Library UniMath.CategoryTheory.Core.Categories

Categories

Authors: Benedikt Ahrens, Chris Kapulkin, Mike Shulman January 2013

Contents :

Definition of a precategory


Definition precategory_ob_mor : UU
  := ob : UU, ob ob UU.

Definition make_precategory_ob_mor (ob : UU)(mor : ob ob UU) :
    precategory_ob_mor := tpair _ ob mor.

Definition ob (C : precategory_ob_mor) : UU := @pr1 _ _ C.
Coercion ob : precategory_ob_mor >-> UU.

Definition precategory_morphisms { C : precategory_ob_mor } :
       C C UU := pr2 C.

We introduce notation for morphisms in order for this notation not to pollute subsequent files, we define this notation within the scope "cat"

Declare Scope cat.
Delimit Scope cat with cat. Delimit Scope cat with Cat. Declare Scope cat_deprecated.
Delimit Scope cat_deprecated with cat_deprecated.
Local Open Scope cat.

Notation "a --> b" := (precategory_morphisms a b) : cat.
Notation "b <-- a" := (precategory_morphisms a b) (only parsing) : cat.

Notation "C ⟦ a , b ⟧" := (precategory_morphisms (C:=C) a b) : cat.

precategory_data

data of a precategory :
  • objects
  • morphisms
  • identity morphisms
  • composition

Definition precategory_id_comp (C : precategory_ob_mor) : UU
  :=
    ( c : C, c --> c)
      ×
    ( a b c : C, a --> b b --> c a --> c).
Definition precategory_data : UU := X, precategory_id_comp X.

Definition make_precategory_data (C : precategory_ob_mor)
    (id : c : C, c --> c)
    (comp: a b c : C, a --> b b --> c a --> c)
  : precategory_data
  := tpair _ C (make_dirprod id comp).

Definition precategory_ob_mor_from_precategory_data (C : precategory_data) :
     precategory_ob_mor := pr1 C.
Coercion precategory_ob_mor_from_precategory_data :
  precategory_data >-> precategory_ob_mor.

Definition identity {C : precategory_data}
  : c : C, c --> c
  := pr1 (pr2 C).

Local Notation "1" := (identity _) : cat.

Definition compose {C : precategory_data} { a b c : C }
  : a --> b b --> c a --> c
  := pr2 (pr2 C) a b c.

Notation "f ;; g" := (compose f g) : cat_deprecated.

Notation "f · g" := (compose f g) : cat.

Notation "g ∘ f" := (compose f g) (only parsing) : cat.

Definition postcompose {C : precategory_data} {a b c : C} (g : b --> c) (f : a --> b)
  : a --> c
  := compose f g.

Axioms of a precategory

  • identity is left and right neutral for composition
  • composition is associative

Definition is_precategory (C : precategory_data) : UU
  :=
    (( (a b : C) (f : a --> b), identity a · f = f)
     ×
     ( (a b : C) (f : a --> b), f · identity b = f))
    ×
    (( (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
       ×
     ( (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), (f · g) · h = f · (g · h))).

Definition is_precategory_one_assoc (C : precategory_data) : UU
  :=
    (( (a b : C) (f : a --> b), identity a · f = f)
     ×
     ( (a b : C) (f : a --> b), f · identity b = f))
    ×
    ( (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h).

Definition is_precategory_one_assoc_to_two (C : precategory_data) :
  is_precategory_one_assoc C is_precategory C
  := λ i, (pr11 i,,pr21 i),,(pr2 i,,λ a b c d f g h, pathsinv0 (pr2 i a b c d f g h)).

Definition make_is_precategory {C : precategory_data}
           (H1 : (a b : C) (f : a --> b), identity a · f = f)
           (H2 : (a b : C) (f : a --> b), f · identity b = f)
           (H3 : (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
           (H4 : (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), (f · g) · h = f · (g · h))
  : is_precategory C
  := (H1,,H2),,(H3,,H4).

Definition make_is_precategory_one_assoc {C : precategory_data}
           (H1 : (a b : C) (f : a --> b), identity a · f = f)
           (H2 : (a b : C) (f : a --> b), f · identity b = f)
           (H3 : (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
  : is_precategory C
  := (H1,,H2),,(H3,,λ a b c d f g h, pathsinv0 (H3 a b c d f g h)).

Definition precategory := total2 is_precategory.

Definition make_precategory (C : precategory_data) (H : is_precategory C)
  : precategory
  := tpair _ C H.

Definition make_precategory_one_assoc (C : precategory_data) (H : is_precategory_one_assoc C)
  : precategory
  := tpair _ C (is_precategory_one_assoc_to_two C H).

Definition precategory_data_from_precategory (C : precategory) :
       precategory_data := pr1 C.
Coercion precategory_data_from_precategory : precategory >-> precategory_data.

Definition has_homsets (C : precategory_ob_mor) : UU := a b : C, isaset (a --> b).

Lemma isaprop_has_homsets (C : precategory_ob_mor) : isaprop (has_homsets C).
Proof.
  do 2 (apply impred; intro).
  apply isapropisaset.
Qed.

Definition category := C:precategory, has_homsets C.
Definition make_category C h : category := C,,h.
Definition category_to_precategory : category precategory := pr1.
Coercion category_to_precategory : category >-> precategory.
Definition homset_property (C : category) : has_homsets C := pr2 C.

Definition makecategory
    (obj : UU)
    (mor : obj obj UU)
    (homsets : a b, isaset (mor a b))
    (identity : i, mor i i)
    (compose : i j k (f:mor i j) (g:mor j k), mor i k)
    (right : i j (f:mor i j), compose _ _ _ (identity i) f = f)
    (left : i j (f:mor i j), compose _ _ _ f (identity j) = f)
    (associativity : a b c d (f:mor a b) (g:mor b c) (h:mor c d),
        compose _ _ _ f (compose _ _ _ g h) = compose _ _ _ (compose _ _ _ f g) h)
    (associativity' : a b c d (f:mor a b) (g:mor b c) (h:mor c d),
        compose _ _ _ (compose _ _ _ f g) h = compose _ _ _ f (compose _ _ _ g h))
  : category
  := (make_precategory
           (make_precategory_data
              (make_precategory_ob_mor
                 obj
                 (λ i j, mor i j))
              identity compose)
           ((right,,left),,(associativity,,associativity'))),,homsets.

Lemma isaprop_is_precategory (C : precategory_data)(hs: has_homsets C)
  : isaprop (is_precategory C).
Proof.
  apply isofhleveltotal2.
  { apply isofhleveltotal2. { repeat (apply impred; intro). apply hs. }
    intros _. repeat (apply impred; intro); apply hs. }
  intros _. apply isofhleveltotal2.
  { repeat (apply impred; intro); apply hs. }
  { intros. repeat (apply impred; intro). apply hs. }
Qed.

Definition id_left (C : precategory) :
    (a b : C) (f : a --> b),
           identity a · f = f := pr112 C.

Definition id_right (C : precategory) :
    (a b : C) (f : a --> b),
           f · identity b = f := pr212 C.

Definition assoc (C : precategory) :
    (a b c d : C)
          (f : a --> b) (g : b --> c) (h : c --> d),
                     f · (g · h) = (f · g) · h := pr122 C.

Definition assoc' (C : precategory) :
    (a b c d : C)
          (f : a --> b) (g : b --> c) (h : c --> d),
                     (f · g) · h = f · (g · h) := pr222 C.

Arguments id_left [C a b] f.
Arguments id_right [C a b] f.
Arguments assoc [C a b c d] f g h.
Arguments assoc' [C a b c d] f g h.

Lemma assoc4 (C : precategory) (a b c d e : C) (f : a --> b) (g : b --> c)
       (h : c --> d) (i : d --> e) :
     ((f · g) · h) · i = f · (g · h) · i.
Proof.
  repeat rewrite assoc; apply idpath.
Qed.

Lemma remove_id_left (C : precategory) (a b : C) (f g : a --> b) (h : a --> a):
  h = identity _ f = g h · f = g.
Proof.
  intros H eq.
  intermediate_path (identity _ · f).
  - destruct H. apply idpath.
  - intermediate_path f.
    + apply id_left.
    + apply eq.
Defined.

Lemma remove_id_right (C : precategory) (a b : C) (f g : a --> b) (h : b --> b):
  h = identity _ f = g f · h = g.
Proof.
  intros H eq.
  intermediate_path (f · identity _).
  - destruct H. apply idpath.
  - intermediate_path f.
    + apply id_right.
    + apply eq.
Defined.

Lemma id_conjugation {A : precategory} {a b : A} (f : a --> b)
      (g : b --> a) (x : b --> b)
  : x = identity _ f · g = identity _ f · x · g = identity _ .
Proof.
  intros H H'.
  rewrite H. rewrite id_right. apply H'.
Qed.

Lemma cancel_postcomposition {C : precategory_data} {a b c: C}
   (f f' : a --> b) (g : b --> c) : f = f' f · g = f' · g.
Proof.
  intro H.
  induction H.
  apply idpath.
Defined.

Lemma cancel_precomposition (C : precategory_data) (a b c: C)
   (f f' : b --> c) (g : a --> b) : f = f' g · f = g · f'.
Proof.
  intro H.
  induction H.
  apply idpath.
Defined.

Any equality on objects a and b induces a morphism from a to b

Definition idtomor {C : precategory_data}
   (a b : C) (H : a = b) : a --> b.
Proof.
  induction H.
  exact (identity a).
Defined.

Definition idtomor_inv {C : precategory_data}
    (a b : C) (H : a = b) : b --> a.
Proof.
  induction H.
  exact (identity a).
Defined.

Section SectionsAndRetractions.
  Context {C : precategory}.

  Definition is_retraction {A B : ob C} (m : A --> B) (r : B --> A) :=
    m · r = identity A.

  Lemma isaprop_is_retraction {A B : ob C} (m : A --> B) (r : B --> A) :
    has_homsets C isaprop (is_retraction m r).
  Proof.
    intro H; apply H.
  Qed.

A retraction of B onto A
  Definition retraction (A B : ob C) :=
     m r, @is_retraction A B m r.

  Lemma isaset_retraction (A B : ob C) :
    has_homsets C isaset (retraction A B).
  Proof.
    intro.
    do 2 (apply isaset_total2; [auto|intros]).
    apply hlevelntosn, isaprop_is_retraction.
    assumption.
  Qed.

End SectionsAndRetractions.