Library UniMath.SubstitutionSystems.Signatures


**********************************************************
Benedikt Ahrens, Ralph Matthes
SubstitutionSystems
2015
**********************************************************
Contents :
  • Definition of signatures
  • Proof that two forms of strength laws are equivalent
Goal: define signatures as pairs of a rank-2 functor and a "strength"

Definition of signatures


Section fix_a_category.

Variable C : precategory.
Variable hs : has_homsets C.

in the original definition, this second category was the same as the first one
Variable D : precategory.
Variable hsD : has_homsets D.

we do not yet have a use of this third category being different from the very first one
Variable D' : precategory.
Variable hsD' : has_homsets D'.

Section about_signatures.

H is a rank-2 functor: a functor between functor categories
Variable H : functor [C, D', hsD'] [C, D, hsD].

The precategory of pointed endofunctors on C
Local Notation "'Ptd'" := (precategory_Ptd C hs).
The category of endofunctors on C
Local Notation "'EndC'":= ([C, C, hs]) .

Source and target of the natural transformation θ

Source is given by (X,Z) H(X)∙U(Z)
Definition θ_source: ([C, D', hsD'] Ptd) [C, D, hsD].
Proof.
  apply (functor_composite (pair_functor H U)).
  apply (functor_composite binswap_pair_functor).
  apply functorial_composition.
Defined.

Lemma θ_source_ok: functor_on_objects θ_source = λ FX : [C, D', hsD'] Ptd, H (pr1 FX) U (pr2 FX).
Proof.
  apply idpath.
Qed.

Target is given by (X,Z) H(XU(Z))

Two alternative versions of the strength laws

We assume a suitable (bi)natural transformation θ
Hypothesis θ : θ_source θ_target.

θ is supposed to satisfy two strength laws
needs the heterogeneous formulation of the monoidal operation to type-check
Definition θ_Strength1_int : UU
  := X : [C, D', hsD'],
     θ (X (id_Ptd C hs)) · # H (λ_functor _) = λ_functor _.

Lemma θ_Strength1_int_implies_θ_Strength1 : θ_Strength1_int θ_Strength1.
Proof.
  unfold θ_Strength1_int, θ_Strength1.
  intros T X.
  assert (TX := T X).
  apply nat_trans_eq; try assumption.
  intro c; cbn.
  assert (T2 := nat_trans_eq_pointwise TX c).
  cbn in ×.
  assert (X0 : λ_functor X = identity (X : [C, D', hsD'])).
  { apply nat_trans_eq; try assumption; intros; apply idpath. }
  rewrite X0 in T2.
  apply T2.
Qed.

Lemma θ_Strength1_implies_θ_Strength1_int : θ_Strength1 θ_Strength1_int.
Proof.
  unfold θ_Strength1_int, θ_Strength1.
  intros T X.
  assert (TX := T X).
  apply nat_trans_eq; try assumption.
  intro c; cbn.
  assert (T2 := nat_trans_eq_pointwise TX c).
  cbn in ×.
  assert (X0 : λ_functor X = identity (X : [C, D', hsD'])).
  { apply nat_trans_eq; try assumption; intros; apply idpath. }
  rewrite X0.
  apply T2.
Qed.

End Strength_law_1_intensional.

Definition θ_Strength2 : UU := (X : [C, D', hsD']) (Z Z' : Ptd) (Y : [C, D', hsD'])
           (α : functor_compose hs hsD' (functor_composite (U Z) (U Z')) X --> Y),
    θ (X (Z p Z' : Ptd)) · # H α =
    θ (X Z') •• (U Z) · θ ((functor_compose hs hsD' (U Z') X) Z) ·
       # H (α : functor_compose hs hsD' (U Z) (X (U Z')) --> Y).

Section Strength_law_2_intensional.
Definition θ_Strength2_int : UU
  := (X : [C, D', hsD']) (Z Z' : Ptd),
      θ (X (Z p Z')) · #H (α_functor (U Z) (U Z') X ) =
      (α_functor (U Z) (U Z') (H X) : [C, D, hsD] functor_compose hs hsD (functor_composite (U Z) (U Z')) (H X), functor_composite (U Z) (functor_composite (U Z') (H X))
      ) ·
      θ (X Z') •• (U Z) · θ ((functor_compose hs hsD' (U Z') X) Z) .

Lemma θ_Strength2_int_implies_θ_Strength2 : θ_Strength2_int θ_Strength2.
Proof.
  unfold θ_Strength2_int, θ_Strength2.
  intros T X Z Z' Y a.
  apply nat_trans_eq; try assumption.
  intro c.

  assert (TXZZ' := T X Z Z').
  assert (TXZZ'c := nat_trans_eq_pointwise TXZZ' c).
  cbn in TXZZ'c.
  clear T TXZZ'.
  rewrite id_left in TXZZ'c.
  cbn. rewrite <- TXZZ'c; clear TXZZ'c.
  rewrite <- assoc.
  apply maponpaths.
  assert (functor_comp_H := functor_comp H (α_functor (pr1 Z) (pr1 Z') X)
           (a : functor_compose hs hsD' (U Z) (functor_composite (U Z') X) --> Y)).
  assert (functor_comp_H_c := nat_trans_eq_pointwise functor_comp_H c).
  cbn in functor_comp_H_c.
  eapply pathscomp0.
  2: { apply functor_comp_H_c. }
  clear functor_comp_H functor_comp_H_c.
  revert c.
  apply nat_trans_eq_pointwise.
  apply maponpaths.
  apply nat_trans_eq; try assumption.
  intro c; apply pathsinv0, id_left.
Qed.

Lemma θ_Strength2_implies_θ_Strength2_int : θ_Strength2 θ_Strength2_int.
Proof.
  unfold θ_Strength2_int, θ_Strength2.
  intros T X Z Z'.
  assert (TXZZ'_inst := T X Z Z' (functor_compose hs hsD' (U Z)
          (functor_composite (U Z') X)) (α_functor (pr1 Z) (pr1 Z') X)).
  eapply pathscomp0.
  { apply TXZZ'_inst. }
  clear T TXZZ'_inst.
  apply nat_trans_eq; try assumption.
  intro c.
  cbn.
  rewrite id_left.
  rewrite <- assoc.
  apply maponpaths.
  eapply pathscomp0; [| apply id_right].
  apply maponpaths.
  assert (functor_id_H := functor_id H (functor_compose hs hsD' (pr1 Z) (functor_composite (pr1 Z') X))).
  assert (functor_id_H_c := nat_trans_eq_pointwise functor_id_H c).
  eapply pathscomp0; [| apply functor_id_H_c].
  clear functor_id_H functor_id_H_c.
  revert c.
  apply nat_trans_eq_pointwise.
  apply maponpaths.
  apply nat_trans_eq; try assumption;
  intro c; apply idpath.
Qed.

End Strength_law_2_intensional.

Not having a general theory of binatural transformations, we isolate naturality in each component here

Lemma θ_nat_1 (X X' : [C, D', hsD']) (α : X --> X') (Z : Ptd)
  : compose (C := [C, D, hsD]) (# H α ∙∙ nat_trans_id (pr1 (U Z))) (θ (X' Z)) =
        θ (X Z) · # H (α ∙∙ nat_trans_id (pr1 (U Z))).
Proof.
  set (t := nat_trans_ax θ).
  set (t' := t (X Z) (X' Z)).
  set (t'' := t' (precatbinprodmor α (identity _ ))).
  cbn in t''.
  exact t''.
Qed.


Lemma θ_nat_1_pointwise (X X' : [C, D', hsD']) (α : X --> X') (Z : Ptd) (c : C)
  : pr1 (# H α) ((pr1 Z) c) · pr1 (θ (X' Z)) c =
       pr1 (θ (X Z)) c · pr1 (# H (α ∙∙ nat_trans_id (pr1 Z))) c.
Proof.
  set (t := θ_nat_1 _ _ α Z).
  set (t' := nat_trans_eq_weq hsD _ _ t c);
  clearbody t'; cbn in t'.
  assert (H' := functor_id (H X') (pr1 (pr1 Z) c));
  cbn in H'.
  match goal with |[H1 : ?f · _ · ?g = _ , H2 : ?x = _ |- _ ] ⇒
                        intermediate_path (f · x · g) end.
  - repeat rewrite <- assoc.
    apply maponpaths.
    rewrite H'.
    apply pathsinv0, id_left.
  - apply t'.
Qed.

Lemma θ_nat_2 (X : [C, D', hsD']) (Z Z' : Ptd) (f : Z --> Z')
  : compose (C := [C, D, hsD]) (identity (H X) ∙∙ pr1 f) (θ (X Z')) =
       θ (X Z) · # H (identity X ∙∙ pr1 f).
Proof.
  set (t := nat_trans_ax θ).
  set (t' := t (X Z) (X Z') (precatbinprodmor (identity _ ) f)).
  cbn in t'.
  unfold precatbinprodmor in t'.
  cbn in t'.
  set (T := functor_id H X).
  cbn in ×.
  rewrite T in t'. clear T.
  exact t'.
Qed.

Lemma θ_nat_2_pointwise (X : [C, D', hsD']) (Z Z' : Ptd) (f : Z --> Z') (c : C)
  : # (pr1 (H X)) ((pr1 f) c) · pr1 (θ (X Z')) c =
       pr1 (θ (X Z)) c · pr1 (# H (identity X ∙∙ pr1 f)) c .
Proof.
  set (t := θ_nat_2 X _ _ f).
  set (t' := nat_trans_eq_weq hsD _ _ t c).
  clearbody t'; clear t.
  cbn in t'.
  rewrite id_left in t'.
  exact t'.
Qed.

End about_signatures.

Section Strength_laws.
define strength laws

End Strength_laws.

Definition Signature : UU
  :=
   H : [C, D', hsD'] [C, D, hsD] ,
      θ : nat_trans (θ_source H) (θ_target H) , θ_Strength1_int H θ × θ_Strength2_int H θ.

Coercion Signature_Functor (S : Signature) : functor _ _ := pr1 S.

Definition theta (H : Signature) : (θ_source H) (θ_target H) := pr1 (pr2 H).

Definition Sig_strength_law1 (H : Signature) : θ_Strength1_int _ _ := pr1 (pr2 (pr2 H)).

Definition Sig_strength_law2 (H : Signature) : θ_Strength2_int _ _ := pr2 (pr2 (pr2 H)).

End fix_a_category.

Arguments theta {_ _ _ _ _ _} _ .
Arguments θ_source {_ _ _ _ _ _ } _ .
Arguments θ_target {_ _ _ _ _ _ } _ .
Arguments θ_Strength1 {_ _ _ _ _ _ _ } _ .
Arguments θ_Strength2 {_ _ _ _ _ _ _ } _ .
Arguments θ_Strength1_int {_ _ _ _ _ _ _} _ .
Arguments θ_Strength2_int {_ _ _ _ _ _ _} _ .