Library UniMath.SubstitutionSystems.FromBindingSigsToMonads_Summary
Require Import UniMath.Foundations.NaturalNumbers.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.categories.HSET.Core.
Require Import UniMath.CategoryTheory.categories.HSET.Colimits.
Require Import UniMath.CategoryTheory.categories.HSET.Limits.
Require Import UniMath.CategoryTheory.categories.HSET.Structures.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.products.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.coproducts.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.ProductCategory.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.SubstitutionSystems.SignatureCategory.
Require Import UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.BindingSigToMonad.
Require Import UniMath.SubstitutionSystems.LiftingInitial_alt.
Local Open Scope cat.
Local Notation "[ C , D ]" := (functor_category C D).
Definition 1: Binding signature
Definition 4: Signatures with strength
Definition Signature : ∏ (C D D' : category), UU :=
@UniMath.SubstitutionSystems.Signatures.Signature.
@UniMath.SubstitutionSystems.Signatures.Signature.
Definition 5: Morphism of signatures with strength
Definition SignatureMor :
∏ C D D' : category, Signatures.Signature C D D' → Signatures.Signature C D D' → UU :=
@UniMath.SubstitutionSystems.SignatureCategory.SignatureMor.
∏ C D D' : category, Signatures.Signature C D D' → Signatures.Signature C D D' → UU :=
@UniMath.SubstitutionSystems.SignatureCategory.SignatureMor.
Definition 6: Coproduct of signatures with strength
Definition Sum_of_Signatures :
∏ (I : UU) (C D D': category), Coproducts I D
→ (I → Signature C D D') → Signature C D D' :=
@UniMath.SubstitutionSystems.SumOfSignatures.Sum_of_Signatures.
∏ (I : UU) (C D D': category), Coproducts I D
→ (I → Signature C D D') → Signature C D D' :=
@UniMath.SubstitutionSystems.SumOfSignatures.Sum_of_Signatures.
Definition 7: Binary product of signatures with strength
Definition BinProduct_of_Signatures :
∏ (C D D' : category), BinProducts D →
Signature C D D' → Signature C D D' → Signature C D D' :=
@UniMath.SubstitutionSystems.BinProductOfSignatures.BinProduct_of_Signatures.
∏ (C D D' : category), BinProducts D →
Signature C D D' → Signature C D D' → Signature C D D' :=
@UniMath.SubstitutionSystems.BinProductOfSignatures.BinProduct_of_Signatures.
Problem 8: Signatures with strength from binding signatures
Definition BindingSigToSignature :
∏ {C : category},
BinProducts C → BinCoproducts C → Terminal C
→ ∏ sig : BindingSig, Coproducts (BindingSigIndex sig) C →
Signature C C C :=
@UniMath.SubstitutionSystems.BindingSigToMonad.BindingSigToSignature.
∏ {C : category},
BinProducts C → BinCoproducts C → Terminal C
→ ∏ sig : BindingSig, Coproducts (BindingSigIndex sig) C →
Signature C C C :=
@UniMath.SubstitutionSystems.BindingSigToMonad.BindingSigToSignature.
Definition 10 and Lemma 11 and 12: see UniMath/SubstitutionSystems/SignatureExamples.v
Definition 15: Graph
Definition 16: Diagram
Definition diagram : graph → category → UU :=
@UniMath.CategoryTheory.limits.graphs.colimits.diagram.
@UniMath.CategoryTheory.limits.graphs.colimits.diagram.
Definition 17: Cocone
Definition cocone : ∏ {C : category} {g : graph}, diagram g C → C → UU :=
@UniMath.CategoryTheory.limits.graphs.colimits.cocone.
@UniMath.CategoryTheory.limits.graphs.colimits.cocone.
Definition 18: Colimiting cocone
Definition isColimCocone : ∏ {C : category} {g : graph} (d : diagram g C)
(c0 : C), cocone d c0 → UU :=
@UniMath.CategoryTheory.limits.graphs.colimits.isColimCocone.
(c0 : C), cocone d c0 → UU :=
@UniMath.CategoryTheory.limits.graphs.colimits.isColimCocone.
Colimits of a specific shape
Definition Colims_of_shape : graph → category → UU :=
@UniMath.CategoryTheory.limits.graphs.colimits.Colims_of_shape.
@UniMath.CategoryTheory.limits.graphs.colimits.Colims_of_shape.
Colimits of any shape
Remark 19: Uniqueness of colimits
Lemma isaprop_Colims : ∏ C : univalent_category, isaprop (Colims C).
Proof.
exact @UniMath.CategoryTheory.limits.graphs.colimits.isaprop_Colims.
Defined.
Proof.
exact @UniMath.CategoryTheory.limits.graphs.colimits.isaprop_Colims.
Defined.
Definition 20: Preservation of colimits
Definition preserves_colimit : ∏ {C D : category}, functor C D
→ ∏ {g : graph} (d : diagram g C) (L : C), cocone d L → UU :=
@UniMath.CategoryTheory.limits.graphs.colimits.preserves_colimit.
Definition is_cocont : ∏ {C D : category}, functor C D → UU :=
@UniMath.CategoryTheory.Chains.Chains.is_cocont.
Definition is_omega_cocont : ∏ {C D : category}, functor C D → UU :=
@UniMath.CategoryTheory.Chains.Chains.is_omega_cocont.
→ ∏ {g : graph} (d : diagram g C) (L : C), cocone d L → UU :=
@UniMath.CategoryTheory.limits.graphs.colimits.preserves_colimit.
Definition is_cocont : ∏ {C D : category}, functor C D → UU :=
@UniMath.CategoryTheory.Chains.Chains.is_cocont.
Definition is_omega_cocont : ∏ {C D : category}, functor C D → UU :=
@UniMath.CategoryTheory.Chains.Chains.is_omega_cocont.
Lemma 21: Invariance of cocontinuity under isomorphism
Lemma preserves_colimit_iso :
∏ (C D : category)
(F G : functor C D) (α : @iso [C, D] F G)
(g : graph) (d : diagram g C) (L : C) (cc : cocone d L),
preserves_colimit F d L cc → preserves_colimit G d L cc.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_iso.
Defined.
∏ (C D : category)
(F G : functor C D) (α : @iso [C, D] F G)
(g : graph) (d : diagram g C) (L : C) (cc : cocone d L),
preserves_colimit F d L cc → preserves_colimit G d L cc.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_iso.
Defined.
Problem 22: Colimits in functor categories
Definition ColimsFunctorCategory_of_shape :
∏ (g : graph) (A C : category),
Colims_of_shape g C → Colims_of_shape g [A, C] :=
@UniMath.CategoryTheory.limits.graphs.colimits.ColimsFunctorCategory_of_shape.
∏ (g : graph) (A C : category),
Colims_of_shape g C → Colims_of_shape g [A, C] :=
@UniMath.CategoryTheory.limits.graphs.colimits.ColimsFunctorCategory_of_shape.
Problem 24: Initial algebras of ω-cocontinuous functors
Definition colimAlgInitial :
∏ (C : category) (InitC : Initial C)
(F : functor C C), is_omega_cocont F → ColimCocone (initChain InitC F) →
Initial (FunctorAlg F) :=
@UniMath.CategoryTheory.Chains.Adamek.colimAlgInitial.
∏ (C : category) (InitC : Initial C)
(F : functor C C), is_omega_cocont F → ColimCocone (initChain InitC F) →
Initial (FunctorAlg F) :=
@UniMath.CategoryTheory.Chains.Adamek.colimAlgInitial.
Lemma 25: Lambek's lemma
Lemma initialAlg_is_iso :
∏ (C : category) (F : functor C C)
(Aa : algebra_ob F), isInitial (FunctorAlg F) Aa → is_iso (alg_map F Aa).
Proof.
exact @UniMath.CategoryTheory.FunctorAlgebras.initialAlg_is_iso.
Defined.
∏ (C : category) (F : functor C C)
(Aa : algebra_ob F), isInitial (FunctorAlg F) Aa → is_iso (alg_map F Aa).
Proof.
exact @UniMath.CategoryTheory.FunctorAlgebras.initialAlg_is_iso.
Defined.
Problem 27: Colimits in Set
Lemma ColimsHSET_of_shape : ∏ (g : graph), Colims_of_shape g HSET.
Proof.
exact @UniMath.CategoryTheory.categories.HSET.Colimits.ColimsHSET_of_shape.
Defined.
Proof.
exact @UniMath.CategoryTheory.categories.HSET.Colimits.ColimsHSET_of_shape.
Defined.
Lemma 31: Left adjoints preserve colimits
Lemma left_adjoint_cocont :
∏ (C D : category) (F : functor C D), is_left_adjoint F → is_cocont F.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.left_adjoint_cocont.
Defined.
∏ (C D : category) (F : functor C D), is_left_adjoint F → is_cocont F.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.left_adjoint_cocont.
Defined.
Lemma 32: Examples of preservation of colimits (i): Identity functor
Lemma preserves_colimit_identity :
∏ (C : category) (g : colimits.graph) (d : colimits.diagram g C)
(L : C) (cc : colimits.cocone d L),
preserves_colimit (functor_identity C) d L cc.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_identity.
Defined.
∏ (C : category) (g : colimits.graph) (d : colimits.diagram g C)
(L : C) (cc : colimits.cocone d L),
preserves_colimit (functor_identity C) d L cc.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_identity.
Defined.
(ii): Constant functor
Lemma is_omega_cocont_constant_functor : ∏ (C D : category) (x : D),
Chains.Chains.is_omega_cocont (constant_functor C D x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_constant_functor.
Defined.
Chains.Chains.is_omega_cocont (constant_functor C D x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_constant_functor.
Defined.
(iii): Diagonal functor
Lemma is_cocont_delta_functor : ∏ (I : UU) (C : category),
Products I C → is_cocont (delta_functor I C).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_delta_functor.
Defined.
Lemma is_omega_cocont_delta_functor : ∏ (I : UU) (C : category),
Products I C → is_omega_cocont (delta_functor I C).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_delta_functor.
Defined.
Products I C → is_cocont (delta_functor I C).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_delta_functor.
Defined.
Lemma is_omega_cocont_delta_functor : ∏ (I : UU) (C : category),
Products I C → is_omega_cocont (delta_functor I C).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_delta_functor.
Defined.
(iv): Coproduct functor
Lemma is_cocont_coproduct_functor :
∏ (I : UU) (C : category) (PC : Coproducts I C), is_cocont (coproduct_functor I PC).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_coproduct_functor.
Defined.
Lemma is_omega_cocont_coproduct_functor :
∏ (I : UU) (C : category) (PC : Coproducts I C), is_omega_cocont (coproduct_functor I PC).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_coproduct_functor.
Defined.
∏ (I : UU) (C : category) (PC : Coproducts I C), is_cocont (coproduct_functor I PC).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_coproduct_functor.
Defined.
Lemma is_omega_cocont_coproduct_functor :
∏ (I : UU) (C : category) (PC : Coproducts I C), is_omega_cocont (coproduct_functor I PC).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_coproduct_functor.
Defined.
Lemma 33: Examples of preservation of cocontinuity (i): Composition of functors
Lemma preserves_colimit_functor_composite :
∏ (C D E : category) (F : functor C D) (G : functor D E) (g : graph)
(d : diagram g C) (L : C) (cc : cocone d L),
preserves_colimit F d L cc
→ preserves_colimit G (mapdiagram F d) (F L) (mapcocone F d cc)
→ preserves_colimit (functor_composite F G) d L cc.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_functor_composite.
Defined.
Lemma is_cocont_functor_composite :
∏ (C D E : category) (F : functor C D) (G : functor D E), is_cocont F → is_cocont G
→ is_cocont (functor_composite F G).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_functor_composite.
Defined.
Lemma is_omega_cocont_functor_composite :
∏ (C D E : category) (F : functor C D) (G : functor D E), is_omega_cocont F → is_omega_cocont G
→ is_omega_cocont (functor_composite F G).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_functor_composite.
Defined.
∏ (C D E : category) (F : functor C D) (G : functor D E) (g : graph)
(d : diagram g C) (L : C) (cc : cocone d L),
preserves_colimit F d L cc
→ preserves_colimit G (mapdiagram F d) (F L) (mapcocone F d cc)
→ preserves_colimit (functor_composite F G) d L cc.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_functor_composite.
Defined.
Lemma is_cocont_functor_composite :
∏ (C D E : category) (F : functor C D) (G : functor D E), is_cocont F → is_cocont G
→ is_cocont (functor_composite F G).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_functor_composite.
Defined.
Lemma is_omega_cocont_functor_composite :
∏ (C D E : category) (F : functor C D) (G : functor D E), is_omega_cocont F → is_omega_cocont G
→ is_omega_cocont (functor_composite F G).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_functor_composite.
Defined.
(ii) Tuple functor
Lemma is_cocont_tuple_functor :
∏ (I : UU) (A : category) (B: I → category) (F : ∏ i, functor A (B i)), (∏ i, is_cocont (F i))
→ is_cocont (tuple_functor F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_tuple_functor.
Defined.
Lemma is_omega_cocont_tuple_functor :
∏ (I : UU) (A : category) (B: I → category) (F : ∏ i, functor A (B i)), (∏ i, is_omega_cocont (F i))
→ is_omega_cocont (tuple_functor F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_tuple_functor.
Defined.
∏ (I : UU) (A : category) (B: I → category) (F : ∏ i, functor A (B i)), (∏ i, is_cocont (F i))
→ is_cocont (tuple_functor F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_tuple_functor.
Defined.
Lemma is_omega_cocont_tuple_functor :
∏ (I : UU) (A : category) (B: I → category) (F : ∏ i, functor A (B i)), (∏ i, is_omega_cocont (F i))
→ is_omega_cocont (tuple_functor F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_tuple_functor.
Defined.
(iii): Families of functors
Lemma is_cocont_family_functor :
∏ (I : UU) (A B : category), isdeceq I
→ ∏ F : I → functor A B, (∏ i : I, is_cocont (F i))
→ is_cocont (family_functor I F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_family_functor.
Defined.
Lemma is_omega_cocont_family_functor :
∏ (I : UU) (A B : category), isdeceq I
→ ∏ F : I → functor A B, (∏ i : I, is_omega_cocont (F i))
→ is_omega_cocont (family_functor I F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_family_functor.
Defined.
∏ (I : UU) (A B : category), isdeceq I
→ ∏ F : I → functor A B, (∏ i : I, is_cocont (F i))
→ is_cocont (family_functor I F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_family_functor.
Defined.
Lemma is_omega_cocont_family_functor :
∏ (I : UU) (A B : category), isdeceq I
→ ∏ F : I → functor A B, (∏ i : I, is_omega_cocont (F i))
→ is_omega_cocont (family_functor I F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_family_functor.
Defined.
Example 35: Exponentials in Set
Definition Exponentials_HSET : Exponentials BinProductsHSET :=
@UniMath.CategoryTheory.categories.HSET.Structures.Exponentials_HSET.
@UniMath.CategoryTheory.categories.HSET.Structures.Exponentials_HSET.
Lemma 36: Left and right product functors preserves colimits
Lemma is_cocont_constprod_functor1 :
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_cocont (constprod_functor1 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_constprod_functor1.
Defined.
Lemma is_omega_cocont_constprod_functor1 :
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_omega_cocont (constprod_functor1 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_constprod_functor1.
Defined.
Lemma is_cocont_constprod_functor2 :
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_cocont (constprod_functor2 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_constprod_functor2.
Defined.
Lemma is_omega_cocont_constprod_functor2 :
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_omega_cocont (constprod_functor2 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_constprod_functor2.
Defined.
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_cocont (constprod_functor1 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_constprod_functor1.
Defined.
Lemma is_omega_cocont_constprod_functor1 :
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_omega_cocont (constprod_functor1 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_constprod_functor1.
Defined.
Lemma is_cocont_constprod_functor2 :
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_cocont (constprod_functor2 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_cocont_constprod_functor2.
Defined.
Lemma is_omega_cocont_constprod_functor2 :
∏ (C : category) (PC : BinProducts C), Exponentials PC
→ ∏ x : C, is_omega_cocont (constprod_functor2 PC x).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_constprod_functor2.
Defined.
Theorem 37: Binary product functor is ω-cocontinuous
Lemma is_omega_cocont_binproduct_functor :
∏ (C : category) (PC : BinProducts C), (∏ x : C, is_omega_cocont (constprod_functor1 PC x))
→ is_omega_cocont (binproduct_functor PC).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_binproduct_functor.
Defined.
∏ (C : category) (PC : BinProducts C), (∏ x : C, is_omega_cocont (constprod_functor1 PC x))
→ is_omega_cocont (binproduct_functor PC).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_binproduct_functor.
Defined.
Example 38: Lists of sets
Theorem 41: Precomposition functor preserves colimits
Lemma preserves_colimit_pre_composition_functor :
∏ (A B C : category) (F : functor A B)
(g : graph) (d : diagram g [B, C]) (G : [B, C]) (ccG : cocone d G),
(∏ b : B, ColimCocone (diagram_pointwise d b))
→ preserves_colimit (pre_composition_functor A B C F) d G ccG.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_pre_composition_functor.
Defined.
Lemma is_omega_cocont_pre_composition_functor :
∏ (A B C : category) (F : functor A B),
Colims_of_shape nat_graph C → is_omega_cocont (pre_composition_functor A B C F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_pre_composition_functor.
Defined.
∏ (A B C : category) (F : functor A B)
(g : graph) (d : diagram g [B, C]) (G : [B, C]) (ccG : cocone d G),
(∏ b : B, ColimCocone (diagram_pointwise d b))
→ preserves_colimit (pre_composition_functor A B C F) d G ccG.
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.preserves_colimit_pre_composition_functor.
Defined.
Lemma is_omega_cocont_pre_composition_functor :
∏ (A B C : category) (F : functor A B),
Colims_of_shape nat_graph C → is_omega_cocont (pre_composition_functor A B C F).
Proof.
exact @UniMath.CategoryTheory.Chains.OmegaCocontFunctors.is_omega_cocont_pre_composition_functor.
Defined.
Theorem 43: Signature functor associated to a binding signature is ω-cocontinuous
Lemma is_omega_cocont_BindingSigToSignature :
∏ (C : category) (BPC : BinProducts C) (BCC : BinCoproducts C) (TC : Terminal C),
Colims_of_shape nat_graph C →
(∏ F : functor_category C C, is_omega_cocont
(constprod_functor1 (BinProducts_functor_precat C C BPC) F))
→ ∏ (sig : BindingSig) (CC : Coproducts (BindingSigIndex sig) C),
is_omega_cocont (pr1 (BindingSigToSignature BPC BCC TC sig CC)).
Proof.
exact @UniMath.SubstitutionSystems.BindingSigToMonad.is_omega_cocont_BindingSigToSignature.
Defined.
∏ (C : category) (BPC : BinProducts C) (BCC : BinCoproducts C) (TC : Terminal C),
Colims_of_shape nat_graph C →
(∏ F : functor_category C C, is_omega_cocont
(constprod_functor1 (BinProducts_functor_precat C C BPC) F))
→ ∏ (sig : BindingSig) (CC : Coproducts (BindingSigIndex sig) C),
is_omega_cocont (pr1 (BindingSigToSignature BPC BCC TC sig CC)).
Proof.
exact @UniMath.SubstitutionSystems.BindingSigToMonad.is_omega_cocont_BindingSigToSignature.
Defined.
Problem 45: Datatypes specified by binding signatures
Definition DatatypeOfBindingSig :
∏ (C : category) (BPC : BinProducts C) (BCC : BinCoproducts C)
(_ : Initial C) (TC : Terminal C)
(_ : Colims_of_shape nat_graph C)
(_ : ∏ (F : functor_category C C),
is_omega_cocont (constprod_functor1 (BinProducts_functor_precat C C BPC) F))
(sig : BindingSig) (CC : Coproducts (BindingSigIndex sig) C),
Initial (FunctorAlg (Id_H C BCC (pr1 (BindingSigToSignature BPC BCC TC sig CC)))).
Proof.
exact @UniMath.SubstitutionSystems.BindingSigToMonad.DatatypeOfBindingSig.
Defined.
∏ (C : category) (BPC : BinProducts C) (BCC : BinCoproducts C)
(_ : Initial C) (TC : Terminal C)
(_ : Colims_of_shape nat_graph C)
(_ : ∏ (F : functor_category C C),
is_omega_cocont (constprod_functor1 (BinProducts_functor_precat C C BPC) F))
(sig : BindingSig) (CC : Coproducts (BindingSigIndex sig) C),
Initial (FunctorAlg (Id_H C BCC (pr1 (BindingSigToSignature BPC BCC TC sig CC)))).
Proof.
exact @UniMath.SubstitutionSystems.BindingSigToMonad.DatatypeOfBindingSig.
Defined.
Theorem 48: Construction of a substitution operation on an initial algebra
Definition InitHSS :
∏ (C : category) (CP : BinCoproducts C),
Initial C → Colims_of_shape nat_graph C →
∏ H : UniMath.SubstitutionSystems.Signatures.Presignature C C C, is_omega_cocont (pr1 H) → hss_category CP H.
Proof.
exact @UniMath.SubstitutionSystems.LiftingInitial_alt.InitHSS.
Defined.
Lemma isInitial_InitHSS :
∏ (C : category) (CP : BinCoproducts C)
(IC : Initial C) (CC : Colims_of_shape nat_graph C)
(H : UniMath.SubstitutionSystems.Signatures.Presignature C C C)
(HH : is_omega_cocont (pr1 H)),
isInitial (hss_category CP H) (InitHSS C CP IC CC H HH).
Proof.
exact @UniMath.SubstitutionSystems.LiftingInitial_alt.isInitial_InitHSS.
Defined.
∏ (C : category) (CP : BinCoproducts C),
Initial C → Colims_of_shape nat_graph C →
∏ H : UniMath.SubstitutionSystems.Signatures.Presignature C C C, is_omega_cocont (pr1 H) → hss_category CP H.
Proof.
exact @UniMath.SubstitutionSystems.LiftingInitial_alt.InitHSS.
Defined.
Lemma isInitial_InitHSS :
∏ (C : category) (CP : BinCoproducts C)
(IC : Initial C) (CC : Colims_of_shape nat_graph C)
(H : UniMath.SubstitutionSystems.Signatures.Presignature C C C)
(HH : is_omega_cocont (pr1 H)),
isInitial (hss_category CP H) (InitHSS C CP IC CC H HH).
Proof.
exact @UniMath.SubstitutionSystems.LiftingInitial_alt.isInitial_InitHSS.
Defined.
Section 4.2: Binding signatures to monads
Definition BindingSigToMonad :
∏ (C : category) (BPC : BinProducts C),
BinCoproducts C → Terminal C → Initial C → Colims_of_shape nat_graph C
→ (∏ F, is_omega_cocont (constprod_functor1 (BinProducts_functor_precat C C BPC) F))
→ ∏ sig : BindingSig, Coproducts (BindingSigIndex sig) C
→ Monad C.
Proof.
exact @UniMath.SubstitutionSystems.BindingSigToMonad.BindingSigToMonad.
Defined.
∏ (C : category) (BPC : BinProducts C),
BinCoproducts C → Terminal C → Initial C → Colims_of_shape nat_graph C
→ (∏ F, is_omega_cocont (constprod_functor1 (BinProducts_functor_precat C C BPC) F))
→ ∏ sig : BindingSig, Coproducts (BindingSigIndex sig) C
→ Monad C.
Proof.
exact @UniMath.SubstitutionSystems.BindingSigToMonad.BindingSigToMonad.
Defined.
Example 50: Untyped lambda calculus
Example 51: Raw syntax of Martin-Löf type theory