scope cat.
Section Lam.
A lot of notations and preliminary definitions
Local Infix "::" := (@cons nat).
Local Notation "[]" := (@nil nat) (at level 0, format "[]").
Local Notation "'HSET2'":= [HSET, HSET, has_homsets_HSET].
Local Notation "'Id'" := (functor_identity _).
Local Notation "F * G" := (H HSET HSET has_homsets_HSET HSET has_homsets_HSET BinProductsHSET F G).
Local Notation "F + G" := (BinSumOfSignatures.H _ _ _ _ _ _ BinCoproductsHSET F G).
Local Notation "'_' 'o' 'option'" :=
(ℓ (option_functor BinCoproductsHSET TerminalHSET)) (at level 10).
Local Definition has_homsets_HSET2 : has_homsets HSET2.
Proof.
apply functor_category_has_homsets.
Defined.
Local Definition BinProductsHSET2 : BinProducts HSET2.
Proof.
apply (BinProducts_functor_precat _ _ BinProductsHSET).
Defined.
Local Notation "x ⊗ y" := (BinProductObject _ (BinProductsHSET2 x y)).
Let precomp_option X := (pre_composition_functor _ _ HSET has_homsets_HSET has_homsets_HSET
(option_functor BinCoproductsHSET TerminalHSET) X).
Local Notation "X + 1" := (precomp_option X) (at level 50).
Local Notation "'1'" := (functor_identity HSET).
Definition LamSig : BindingSig :=
mkBindingSig isasetbool (λ b, if b then 0 :: 0 :: [] else 1 :: [])%nat.
mkBindingSig isasetbool (λ b, if b then 0 :: 0 :: [] else 1 :: [])%nat.
The signature with strength for the lambda calculus
Definition LamSignature : Signature HSET has_homsets_HSET _ _ _ _ :=
BindingSigToSignatureHSET LamSig.
Let Id_H := Id_H _ has_homsets_HSET BinCoproductsHSET.
Definition LamFunctor : functor HSET2 HSET2 := Id_H LamSignature.
Lemma lambdaFunctor_Initial : Initial (FunctorAlg LamFunctor has_homsets_HSET2).
Proof.
apply SignatureInitialAlgebraHSET, is_omega_cocont_BindingSigToSignatureHSET.
Defined.
Definition LamMonad : Monad HSET := BindingSigToMonadHSET LamSig.
Definition LC : HSET2 :=
alg_carrier _ (InitialObject lambdaFunctor_Initial).
Let LC_mor : HSET2⟦LamFunctor LC,LC⟧ :=
alg_map _ (InitialObject lambdaFunctor_Initial).
Let LC_alg : algebra_ob LamFunctor :=
InitialObject lambdaFunctor_Initial.
Definition var_map : HSET2⟦1,LC⟧ :=
BinCoproductIn1 HSET2 (BinCoproducts_functor_precat _ _ _ _ _ _) · LC_mor.
Definition app_map : HSET2⟦LC ⊗ LC,LC⟧ :=
CoproductIn bool HSET2 (Coproducts_functor_precat _ _ _ _ _ _) true ·
BinCoproductIn2 _ (BinCoproducts_functor_precat _ _ _ _ _ _) ·
LC_mor.
Definition lam_map : HSET2⟦LC + 1,LC⟧ :=
CoproductIn bool HSET2 (Coproducts_functor_precat _ _ _ _ _ _) false ·
BinCoproductIn2 HSET2 (BinCoproducts_functor_precat _ _ _ _ _ _) · LC_mor.
Definition make_lambdaAlgebra X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
algebra_ob LamFunctor.
Proof.
apply (tpair _ X).
use (BinCoproductArrow _ _ fvar).
use CoproductArrow.
intro b; induction b.
- apply fapp.
- apply flam.
Defined.
Definition foldr_map X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
algebra_mor _ LC_alg (make_lambdaAlgebra X fvar fapp flam).
Proof.
apply (InitialArrow lambdaFunctor_Initial (make_lambdaAlgebra X fvar fapp flam)).
Defined.
Lemma foldr_var X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
var_map · foldr_map X fvar fapp flam = fvar.
Proof.
assert (F := maponpaths (λ x, BinCoproductIn1 _ (BinCoproducts_functor_precat _ _ _ _ _ _) · x)
(algebra_mor_commutes _ _ _ (foldr_map X fvar fapp flam))).
rewrite assoc in F.
eapply pathscomp0; [apply F|].
rewrite assoc.
eapply pathscomp0; [eapply cancel_postcomposition, BinCoproductOfArrowsIn1|].
rewrite <- assoc.
eapply pathscomp0; [eapply maponpaths, BinCoproductIn1Commutes|].
apply id_left.
Defined.
Lemma foldr_app X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
app_map · foldr_map X fvar fapp flam =
# (pr1 (Id × Id)) (foldr_map X fvar fapp flam) · fapp.
Proof.
assert (F := maponpaths (λ x, CoproductIn _ _ (Coproducts_functor_precat _ _ _ _ _ _) true ·
BinCoproductIn2 _ (BinCoproducts_functor_precat
_ _ _ _ _ _) · x)
(algebra_mor_commutes _ _ _ (foldr_map X fvar fapp flam))).
rewrite assoc in F.
eapply pathscomp0; [apply F|].
rewrite assoc.
eapply pathscomp0.
eapply cancel_postcomposition.
rewrite <- assoc.
eapply maponpaths, BinCoproductOfArrowsIn2.
rewrite assoc.
eapply pathscomp0.
eapply @cancel_postcomposition. eapply @cancel_postcomposition.
apply (CoproductOfArrowsIn _ _ (Coproducts_functor_precat _ _ _
(CoproductsHSET _ isasetbool)
_ (λ i, pr1 (Arity_to_Signature has_homsets_HSET BinProductsHSET
BinCoproductsHSET TerminalHSET (BindingSigMap LamSig i)) `LC_alg))).
rewrite <- assoc.
eapply pathscomp0; [eapply maponpaths, BinCoproductIn2Commutes|].
rewrite <- assoc.
eapply pathscomp0; eapply maponpaths.
exact (CoproductInCommutes _ _ _ _ _ _ true).
apply idpath.
Defined.
Lemma foldr_lam X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
lam_map · foldr_map X fvar fapp flam =
# (pr1 (_ o option)) (foldr_map X fvar fapp flam) · flam.
Proof.
assert (F := maponpaths (λ x, CoproductIn _ _ (Coproducts_functor_precat _ _ _ _ _ _) false ·
BinCoproductIn2 _ (BinCoproducts_functor_precat
_ _ _ _ _ _) · x)
(algebra_mor_commutes _ _ _ (foldr_map X fvar fapp flam))).
rewrite assoc in F.
eapply pathscomp0; [apply F|].
rewrite assoc.
eapply pathscomp0.
eapply cancel_postcomposition.
rewrite <- assoc.
eapply maponpaths, BinCoproductOfArrowsIn2.
rewrite assoc.
eapply pathscomp0.
eapply @cancel_postcomposition, @cancel_postcomposition.
apply (CoproductOfArrowsIn _ _ (Coproducts_functor_precat _ _ _
(CoproductsHSET _ isasetbool)
_ (λ i, pr1 (Arity_to_Signature has_homsets_HSET BinProductsHSET
BinCoproductsHSET TerminalHSET (BindingSigMap LamSig i)) `LC_alg))).
rewrite <- assoc.
eapply pathscomp0.
eapply maponpaths, BinCoproductIn2Commutes.
rewrite <- assoc.
eapply pathscomp0; eapply maponpaths.
exact (CoproductInCommutes _ _ _ _ _ _ false).
apply idpath.
Defined.
Local Notation "'1'" := (TerminalHSET).
Local Notation "a ⊕ b" := (BinCoproductObject _ (BinCoproductsHSET a b)).
Local Notation "x ⊛ y" := (BinProductObject _ (BinProductsHSET x y)) (at level 60).
BindingSigToSignatureHSET LamSig.
Let Id_H := Id_H _ has_homsets_HSET BinCoproductsHSET.
Definition LamFunctor : functor HSET2 HSET2 := Id_H LamSignature.
Lemma lambdaFunctor_Initial : Initial (FunctorAlg LamFunctor has_homsets_HSET2).
Proof.
apply SignatureInitialAlgebraHSET, is_omega_cocont_BindingSigToSignatureHSET.
Defined.
Definition LamMonad : Monad HSET := BindingSigToMonadHSET LamSig.
Definition LC : HSET2 :=
alg_carrier _ (InitialObject lambdaFunctor_Initial).
Let LC_mor : HSET2⟦LamFunctor LC,LC⟧ :=
alg_map _ (InitialObject lambdaFunctor_Initial).
Let LC_alg : algebra_ob LamFunctor :=
InitialObject lambdaFunctor_Initial.
Definition var_map : HSET2⟦1,LC⟧ :=
BinCoproductIn1 HSET2 (BinCoproducts_functor_precat _ _ _ _ _ _) · LC_mor.
Definition app_map : HSET2⟦LC ⊗ LC,LC⟧ :=
CoproductIn bool HSET2 (Coproducts_functor_precat _ _ _ _ _ _) true ·
BinCoproductIn2 _ (BinCoproducts_functor_precat _ _ _ _ _ _) ·
LC_mor.
Definition lam_map : HSET2⟦LC + 1,LC⟧ :=
CoproductIn bool HSET2 (Coproducts_functor_precat _ _ _ _ _ _) false ·
BinCoproductIn2 HSET2 (BinCoproducts_functor_precat _ _ _ _ _ _) · LC_mor.
Definition make_lambdaAlgebra X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
algebra_ob LamFunctor.
Proof.
apply (tpair _ X).
use (BinCoproductArrow _ _ fvar).
use CoproductArrow.
intro b; induction b.
- apply fapp.
- apply flam.
Defined.
Definition foldr_map X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
algebra_mor _ LC_alg (make_lambdaAlgebra X fvar fapp flam).
Proof.
apply (InitialArrow lambdaFunctor_Initial (make_lambdaAlgebra X fvar fapp flam)).
Defined.
Lemma foldr_var X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
var_map · foldr_map X fvar fapp flam = fvar.
Proof.
assert (F := maponpaths (λ x, BinCoproductIn1 _ (BinCoproducts_functor_precat _ _ _ _ _ _) · x)
(algebra_mor_commutes _ _ _ (foldr_map X fvar fapp flam))).
rewrite assoc in F.
eapply pathscomp0; [apply F|].
rewrite assoc.
eapply pathscomp0; [eapply cancel_postcomposition, BinCoproductOfArrowsIn1|].
rewrite <- assoc.
eapply pathscomp0; [eapply maponpaths, BinCoproductIn1Commutes|].
apply id_left.
Defined.
Lemma foldr_app X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
app_map · foldr_map X fvar fapp flam =
# (pr1 (Id × Id)) (foldr_map X fvar fapp flam) · fapp.
Proof.
assert (F := maponpaths (λ x, CoproductIn _ _ (Coproducts_functor_precat _ _ _ _ _ _) true ·
BinCoproductIn2 _ (BinCoproducts_functor_precat
_ _ _ _ _ _) · x)
(algebra_mor_commutes _ _ _ (foldr_map X fvar fapp flam))).
rewrite assoc in F.
eapply pathscomp0; [apply F|].
rewrite assoc.
eapply pathscomp0.
eapply cancel_postcomposition.
rewrite <- assoc.
eapply maponpaths, BinCoproductOfArrowsIn2.
rewrite assoc.
eapply pathscomp0.
eapply @cancel_postcomposition. eapply @cancel_postcomposition.
apply (CoproductOfArrowsIn _ _ (Coproducts_functor_precat _ _ _
(CoproductsHSET _ isasetbool)
_ (λ i, pr1 (Arity_to_Signature has_homsets_HSET BinProductsHSET
BinCoproductsHSET TerminalHSET (BindingSigMap LamSig i)) `LC_alg))).
rewrite <- assoc.
eapply pathscomp0; [eapply maponpaths, BinCoproductIn2Commutes|].
rewrite <- assoc.
eapply pathscomp0; eapply maponpaths.
exact (CoproductInCommutes _ _ _ _ _ _ true).
apply idpath.
Defined.
Lemma foldr_lam X (fvar : HSET2⟦1,X⟧) (fapp : HSET2⟦X ⊗ X,X⟧) (flam : HSET2⟦X + 1,X⟧) :
lam_map · foldr_map X fvar fapp flam =
# (pr1 (_ o option)) (foldr_map X fvar fapp flam) · flam.
Proof.
assert (F := maponpaths (λ x, CoproductIn _ _ (Coproducts_functor_precat _ _ _ _ _ _) false ·
BinCoproductIn2 _ (BinCoproducts_functor_precat
_ _ _ _ _ _) · x)
(algebra_mor_commutes _ _ _ (foldr_map X fvar fapp flam))).
rewrite assoc in F.
eapply pathscomp0; [apply F|].
rewrite assoc.
eapply pathscomp0.
eapply cancel_postcomposition.
rewrite <- assoc.
eapply maponpaths, BinCoproductOfArrowsIn2.
rewrite assoc.
eapply pathscomp0.
eapply @cancel_postcomposition, @cancel_postcomposition.
apply (CoproductOfArrowsIn _ _ (Coproducts_functor_precat _ _ _
(CoproductsHSET _ isasetbool)
_ (λ i, pr1 (Arity_to_Signature has_homsets_HSET BinProductsHSET
BinCoproductsHSET TerminalHSET (BindingSigMap LamSig i)) `LC_alg))).
rewrite <- assoc.
eapply pathscomp0.
eapply maponpaths, BinCoproductIn2Commutes.
rewrite <- assoc.
eapply pathscomp0; eapply maponpaths.
exact (CoproductInCommutes _ _ _ _ _ _ false).
apply idpath.
Defined.
Local Notation "'1'" := (TerminalHSET).
Local Notation "a ⊕ b" := (BinCoproductObject _ (BinCoproductsHSET a b)).
Local Notation "x ⊛ y" := (BinProductObject _ (BinProductsHSET x y)) (at level 60).
This makes cbn not unfold things too much below
Arguments LamMonad : simpl never.
Arguments BinCoproductObject : simpl never.
Definition substLam (X : HSET) : HSET⟦LamMonad (1 ⊕ X) ⊛ LamMonad X,LamMonad X⟧.
Proof.
intro H.
set (f := monadSubst LamMonad BinCoproductsHSET TerminalHSET X).
set (g := λ (_ : unit), pr2 H).
cbn in H, f, g.
apply (f g (pr1 H)).
Defined.
End Lam.
Arguments BinCoproductObject : simpl never.
Definition substLam (X : HSET) : HSET⟦LamMonad (1 ⊕ X) ⊛ LamMonad X,LamMonad X⟧.
Proof.
intro H.
set (f := monadSubst LamMonad BinCoproductsHSET TerminalHSET X).
set (g := λ (_ : unit), pr2 H).
cbn in H, f, g.
apply (f g (pr1 H)).
Defined.
End Lam.