Library UniMath.SubstitutionSystems.SumOfSignatures

**********************************************************
Anders Mörtberg, 2016
**********************************************************
Contents :
Adapted from the binary case

Definition of the data of the sum of signatures


Local Definition H : functor [C, D', hsD'] [C, D, hsD] := coproduct_of_functors _ _ _ CCD H1.

Local Definition θ_ob_fun (X : [C, D', hsD']) (Z : precategory_Ptd C hsC) (x : C) :
   D coproduct_of_functors_ob _ _ _ CD (λ i, H1 i X) (pr1 Z x),
       coproduct_of_functors_ob _ _ _ CD (λ i, H1 i (functor_composite (pr1 Z) X)) x .
Proof.
apply CoproductOfArrows; intro i.
exact (pr1 (θ1 i (X Z)) x).
Defined.

Local Lemma is_nat_trans_θ_ob_fun (X : [C, D', hsD']) (Z : precategory_Ptd C hsC) :
  is_nat_trans (functor_composite_data (pr1 Z)
                 (coproduct_of_functors_data _ _ _ CD (λ i, H1 i X)))
                 (coproduct_of_functors_data _ _ _ CD (λ i, H1 i (functor_composite (pr1 Z) X)))
               (θ_ob_fun X Z).
Proof.
intros x x' f.
eapply pathscomp0; [ apply CoproductOfArrows_comp | ].
eapply pathscomp0; [ | eapply pathsinv0; apply CoproductOfArrows_comp].
apply CoproductOfArrows_eq, funextsec; intro i.
apply (nat_trans_ax (θ1 i (X Z))).
Qed.

Definition θ_ob : XF, θ_source(hs := hsC) H XF --> θ_target H XF.
Proof.
intros [X Z]; (θ_ob_fun X Z); apply is_nat_trans_θ_ob_fun.
Defined.

Local Lemma is_nat_trans_θ_ob :
  is_nat_trans (θ_source H) (θ_target H) θ_ob.
Proof.
intros [X Z] [X' Z'] αβ.
apply (nat_trans_eq hsD); intro c.
eapply pathscomp0; [ | eapply pathsinv0, CoproductOfArrows_comp].
eapply pathscomp0; [ apply cancel_postcomposition, CoproductOfArrows_comp |].
eapply pathscomp0; [ apply CoproductOfArrows_comp |].
apply CoproductOfArrows_eq, funextsec; intro i.
apply (nat_trans_eq_pointwise (nat_trans_ax (θ1 i) (X,,Z) (X',,Z') αβ) c).
Qed.

Local Definition θ : θ_source H θ_target H := tpair _ _ is_nat_trans_θ_ob.

Proof of the strength laws of the sum of two signatures


Variable S11' : i, θ_Strength1_int (θ1 i).
Variable S12' : i, θ_Strength2_int (θ1 i).

Lemma SumStrength1' : θ_Strength1_int θ.
Proof.
intro X.
apply (nat_trans_eq hsD); intro x; simpl.
eapply pathscomp0; [apply CoproductOfArrows_comp|].
apply pathsinv0, Coproduct_endo_is_identity; intro i.
eapply pathscomp0.
  apply (CoproductOfArrowsIn _ _ (CD (λ i, pr1 (pr1 (H1 i) X) x))).
eapply pathscomp0; [ | apply id_left].
apply cancel_postcomposition, (nat_trans_eq_pointwise (S11' i X) x).
Qed.

Lemma SumStrength2' : θ_Strength2_int θ.
Proof.
intros X Z Z'.
apply (nat_trans_eq hsD); intro x; simpl; rewrite id_left.
eapply pathscomp0; [apply CoproductOfArrows_comp|].
apply pathsinv0.
eapply pathscomp0; [apply CoproductOfArrows_comp|].
apply pathsinv0, CoproductOfArrows_eq, funextsec; intro i.
assert (Ha_x := nat_trans_eq_pointwise (S12' i X Z Z') x); simpl in Ha_x.
rewrite id_left in Ha_x; apply Ha_x.
Qed.

End construction.

Definition Sum_of_Signatures (S : I Signature C hsC D hsD D' hsD') : Signature C hsC D hsD D' hsD'.
Proof.
use tpair.
- apply H; intro i.
  apply (S i).
- (θ (λ i, S i) (λ i, theta (S i))).
  split.
  + apply SumStrength1'; intro i; apply (Sig_strength_law1 _ _ _ _ _ _ (S i)).
  + apply SumStrength2'; intro i; apply (Sig_strength_law2 _ _ _ _ _ _ (S i)).
Defined.

Lemma is_omega_cocont_Sum_of_Signatures (S : I Signature C hsC D hsD D' hsD')
  (h : i, is_omega_cocont (S i)) : is_omega_cocont (Sum_of_Signatures S).
Proof.
apply is_omega_cocont_coproduct_of_functors; try assumption.
- apply functor_category_has_homsets.
Defined.

End sum_of_signatures.