Library UniMath.SubstitutionSystems.SubstitutionSystems
**********************************************************
Benedikt Ahrens, Ralph Matthes
SubstitutionSystems
2015
**********************************************************
Contents :
- Definition of heterogeneous substitution systems
- Various lemmas about the substitution ("bracket") operation
- Definition of precategory of substitution systems
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.FunctorCategory.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Section def_hss.
Variable C : precategory.
Variable hs : has_homsets C.
Variable CP : BinCoproducts C.
Local Notation "'EndC'":= ([C, C, hs]) .
Let hsEndC : has_homsets EndC := functor_category_has_homsets C C hs.
Let CPEndC : BinCoproducts EndC := BinCoproducts_functor_precat _ _ CP hs.
Variable H : Signature C hs C hs C hs.
Let θ := theta H.
Let θ_strength1_int := Sig_strength_law1 _ _ _ _ _ _ H.
Let θ_strength2_int := Sig_strength_law2 _ _ _ _ _ _ H.
Let Id_H
: functor EndC EndC
:= BinCoproduct_of_functors _ _ CPEndC
(constant_functor _ _ (functor_identity _ : EndC))
H.
Variable hs : has_homsets C.
Variable CP : BinCoproducts C.
Local Notation "'EndC'":= ([C, C, hs]) .
Let hsEndC : has_homsets EndC := functor_category_has_homsets C C hs.
Let CPEndC : BinCoproducts EndC := BinCoproducts_functor_precat _ _ CP hs.
Variable H : Signature C hs C hs C hs.
Let θ := theta H.
Let θ_strength1_int := Sig_strength_law1 _ _ _ _ _ _ H.
Let θ_strength2_int := Sig_strength_law2 _ _ _ _ _ _ H.
Let Id_H
: functor EndC EndC
:= BinCoproduct_of_functors _ _ CPEndC
(constant_functor _ _ (functor_identity _ : EndC))
H.
The precategory of pointed endofunctors on C
The category of endofunctors on C
Local Notation "'EndC'":= ([C, C, hs]) .
Definition eta_from_alg (T : algebra_ob Id_H) : EndC ⟦ functor_identity _, `T ⟧.
Proof.
exact (BinCoproductIn1 _ (CPEndC _ _) · alg_map _ T).
Defined.
Local Notation η := eta_from_alg.
Definition ptd_from_alg (T : algebra_ob Id_H) : Ptd.
Proof.
∃ (pr1 T).
exact (η T).
Defined.
Definition tau_from_alg (T : algebra_ob Id_H) : EndC ⟦H `T, `T⟧.
Proof.
exact (BinCoproductIn2 _ (CPEndC _ _) · alg_map _ T).
Defined.
Local Notation τ := tau_from_alg.
Local Notation "'p' T" := (ptd_from_alg T) (at level 3).
Local Notation "f ⊕ g" := (BinCoproductOfArrows _ (CPEndC _ _ ) (CPEndC _ _ ) f g).
Definition bracket_property (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) : UU
:=
alg_map _ T •• (U Z) · h =
(identity (U Z) ⊕ θ (`T ⊗ Z)) ·
(identity (U Z) ⊕ #H h) ·
(BinCoproductArrow _ (CPEndC _ _ ) (#U f) (tau_from_alg T)).
Definition bracket_at (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T): UU :=
∃! h : `T • (U Z) --> `T, bracket_property T f h.
Definition bracket (T : algebra_ob Id_H) : UU
:= ∏ (Z : Ptd) (f : Z --> ptd_from_alg T), bracket_at T f.
Lemma isaprop_bracket (T : algebra_ob Id_H) : isaprop (bracket T).
Proof.
apply impred_isaprop; intro Z.
apply impred_isaprop; intro f.
apply isapropiscontr.
Qed.
Definition bracket_property_parts (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) : UU
:=
(#U f = η T •• (U Z) · h) ×
(θ (`T ⊗ Z) · #H h · τ T = τ T •• (U Z) · h).
Definition bracket_parts_at (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T) : UU :=
∃! h : `T • (U Z) --> `T, bracket_property_parts T f h.
Definition bracket_parts (T : algebra_ob Id_H) : UU
:= ∏ (Z : Ptd) (f : Z --> ptd_from_alg T), bracket_parts_at T f.
Lemma parts_from_whole (T : algebra_ob Id_H) (Z : Ptd) (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) :
bracket_property T f h → bracket_property_parts T f h.
Proof.
intro Hyp.
split.
+ unfold eta_from_alg.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
unfold coproduct_nat_trans_in1_data.
assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp.
apply (maponpaths (λ m, BinCoproductIn1 C (CP _ _)· m)) in Hyp_inst.
match goal with |[ H1 : _ = ?f |- _ = _ ] ⇒
intermediate_path (f) end.
× clear Hyp_inst.
rewrite <- assoc.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_dir.
apply idpath.
× rewrite <- Hyp_inst; clear Hyp_inst.
rewrite <- assoc.
apply idpath.
+ unfold tau_from_alg.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
unfold coproduct_nat_trans_in2_data.
assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp.
apply (maponpaths (λ m, BinCoproductIn2 C (CP _ _)· m)) in Hyp_inst.
match goal with |[ H1 : _ = ?f |- _ = _ ] ⇒
intermediate_path (f) end.
× clear Hyp_inst.
do 2 rewrite <- assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply maponpaths.
unfold tau_from_alg.
apply BinCoproductIn2Commutes_right_dir.
apply idpath.
× rewrite <- Hyp_inst; clear Hyp_inst.
rewrite <- assoc.
apply idpath.
Qed.
Lemma whole_from_parts (T : algebra_ob Id_H) (Z : Ptd) (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) :
bracket_property_parts T f h → bracket_property T f h.
Proof.
intros [Hyp1 Hyp2].
apply nat_trans_eq; try (exact hs).
intro c.
apply BinCoproductArrow_eq_cor.
+ clear Hyp2.
assert (Hyp1_inst := nat_trans_eq_pointwise Hyp1 c); clear Hyp1.
rewrite <- assoc.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_dir.
simpl. simpl in Hyp1_inst.
rewrite Hyp1_inst.
simpl.
apply assoc.
+ clear Hyp1.
assert (Hyp2_inst := nat_trans_eq_pointwise Hyp2 c); clear Hyp2.
rewrite <- assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite assoc.
eapply pathscomp0.
× eapply pathsinv0.
exact Hyp2_inst.
× clear Hyp2_inst.
simpl.
do 2 rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_dir.
apply idpath.
Qed.
Definition hss : UU := ∑ T, bracket T.
Coercion alg_from_hss (T : hss) : algebra_ob Id_H := pr1 T.
Definition fbracket (T : hss) {Z : Ptd} (f : Z --> ptd_from_alg T)
: `T • (U Z) --> `T
:= pr1 (pr1 (pr2 T Z f)).
Notation "⦃ f ⦄" := (fbracket _ f)(at level 0).
Definition eta_from_alg (T : algebra_ob Id_H) : EndC ⟦ functor_identity _, `T ⟧.
Proof.
exact (BinCoproductIn1 _ (CPEndC _ _) · alg_map _ T).
Defined.
Local Notation η := eta_from_alg.
Definition ptd_from_alg (T : algebra_ob Id_H) : Ptd.
Proof.
∃ (pr1 T).
exact (η T).
Defined.
Definition tau_from_alg (T : algebra_ob Id_H) : EndC ⟦H `T, `T⟧.
Proof.
exact (BinCoproductIn2 _ (CPEndC _ _) · alg_map _ T).
Defined.
Local Notation τ := tau_from_alg.
Local Notation "'p' T" := (ptd_from_alg T) (at level 3).
Local Notation "f ⊕ g" := (BinCoproductOfArrows _ (CPEndC _ _ ) (CPEndC _ _ ) f g).
Definition bracket_property (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) : UU
:=
alg_map _ T •• (U Z) · h =
(identity (U Z) ⊕ θ (`T ⊗ Z)) ·
(identity (U Z) ⊕ #H h) ·
(BinCoproductArrow _ (CPEndC _ _ ) (#U f) (tau_from_alg T)).
Definition bracket_at (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T): UU :=
∃! h : `T • (U Z) --> `T, bracket_property T f h.
Definition bracket (T : algebra_ob Id_H) : UU
:= ∏ (Z : Ptd) (f : Z --> ptd_from_alg T), bracket_at T f.
Lemma isaprop_bracket (T : algebra_ob Id_H) : isaprop (bracket T).
Proof.
apply impred_isaprop; intro Z.
apply impred_isaprop; intro f.
apply isapropiscontr.
Qed.
Definition bracket_property_parts (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) : UU
:=
(#U f = η T •• (U Z) · h) ×
(θ (`T ⊗ Z) · #H h · τ T = τ T •• (U Z) · h).
Definition bracket_parts_at (T : algebra_ob Id_H) {Z : Ptd} (f : Z --> ptd_from_alg T) : UU :=
∃! h : `T • (U Z) --> `T, bracket_property_parts T f h.
Definition bracket_parts (T : algebra_ob Id_H) : UU
:= ∏ (Z : Ptd) (f : Z --> ptd_from_alg T), bracket_parts_at T f.
Lemma parts_from_whole (T : algebra_ob Id_H) (Z : Ptd) (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) :
bracket_property T f h → bracket_property_parts T f h.
Proof.
intro Hyp.
split.
+ unfold eta_from_alg.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
unfold coproduct_nat_trans_in1_data.
assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp.
apply (maponpaths (λ m, BinCoproductIn1 C (CP _ _)· m)) in Hyp_inst.
match goal with |[ H1 : _ = ?f |- _ = _ ] ⇒
intermediate_path (f) end.
× clear Hyp_inst.
rewrite <- assoc.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_dir.
apply idpath.
× rewrite <- Hyp_inst; clear Hyp_inst.
rewrite <- assoc.
apply idpath.
+ unfold tau_from_alg.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
unfold coproduct_nat_trans_in2_data.
assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp.
apply (maponpaths (λ m, BinCoproductIn2 C (CP _ _)· m)) in Hyp_inst.
match goal with |[ H1 : _ = ?f |- _ = _ ] ⇒
intermediate_path (f) end.
× clear Hyp_inst.
do 2 rewrite <- assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply maponpaths.
unfold tau_from_alg.
apply BinCoproductIn2Commutes_right_dir.
apply idpath.
× rewrite <- Hyp_inst; clear Hyp_inst.
rewrite <- assoc.
apply idpath.
Qed.
Lemma whole_from_parts (T : algebra_ob Id_H) (Z : Ptd) (f : Z --> ptd_from_alg T)
(h : `T • (U Z) --> `T) :
bracket_property_parts T f h → bracket_property T f h.
Proof.
intros [Hyp1 Hyp2].
apply nat_trans_eq; try (exact hs).
intro c.
apply BinCoproductArrow_eq_cor.
+ clear Hyp2.
assert (Hyp1_inst := nat_trans_eq_pointwise Hyp1 c); clear Hyp1.
rewrite <- assoc.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left.
apply BinCoproductIn1Commutes_right_dir.
simpl. simpl in Hyp1_inst.
rewrite Hyp1_inst.
simpl.
apply assoc.
+ clear Hyp1.
assert (Hyp2_inst := nat_trans_eq_pointwise Hyp2 c); clear Hyp2.
rewrite <- assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite assoc.
eapply pathscomp0.
× eapply pathsinv0.
exact Hyp2_inst.
× clear Hyp2_inst.
simpl.
do 2 rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_dir.
apply idpath.
Qed.
Definition hss : UU := ∑ T, bracket T.
Coercion alg_from_hss (T : hss) : algebra_ob Id_H := pr1 T.
Definition fbracket (T : hss) {Z : Ptd} (f : Z --> ptd_from_alg T)
: `T • (U Z) --> `T
:= pr1 (pr1 (pr2 T Z f)).
Notation "⦃ f ⦄" := (fbracket _ f)(at level 0).
The bracket operation fbracket is unique
Definition fbracket_unique_pointwise (T : hss) {Z : Ptd} (f : Z --> ptd_from_alg T)
: ∏ (α : functor_composite (U Z) `T ⟹ pr1 `T),
(∏ c : C, pr1 (#U f) c = pr1 (η T) (pr1 (U Z) c) · α c) →
(∏ c : C, pr1 (θ (`T ⊗ Z)) c · pr1 (#H α) c · pr1 (τ T) c =
pr1 (τ T) (pr1 (U Z) c) · α c)
→
α = ⦃f⦄.
Proof.
intros α H1 H2.
apply path_to_ctr.
apply whole_from_parts.
split.
- apply nat_trans_eq; try assumption.
- apply nat_trans_eq; assumption.
Qed.
Definition fbracket_unique (T : hss) {Z : Ptd} (f : Z --> ptd_from_alg T)
: ∏ α : `T • (U Z) --> `T,
bracket_property_parts T f α
→
α = ⦃f⦄.
Proof.
intros α [H1 H2].
apply path_to_ctr.
apply whole_from_parts.
split; assumption.
Qed.
Definition fbracket_unique_target_pointwise (T : hss) {Z : Ptd} (f : Z --> ptd_from_alg T)
: ∏ α : `T • U Z --> `T,
bracket_property_parts T f α
→
∏ c, pr1 α c = pr1 ⦃ f ⦄ c.
Proof.
intros α H12.
set (t:= fbracket_unique _ _ α H12).
apply (nat_trans_eq_weq hs _ _ t).
Qed.
Properties of fbracket by definition: commutative diagrams
Lemma fbracket_η (T : hss) : ∏ {Z : Ptd} (f : Z --> ptd_from_alg T),
#U f = η T •• U Z · ⦃f⦄.
Proof.
intros Z f.
exact (pr1 (parts_from_whole _ _ _ _ (pr2 (pr1 (pr2 T Z f))))).
Qed.
Lemma fbracket_τ (T : hss) : ∏ {Z : Ptd} (f : Z --> ptd_from_alg T),
θ (`T ⊗ Z) · #H ⦃f⦄ · τ T
=
τ T •• U Z · ⦃f⦄.
Proof.
intros Z f.
exact (pr2 (parts_from_whole _ _ _ _ (pr2 (pr1 (pr2 T Z f))))).
Qed.
fbracket is also natural
Lemma fbracket_natural (T : hss) {Z Z' : Ptd} (f : Z --> Z') (g : Z' --> ptd_from_alg T)
: (` T ∘ # U f : EndC ⟦ `T • U Z , `T • U Z' ⟧) · ⦃ g ⦄ = ⦃ f · g ⦄.
Proof.
apply fbracket_unique_pointwise.
- simpl. intro c.
rewrite assoc.
pose proof (nat_trans_ax (eta_from_alg T)) as H'.
simpl in H'.
rewrite <- H'; clear H'.
rewrite <- assoc.
apply maponpaths.
pose proof (nat_trans_eq_weq hs _ _ (fbracket_η T g)) as X.
simpl in X. exact (X _ ).
- intro c; simpl.
assert (H':=nat_trans_ax (tau_from_alg T)).
simpl in H'.
eapply pathscomp0. 2: apply (!assoc _ _ _ ).
eapply pathscomp0.
2: { apply cancel_postcomposition. apply H'. }
clear H'.
set (H':=fbracket_τ T g).
simpl in H'.
assert (X:= nat_trans_eq_pointwise H' c).
simpl in X.
rewrite <- assoc.
rewrite <- assoc.
transitivity ( # (pr1 (H ((`T)))) (pr1 (pr1 f) c) ·
(pr1 (θ ((`T) ⊗ Z')) c)· pr1 (# H (fbracket T g)) c· pr1 (tau_from_alg T) c).
2: { rewrite <- assoc.
rewrite <- assoc.
apply maponpaths.
repeat rewrite assoc.
apply X.
}
clear X.
set (A:=θ_nat_2_pointwise).
simpl in ×.
set (A':= A _ hs _ hs _ hs H θ (`T) Z Z').
simpl in A'.
set (A2:= A' f).
clearbody A2; clear A'; clear A.
rewrite A2; clear A2.
repeat rewrite <- assoc.
apply maponpaths.
simpl.
repeat rewrite assoc.
apply cancel_postcomposition.
rewrite (functor_comp H).
apply cancel_postcomposition.
clear H'.
set (A:=horcomp_id_postwhisker C _ _ hs hs).
rewrite A.
apply idpath.
Qed.
Lemma compute_fbracket (T : hss) : ∏ {Z : Ptd} (f : Z --> ptd_from_alg T),
⦃ f ⦄ = (` T ∘ # U f : EndC ⟦ `T • U Z , `T • U (p T) ⟧) · ⦃ identity p T ⦄.
Proof.
intros Z f.
assert (A : f = f · identity _ ).
{ rewrite id_right; apply idpath. }
rewrite A.
rewrite <- fbracket_natural.
rewrite id_right.
apply idpath.
Qed.
Morphisms of heterogeneous substitution systems
a little preparation for much later
Lemma τ_part_of_alg_mor (T T' : @algebra_ob [C, C, hs] Id_H)
(β : @algebra_mor [C, C, hs] Id_H T T'): #H β · τ T' = compose (C:=EndC) (τ T) β.
Proof.
assert (β_is_alg_mor := pr2 β).
simpl in β_is_alg_mor.
assert (β_is_alg_mor_inst := maponpaths (fun m:EndC⟦_,_⟧ ⇒ (BinCoproductIn2 EndC (CPEndC _ _))· m) β_is_alg_mor); clear β_is_alg_mor.
simpl in β_is_alg_mor_inst.
apply nat_trans_eq; try (exact hs).
intro c.
assert (β_is_alg_mor_inst':= nat_trans_eq_pointwise β_is_alg_mor_inst c); clear β_is_alg_mor_inst.
simpl in β_is_alg_mor_inst'.
rewrite assoc in β_is_alg_mor_inst'.
eapply pathscomp0.
2: { eapply pathsinv0.
exact β_is_alg_mor_inst'. }
clear β_is_alg_mor_inst'.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply idpath.
Qed.
(β : @algebra_mor [C, C, hs] Id_H T T'): #H β · τ T' = compose (C:=EndC) (τ T) β.
Proof.
assert (β_is_alg_mor := pr2 β).
simpl in β_is_alg_mor.
assert (β_is_alg_mor_inst := maponpaths (fun m:EndC⟦_,_⟧ ⇒ (BinCoproductIn2 EndC (CPEndC _ _))· m) β_is_alg_mor); clear β_is_alg_mor.
simpl in β_is_alg_mor_inst.
apply nat_trans_eq; try (exact hs).
intro c.
assert (β_is_alg_mor_inst':= nat_trans_eq_pointwise β_is_alg_mor_inst c); clear β_is_alg_mor_inst.
simpl in β_is_alg_mor_inst'.
rewrite assoc in β_is_alg_mor_inst'.
eapply pathscomp0.
2: { eapply pathsinv0.
exact β_is_alg_mor_inst'. }
clear β_is_alg_mor_inst'.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- assoc.
apply idpath.
Qed.
A morphism β of pointed functors is a bracket morphism when...
Lemma is_ptd_mor_alg_mor (T T' : @algebra_ob [C, C, hs] Id_H)
(β : @algebra_mor [C, C, hs] Id_H T T') :
@is_ptd_mor C (ptd_from_alg T) (ptd_from_alg T') (pr1 β).
Proof.
simpl.
unfold is_ptd_mor. simpl.
intro c.
rewrite <- assoc.
assert (X:=pr2 β).
assert (X':= nat_trans_eq_pointwise X c).
simpl in ×.
eapply pathscomp0. apply maponpaths. apply X'.
unfold coproduct_nat_trans_in1_data.
repeat rewrite assoc.
unfold coproduct_nat_trans_data.
eapply pathscomp0.
apply cancel_postcomposition.
apply BinCoproductIn1Commutes.
simpl.
repeat rewrite <- assoc.
apply id_left.
Qed.
Definition ptd_from_alg_mor {T T' : algebra_ob Id_H} (β : algebra_mor _ T T')
: ptd_from_alg T --> ptd_from_alg T'.
Proof.
∃ (pr1 β).
apply is_ptd_mor_alg_mor.
Defined.
show functor laws for ptd_from_alg and ptd_from_alg_mor
Definition ptd_from_alg_functor_data : functor_data (precategory_FunctorAlg Id_H hsEndC) Ptd.
Proof.
∃ ptd_from_alg.
intros T T' β.
apply ptd_from_alg_mor.
exact β.
Defined.
Lemma is_functor_ptd_from_alg_functor_data : is_functor ptd_from_alg_functor_data.
Proof.
split; simpl; intros.
+ unfold functor_idax.
intro T.
apply (invmap (eq_ptd_mor_precat _ hs _ _)).
apply (invmap (eq_ptd_mor _ hs _ _)).
apply idpath.
+ unfold functor_compax.
intros T T' T'' β β'.
apply (invmap (eq_ptd_mor_precat _ hs _ _)).
apply (invmap (eq_ptd_mor _ hs _ _)).
apply idpath.
Qed.
Definition ptd_from_alg_functor: functor (precategory_FunctorAlg Id_H hsEndC) Ptd :=
tpair _ _ is_functor_ptd_from_alg_functor_data.
Definition isbracketMor {T T' : hss} (β : algebra_mor _ T T') : UU :=
∏ (Z : Ptd) (f : Z --> ptd_from_alg T),
⦃ f ⦄ · β = β •• U Z · ⦃ f · # ptd_from_alg_functor β ⦄.
Lemma isaprop_isbracketMor (T T':hss) (β : algebra_mor _ T T') : isaprop (isbracketMor β).
Proof.
do 2 (apply impred; intro).
apply isaset_nat_trans.
apply hs.
Qed.
A morphism of hss is a pointed morphism that is compatible with both
τ and fbracket
Definition ishssMor {T T' : hss} (β : algebra_mor _ T T') : UU
:= isbracketMor β.
Definition hssMor (T T' : hss) : UU
:= ∑ β : algebra_mor _ T T', ishssMor β.
Coercion ptd_mor_from_hssMor (T T' : hss) (β : hssMor T T') : algebra_mor _ T T' := pr1 β.
Definition isbracketMor_hssMor {T T' : hss} (β : hssMor T T')
: isbracketMor β := pr2 β.
Show that equality of hssMor is equality of underlying nat. transformations
Variables T T' : hss.
Variables β β' : hssMor T T'.
Definition hssMor_eq1 : β = β' ≃ (pr1 β = pr1 β').
Proof.
apply subtypeInjectivity.
intro γ.
apply isaprop_isbracketMor.
Defined.
Definition hssMor_eq : β = β' ≃ (β : EndC ⟦ _ , _ ⟧) = β'.
Proof.
eapply weqcomp.
- apply hssMor_eq1.
- apply subtypeInjectivity.
intro.
apply isaset_nat_trans.
apply hs.
Defined.
End hssMor_equality.
Lemma isaset_hssMor (T T' : hss) : isaset (hssMor T T').
Proof.
intros β β'.
apply (isofhlevelweqb _ (hssMor_eq _ _ β β')).
apply isaset_nat_trans.
apply hs.
Qed.
Lemma ishssMor_id (T : hss) : ishssMor (identity (C:=precategory_FunctorAlg _ hsEndC ) (pr1 T)).
Proof.
unfold ishssMor.
unfold isbracketMor.
intros Z f.
rewrite id_right.
rewrite functor_id.
rewrite id_right.
apply pathsinv0.
set (H2:=pre_composition_functor _ _ C _ hs (U Z)).
set (H2' := functor_id H2). simpl in H2'.
simpl.
rewrite H2'.
rewrite (@id_left EndC).
apply idpath.
Qed.
Definition hssMor_id (T : hss) : hssMor _ _ := tpair _ _ (ishssMor_id T).
Lemma ishssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'')
: ishssMor (compose (C:=precategory_FunctorAlg _ hsEndC) (pr1 β) (pr1 γ)).
Proof.
unfold ishssMor.
unfold isbracketMor.
intros Z f.
eapply pathscomp0.
apply assoc.
eapply pathscomp0.
apply cancel_postcomposition.
apply isbracketMor_hssMor.
rewrite <- assoc.
eapply pathscomp0.
apply maponpaths.
apply isbracketMor_hssMor.
rewrite assoc.
rewrite functor_comp.
rewrite assoc.
apply cancel_postcomposition.
apply pathsinv0, (functor_comp (pre_composition_functor _ _ C _ hs (U Z)) ).
Qed.
Definition hssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'')
: hssMor T T'' := tpair _ _ (ishssMor_comp β γ).
Definition hss_obmor : precategory_ob_mor.
Proof.
∃ hss.
exact hssMor.
Defined.
Definition hss_precategory_data : precategory_data.
Proof.
∃ hss_obmor.
split.
- exact hssMor_id.
- exact @hssMor_comp.
Defined.
Lemma is_precategory_hss : is_precategory hss_precategory_data.
Proof.
repeat split; intros.
- apply (invmap (hssMor_eq _ _ _ _ )).
apply (@id_left EndC).
- apply (invmap (hssMor_eq _ _ _ _ )).
apply (@id_right EndC).
- apply (invmap (hssMor_eq _ _ _ _ )).
apply (@assoc EndC).
- apply (invmap (hssMor_eq _ _ _ _ )).
apply (@assoc' EndC).
Qed.
Definition hss_precategory : precategory := tpair _ _ is_precategory_hss.
End def_hss.
Arguments hss {_ _} _ _ .
Arguments hssMor {_ _ _ _ } _ _ .
Arguments fbracket {_ _ _ _ } _ {_} _ .
Arguments fbracket_η {_ _ _ _ } _ {_} _ .
Arguments fbracket_τ {_ _ _ _} _ {_} _ .
Arguments fbracket_unique_target_pointwise {_ _ _ _ } _ {_ _ _} _ _ .
Arguments fbracket_unique {_ _ _ _ } _ {_} _ _ _ .
Arguments hss_precategory {_ _} _ _ .
Arguments eta_from_alg {_ _ _ _} _.
Arguments tau_from_alg {_ _ _ _} _.
Arguments ptd_from_alg {_ _ _ _} _.
Arguments ptd_from_alg_functor {_ _} _ _ .
Arguments bracket_property {_ _ _ _ _ _} _ _ .
Arguments bracket_property_parts {_ _ _ _ _ _} _ _ .
Arguments bracket {_ _ _ _} _.
Notation τ := tau_from_alg.
Notation η := eta_from_alg.