Library UniMath.CategoryTheory.categories.HSET.Core
Category of hSets
Contents:
- Category HSET of hSets (hset_category)
- Some particular HSETs
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Foundations.NaturalNumbers.
Require Import UniMath.Foundations.HLevels.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Local Open Scope cat.
Category HSET of hSets (hset_category)
Section HSET_precategory.
Definition hset_fun_space (A B : hSet) : hSet :=
make_hSet _ (isaset_set_fun_space A B).
Definition hset_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) hSet
(λ A B : hSet, hset_fun_space A B).
Definition hset_precategory_data : precategory_data :=
make_precategory_data hset_precategory_ob_mor (fun (A:hSet) (x : A) ⇒ x)
(fun (A B C : hSet) (f : A → B) (g : B → C) (x : A) ⇒ g (f x)).
Lemma is_precategory_hset_precategory_data :
is_precategory hset_precategory_data.
Proof.
repeat split.
Qed.
Definition hset_precategory : precategory :=
tpair _ _ is_precategory_hset_precategory_data.
Local Notation "'HSET'" := hset_precategory : cat.
Lemma has_homsets_HSET : has_homsets HSET.
Proof.
intros a b; apply isaset_set_fun_space.
Qed.
Definition hset_category : category := (HSET ,, has_homsets_HSET).
End HSET_precategory.
Notation "'HSET'" := hset_category : cat.
Notation "'SET'" := hset_category : cat.
Definition hset_fun_space (A B : hSet) : hSet :=
make_hSet _ (isaset_set_fun_space A B).
Definition hset_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) hSet
(λ A B : hSet, hset_fun_space A B).
Definition hset_precategory_data : precategory_data :=
make_precategory_data hset_precategory_ob_mor (fun (A:hSet) (x : A) ⇒ x)
(fun (A B C : hSet) (f : A → B) (g : B → C) (x : A) ⇒ g (f x)).
Lemma is_precategory_hset_precategory_data :
is_precategory hset_precategory_data.
Proof.
repeat split.
Qed.
Definition hset_precategory : precategory :=
tpair _ _ is_precategory_hset_precategory_data.
Local Notation "'HSET'" := hset_precategory : cat.
Lemma has_homsets_HSET : has_homsets HSET.
Proof.
intros a b; apply isaset_set_fun_space.
Qed.
Definition hset_category : category := (HSET ,, has_homsets_HSET).
End HSET_precategory.
Notation "'HSET'" := hset_category : cat.
Notation "'SET'" := hset_category : cat.