Library UniMath.CategoryTheory.whiskering
Whiskering
Contents :
- Precomposition with a functor for
- functors and
- natural transformations (whiskering)
- Functoriality of precomposition / postcomposition
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.FunctorCategory.
Local Open Scope cat.
Definition functor_compose {A B C : precategory} (hsB: has_homsets B)
(hsC: has_homsets C) (F : ob [A, B, hsB])
(G : ob [B , C, hsC]) : ob [A , C, hsC] :=
functor_composite F G.
Lemma is_nat_trans_pre_whisker (A B C : precategory_data)
(F : functor_data A B) (G H : functor_data B C) (gamma : nat_trans G H) :
is_nat_trans
(functor_composite_data F G)
(functor_composite_data F H)
(λ a : A, gamma (F a)).
Proof.
intros a b f; simpl.
apply nat_trans_ax.
Qed.
Definition pre_whisker {A B C : precategory_data}
(F : functor_data A B) {G H : functor_data B C} (gamma : nat_trans G H) :
nat_trans (functor_composite_data F G) (functor_composite_data F H).
Proof.
∃ (λ a, pr1 gamma (pr1 F a)).
apply is_nat_trans_pre_whisker.
Defined.
Lemma pre_whisker_iso_is_iso {A B C : precategory_data}
(F : functor_data A B) {G H : functor_data B C} (gamma : nat_trans G H)
(X : (∀ b : B, is_iso (gamma b)))
: (∀ a : A, is_iso (pre_whisker F gamma a)).
Proof.
intros a.
apply X.
Qed.
Postwhiskering
Lemma is_nat_trans_post_whisker (B C D : precategory_data)
(G H : functor_data B C) (gamma : nat_trans G H)
(K : functor C D):
is_nat_trans (functor_composite_data G K)
(functor_composite_data H K)
(λ b : B, #K (gamma b)).
Proof.
unfold is_nat_trans.
simpl in ×.
intros;
repeat rewrite <- functor_comp.
rewrite (nat_trans_ax gamma).
apply idpath.
Qed.
Definition post_whisker {B C D : precategory_data}
{G H : functor_data B C} (gamma : nat_trans G H)
(K : functor C D)
: nat_trans (functor_composite_data G K) (functor_composite_data H K).
Proof.
∃ (λ a : ob B, #(pr1 K) (pr1 gamma a)).
apply is_nat_trans_post_whisker.
Defined.
Lemma post_whisker_iso_is_iso {B C D : precategory}
{G H : functor_data B C} (gamma : nat_trans G H)
(K : functor C D)
(X : (∀ b : B, is_iso (gamma b)))
: (∀ b : B, is_iso (post_whisker gamma K b)).
Proof.
intros b.
unfold post_whisker.
simpl.
set ( gammab := make_iso (gamma b) (X b) ).
apply (functor_on_iso_is_iso C D K _ _ gammab).
Defined.
Precomposition with a functor is functorial
Definition pre_composition_functor_data (A B C : precategory)
(hsB: has_homsets B) (hsC: has_homsets C)
(H : ob [A, B, hsB]) : functor_data [B,C,hsC] [A,C,hsC].
Proof.
∃ (λ G, functor_compose _ _ H G).
exact (λ a b gamma, pre_whisker (pr1 H) gamma).
Defined.
Lemma pre_whisker_identity (A B : precategory_data) (C : precategory)(hsC : has_homsets C)
(H : functor_data A B) (G : functor_data B C)
: pre_whisker H (nat_trans_id G) =
nat_trans_id (functor_composite_data H G).
Proof.
apply nat_trans_eq.
- apply hsC.
- intro a. apply idpath.
Qed.
Lemma pre_whisker_composition (A B : precategory_data) (C : precategory)
(hsC : has_homsets C)
(H : functor_data A B) (a b c : functor_data B C)
(f : nat_trans a b) (g : nat_trans b c)
: pre_whisker H (nat_trans_comp _ _ _ f g) =
nat_trans_comp _ _ _ (pre_whisker H f) (pre_whisker H g).
Proof.
apply nat_trans_eq.
- apply hsC.
- intro; simpl.
apply idpath.
Qed.
Lemma pre_composition_is_functor (A B C : precategory) (hsB: has_homsets B)
(hsC: has_homsets C) (H : [A, B, hsB]) :
is_functor (pre_composition_functor_data A B C hsB hsC H).
Proof.
split; simpl in ×.
- unfold functor_idax .
intros.
apply pre_whisker_identity.
assumption.
- unfold functor_compax .
intros.
apply pre_whisker_composition.
assumption.
Qed.
Definition pre_composition_functor (A B C : precategory) (hsB: has_homsets B) (hsC: has_homsets C)
(H : [A , B, hsB]) : functor [B, C, hsC] [A, C, hsC].
Proof.
∃ (pre_composition_functor_data A B C hsB hsC H).
apply pre_composition_is_functor.
Defined.
Postcomposition with a functor is functorial
Definition post_composition_functor_data (A B C : precategory)
(hsB: has_homsets B) (hsC: has_homsets C)
(H : ob [B, C, hsC]) : functor_data [A,B,hsB] [A,C,hsC].
Proof.
∃ (λ G, functor_compose _ _ G H).
exact (λ a b gamma, post_whisker gamma H).
Defined.
Lemma post_whisker_identity (A B : precategory) (C : precategory)(hsC : has_homsets C)
(H : functor B C) (G : functor_data A B)
: post_whisker (nat_trans_id G) H =
nat_trans_id (functor_composite_data G H).
Proof.
apply nat_trans_eq.
- apply hsC.
- intro a. unfold post_whisker. simpl.
apply functor_id.
Qed.
Lemma post_whisker_composition (A B : precategory) (C : precategory)
(hsC : has_homsets C)
(H : functor B C) (a b c : functor_data A B)
(f : nat_trans a b) (g : nat_trans b c)
: post_whisker (nat_trans_comp _ _ _ f g) H =
nat_trans_comp _ _ _ (post_whisker f H) (post_whisker g H).
Proof.
apply nat_trans_eq.
- apply hsC.
- intro; simpl.
apply functor_comp.
Qed.
Lemma post_composition_is_functor (A B C : precategory) (hsB: has_homsets B)
(hsC: has_homsets C) (H : [B, C, hsC]) :
is_functor (post_composition_functor_data A B C hsB hsC H).
Proof.
split; simpl in ×.
- unfold functor_idax .
intros.
apply post_whisker_identity.
assumption.
- unfold functor_compax .
intros.
apply post_whisker_composition.
assumption.
Qed.
Definition post_composition_functor (A B C : precategory) (hsB: has_homsets B) (hsC: has_homsets C)
(H : [B , C, hsC]) : functor [A, B, hsB] [A, C, hsC].
Proof.
∃ (post_composition_functor_data A B C hsB hsC H).
apply post_composition_is_functor.
Defined.