Library UniMath.SubstitutionSystems.Signatures


**********************************************************
Benedikt Ahrens, Ralph Matthes
SubstitutionSystems
2015
**********************************************************
Contents :
  • Definition of signatures
  • Proof that two forms of strength laws are equivalent
Goal: define signatures as pairs of a rank-2 functor and a "strength"

Definition of signatures


Section fix_a_category.

  Context (C : category).

The category of pointed endofunctors on C
Local Notation "'Ptd'" := (category_Ptd C).
The category of endofunctors on C
Local Notation "'EndC'":= ([C, C]).

in the original definition, this second category was the same as the first one
Context (D : category).

we do not yet have a use of this third category being different from the very first one
Context (D' : category).

Section about_signatures.

H is a rank-2 functor: a functor between functor categories
Context (H : functor [C, D'] [C, D]).

Source and target of the natural transformation θ

Source is given by (X,Z) H(X)∙U(Z)
Definition θ_source: ([C, D'] Ptd) [C, D].
Proof.
  apply (functor_composite (pair_functor H U)).
  apply (functor_composite binswap_pair_functor).
  apply functorial_composition.
Defined.

Lemma θ_source_ok: functor_on_objects θ_source = λ FX : [C, D'] Ptd, H (pr1 FX) U (pr2 FX).
Proof.
  apply idpath.
Qed.

Target is given by (X,Z) H(XU(Z))
Definition θ_target : ([C, D'] Ptd) [C, D].
Proof.
  apply (functor_composite (pair_functor (functor_identity _) U)).
  apply (functor_composite binswap_pair_functor).
  use (functor_composite _ H).
  apply functorial_composition.
Defined.

Lemma θ_target_ok: functor_on_objects θ_target = λ FX : [C, D'] Ptd, H (pr1 FX U (pr2 FX)).
Proof.
  apply idpath.
Qed.

Section fix_a_θ.

Two alternative versions of the strength laws are defined and seen as equivalent

We assume a suitable (bi)natural transformation θ
Hypothesis θ : θ_source θ_target.

θ is supposed to satisfy two strength laws
needs the heterogeneous formulation of the monoidal operation to type-check
Definition θ_Strength1_int : UU
  := X : [C, D'],
           θ (X (id_Ptd C)) · # H (λ_functors _) = λ_functors _.

the following naturally-looking definition is often not suitable to work with
Definition θ_Strength1_int_nicer : UU
  := X : [C, D'],
           θ (X (id_Ptd C)) = nat_trans_id ((H X): functor C D).


Lemma θ_Strength1_int_nicer_implies_θ_Strength1_int : θ_Strength1_int_nicer θ_Strength1_int.
Proof.
  intros T X.
  rewrite T.
  etrans.
  { apply maponpaths.
    unfold λ_functors.
    apply (functor_id H X). }
  apply id_right.
Qed.

Lemma θ_Strength1_int_implies_θ_Strength1_int_nicer : θ_Strength1_int θ_Strength1_int_nicer.
Proof.
  intros T X.
  etrans; [| apply T].
  etrans.
  2: { apply pathsinv0.
       apply maponpaths.
       unfold λ_functors.
       apply (functor_id H X). }
  apply pathsinv0.
  apply id_right.
Qed.

Lemma isaprop_θ_Strength1_int: isaprop θ_Strength1_int.
Proof.
  apply impred; intros X x x'.
  apply isaset_nat_trans, homset_property.
Qed.

Lemma θ_Strength1_int_implies_θ_Strength1 : θ_Strength1_int θ_Strength1.
Proof.
  unfold θ_Strength1_int, θ_Strength1.
  intros T X.
  assert (TX := T X).
  apply nat_trans_eq_alt.
  intro c; cbn.
  assert (T2 := nat_trans_eq_pointwise TX c).
  cbn in ×.
  assert (X0 : λ_functors X = identity (X : [C, D'])).
  { apply nat_trans_eq_alt; intros; apply idpath. }
  rewrite X0 in T2.
  apply T2.
Qed.

Lemma θ_Strength1_implies_θ_Strength1_int : θ_Strength1 θ_Strength1_int.
Proof.
  unfold θ_Strength1_int, θ_Strength1.
  intros T X.
  assert (TX := T X).
  apply nat_trans_eq_alt.
  intro c; cbn.
  assert (T2 := nat_trans_eq_pointwise TX c).
  cbn in ×.
  assert (X0 : λ_functors X = identity (X : [C, D'])).
  { apply nat_trans_eq_alt; intros; apply idpath. }
  rewrite X0.
  apply T2.
Qed.

End Strength_law_1_intensional.

we are using Z p Z' for compatibility with legacy code - instead of ptd_compose
Definition θ_Strength2 : UU := (X : [C, D']) (Z Z' : Ptd) (Y : [C, D'])
           (α : functor_compose (functor_composite (U Z) (U Z')) X --> Y),
    θ (X (Z p Z' : Ptd)) · # H α =
    θ (X Z') •• (U Z) · θ ((functor_compose (U Z') X) Z) ·
       # H (α : functor_compose (U Z) (X (U Z')) --> Y).

Section Strength_law_2_intensional.

Definition θ_Strength2_int : UU
  := (X : [C, D']) (Z Z' : Ptd),
      θ (X (Z p Z')) · #H (α_functors (U Z) (U Z') X ) =
        (α_functors (U Z) (U Z') (H X) :
          [C, D] functor_compose (functor_composite (U Z) (U Z')) (H X),
                        functor_composite (U Z) (functor_composite (U Z') (H X))
      ) ·
      θ (X Z') •• (U Z) · θ ((functor_compose (U Z') X) Z) .

Lemma isaprop_θ_Strength2_int: isaprop θ_Strength2_int.
Proof.
  apply impred; intros X.
  apply impred; intros Z.
  apply impred; intros Z'.
  apply isaset_nat_trans, homset_property.
Qed.

Lemma θ_Strength2_int_implies_θ_Strength2 : θ_Strength2_int θ_Strength2.
Proof.
  unfold θ_Strength2_int, θ_Strength2.
  intros T X Z Z' Y a.
  apply nat_trans_eq_alt.
  intro c.
  assert (TXZZ' := T X Z Z').
  assert (TXZZ'c := nat_trans_eq_pointwise TXZZ' c).
  cbn in TXZZ'c.
  clear T TXZZ'.
  rewrite id_left in TXZZ'c.
  cbn. rewrite <- TXZZ'c; clear TXZZ'c.
  rewrite <- assoc.
  apply maponpaths.
  assert (functor_comp_H := functor_comp H (α_functors (pr1 Z) (pr1 Z') X)
           (a : functor_compose (U Z) (functor_composite (U Z') X) --> Y)).
  assert (functor_comp_H_c := nat_trans_eq_pointwise functor_comp_H c).
  cbn in functor_comp_H_c.
  etrans; [| apply functor_comp_H_c ].
  clear functor_comp_H functor_comp_H_c.
  revert c.
  apply nat_trans_eq_pointwise.
  apply maponpaths.
  apply nat_trans_eq_alt.
  intro c; apply pathsinv0, id_left.
Qed.

Lemma θ_Strength2_implies_θ_Strength2_int : θ_Strength2 θ_Strength2_int.
Proof.
  unfold θ_Strength2_int, θ_Strength2.
  intros T X Z Z'.
  assert (TXZZ'_inst := T X Z Z' (functor_compose (U Z)
          (functor_composite (U Z') X)) (α_functors (pr1 Z) (pr1 Z') X)).
  eapply pathscomp0.
  { apply TXZZ'_inst. }
  clear T TXZZ'_inst.
  apply nat_trans_eq_alt.
  intro c.
  cbn.
  rewrite id_left.
  rewrite <- assoc.
  apply maponpaths.
  etrans; [| apply id_right].
  apply maponpaths.
  assert (functor_id_H := functor_id H (functor_compose (pr1 Z) (functor_composite (pr1 Z') X))).
  assert (functor_id_H_c := nat_trans_eq_pointwise functor_id_H c).
  etrans; [| apply functor_id_H_c].
  clear functor_id_H functor_id_H_c.
  revert c.
  apply nat_trans_eq_pointwise.
  apply maponpaths.
  apply nat_trans_eq_alt.
  intro c; apply idpath.
Qed.

Definition θ_Strength2_int_nicer : UU := (X : [C, D']) (Z Z' : Ptd),
      θ (X (Z p Z')) =
        (α_functors (U Z) (U Z') (H X) :
          [C, D] functor_compose (functor_composite (U Z) (U Z')) (H X),
                        functor_composite (U Z) (functor_composite (U Z') (H X)) ) ·
             θ (X Z') •• (U Z) · θ ((functor_compose (U Z') X) Z) ·
             #H (α_functors_inv (U Z) (U Z') X ).

Lemma θ_Strength2_int_implies_θ_Strength2_int_nicer: θ_Strength2_int θ_Strength2_int_nicer.
Proof.
  intro Hyp.
  intros X Z Z'.
  assert (HypX := Hyp X Z Z').
  set (auxiso := functor_on_z_iso H (_,,(α_functors_pointwise_is_z_iso D' (U Z) (U Z') X))).
  apply pathsinv0 in HypX. apply (z_iso_inv_on_left _ _ _ _ auxiso) in HypX.
  assumption.
Qed.

Lemma θ_Strength2_int_nicer_implies_θ_Strength2_int: θ_Strength2_int_nicer θ_Strength2_int.
  intro Hyp.
  intros X Z Z'.
  assert (HypX := Hyp X Z Z').
  set (auxiso := functor_on_z_iso H (_,,(α_functors_pointwise_is_z_iso D' (U Z) (U Z') X))).
  apply (z_iso_inv_to_right _ _ _ _ auxiso).
  assumption.
Qed.

Definition θ_Strength2_int_nicest : UU := (X : [C, D']) (Z Z' : Ptd),
      θ (X (Z p Z')) =
      θ (X Z') •• (U Z) ·
        θ ((functor_compose (U Z') X) Z) ·
        #H (α_functors_inv (U Z) (U Z') X ).

Lemma θ_Strength2_int_nicest_implies_θ_Strength2_int_nicer: θ_Strength2_int_nicest θ_Strength2_int_nicer.
Proof.
  intro Hyp.
  intros X Z Z'.
  assert (HypX := Hyp X Z Z').
  do 2 rewrite <- assoc.
  etrans.
  2: { apply maponpaths.
       rewrite assoc.
       exact HypX. }
  apply pathsinv0.
  unfold α_functors.
  apply (id_left(a:=functor_compose (U Z U Z') (H X))).
Qed.

Lemma θ_Strength2_int_nicer_implies_θ_Strength2_int_nicest: θ_Strength2_int_nicer θ_Strength2_int_nicest.
Proof.
  intro Hyp.
  intros X Z Z'.
  assert (HypX := Hyp X Z Z').
  etrans. { exact HypX. }
  etrans.
  { do 2 apply cancel_postcomposition.
    unfold α_functors.
    apply (id_left(a:=functor_compose (U Z U Z') (H X))). }
  apply idpath.
Qed.

End Strength_law_2_intensional.

Not having a general theory of binatural transformations, we isolate naturality in each component here
an experiment
Lemma θ_nat_1_pointfree (X X' : [C, D']) (α : X --> X') (Z : Ptd)
  : compose (C := [C, D])
            (# (functorial_composition _ _ _) ((nat_trans_id (pr1 (U Z)),,# H α):
                                                 [C, C] [C, D] ⟦(U Z,, H X), (U Z,, H X') ⟧))
            (θ (X' Z)) =
      θ (X Z) · # H (
          # (functorial_composition _ _ _) ((nat_trans_id (pr1 (U Z)),, α):
                                               [C, C] [C, D'] ⟦(U Z,, X), (U Z,, X') ⟧)
        ).
Proof.
  set (t := nat_trans_ax θ).
  set (t' := t (X Z) (X' Z)).
  set (t'' := t' (catbinprodmor α (identity _ ))).
  cbn in t''.
  exact t''.
Qed.

Lemma θ_nat_1 (X X' : [C, D']) (α : X --> X') (Z : Ptd)
  : compose (C := [C, D]) (# H α nat_trans_id (pr1 (U Z))) (θ (X' Z)) =
        θ (X Z) · # H (α nat_trans_id (pr1 (U Z))).
Proof.
  set (t := nat_trans_ax θ).
  set (t' := t (X Z) (X' Z)).
  set (t'' := t' (catbinprodmor α (identity _ ))).
  rewrite (@horcomp_post_pre _ _ D).
  rewrite (@horcomp_post_pre _ _ D').
  cbn in t''.
  exact t''.
Qed.

Lemma θ_nat_1_pointwise (X X' : [C, D']) (α : X --> X') (Z : Ptd) (c : C)
  : pr1 (# H α) ((pr1 Z) c) · pr1 (θ (X' Z)) c =
       pr1 (θ (X Z)) c · pr1 (# H (α nat_trans_id (pr1 Z))) c.
Proof.
  assert (t := θ_nat_1 _ _ α Z).
  assert (t' := nat_trans_eq_weq (homset_property D) _ _ t c).
  clear t.
  cbn in t'. unfold horcomp_data in t'.
  etrans; [| exact t' ].
  clear t'.
  apply pathsinv0.
  etrans.
  { apply cancel_postcomposition.
    apply maponpaths.
    apply functor_id. }
  rewrite <- assoc.
  rewrite id_left.
  apply idpath.
Qed.

Lemma θ_nat_2 (X : [C, D']) (Z Z' : Ptd) (f : Z --> Z')
  : compose (C := [C, D]) (identity (H X) pr1 f) (θ (X Z')) =
       θ (X Z) · # H (identity X pr1 f).
Proof.
  set (t := nat_trans_ax θ).
  set (t' := t (X Z) (X Z') (catbinprodmor (identity _ ) f)).
  rewrite (@horcomp_post_pre _ _ D).
  rewrite (@horcomp_post_pre _ _ D').
  cbn in t'.
  unfold catbinprodmor in t'.
  cbn in t'.
  set (T := functor_id H X).
  cbn in ×.
  rewrite T in t'. clear T.
  exact t'.
Qed.

Lemma θ_nat_2_pointwise (X : [C, D']) (Z Z' : Ptd) (f : Z --> Z') (c : C)
  : # (pr1 (H X)) ((pr1 f) c) · pr1 (θ (X Z')) c =
       pr1 (θ (X Z)) c · pr1 (# H (identity X pr1 f)) c .
Proof.
  set (t := θ_nat_2 X _ _ f).
  set (t' := nat_trans_eq_weq (homset_property D) _ _ t c).
  clearbody t'; clear t.
  cbn in t'. unfold horcomp_data in t'.
  rewrite id_left in t'.
  exact t'.
Qed.

End fix_a_θ.

Definition of encapsulations of strength (locally/globally, with/without laws


Definition PrestrengthForSignatureAtPoint (Z: Ptd) : UU :=
  functor_fix_snd_arg [C, D'] Ptd [C, D] θ_source Z
  functor_fix_snd_arg [C, D'] Ptd [C, D] θ_target Z.

Definition PrestrengthForSignature : UU := θ_source θ_target.

Definition nat_trans_data_from_PrestrengthForSignature_funclass (θ: PrestrengthForSignature) :
   x, θ_source x --> θ_target x := pr1 θ.
Coercion nat_trans_data_from_PrestrengthForSignature_funclass: PrestrengthForSignature >-> Funclass.

Definition nat_trans_data_from_PrestrengthForSignatureAtPoint_funclass (Z: Ptd)(θ: PrestrengthForSignatureAtPoint Z) :
   x, functor_fix_snd_arg [C, D'] Ptd [C, D] θ_source Z x -->
       functor_fix_snd_arg [C, D'] Ptd [C, D] θ_target Z x := pr1 θ.
Coercion nat_trans_data_from_PrestrengthForSignatureAtPoint_funclass: PrestrengthForSignatureAtPoint >-> Funclass.

Definition StrengthForSignature : UU :=
   θ : PrestrengthForSignature, θ_Strength1_int θ × θ_Strength2_int θ.

Coercion Strength_Prestrength (θwithlaws: StrengthForSignature) : PrestrengthForSignature := pr1 θwithlaws.

End about_signatures.

Definition Presignature : UU
  := H : [C, D'] [C, D] , PrestrengthForSignature H.

Definition Signature : UU
  := H : [C, D'] [C, D] , StrengthForSignature H.

Coercion Presignature_Functor (S : Presignature) : functor _ _ := pr1 S.
Coercion Signature_Functor (S : Signature) : functor _ _ := pr1 S.
Coercion Presignature_Signature (S : Signature) : Presignature := Signature_Functor S ,, Strength_Prestrength _ (pr2 S).

Definition theta (H : Presignature) : PrestrengthForSignature H := pr2 H.

Definition Sig_strength_law1 (H : Signature) : θ_Strength1_int _ _ := pr1 (pr2 (pr2 H)).

Definition Sig_strength_law2 (H : Signature) : θ_Strength2_int _ _ := pr2 (pr2 (pr2 H)).

Lemma StrengthForSignature_eq (H : [C, D'] [C, D] ) (sθ1 sθ2 : StrengthForSignature H) :
  pr1 sθ1 = pr1 sθ2 sθ1 = sθ2.
Proof.
  intro Heq.
  apply subtypePath; trivial.
  intro θ. apply isapropdirprod.
  + apply isaprop_θ_Strength1_int.
  + apply isaprop_θ_Strength2_int.
Qed.

End fix_a_category.

Section homogeneous_case.

Context (C : category).

Local Definition ptd := monoidal_cat_of_pointedfunctors C.
Local Definition endo := monoidal_cat_of_endofunctors C.
Local Definition forget := forgetful_functor_from_ptd_as_strong_monoidal_functor C.

Local Lemma auxH1 (H : functor [C, C] [C, C]) (X : functor C C) :
  # H
    (nat_trans_comp
       (X
         nat_z_iso_to_trans_inv
            (make_nat_z_iso (functor_identity C) (functor_identity C)
               (nat_trans_id (functor_identity_data C))
               (is_nat_z_iso_nat_trans_id (functor_identity C))))
       (nat_trans_id (pr1 X) ø functor_identity_data C)) =
  identity (H (functor_identity C X)).
Proof.
  apply functor_id_id.
  apply nat_trans_eq_alt; intro c.
  cbn.
  rewrite id_right.
  apply functor_id.
Qed.

Local Lemma auxH2aux (X : functor C C) (Z Z': precategory_Ptd C):
  nat_trans_comp
       (X identity (functor_compose (pr1 Z) (pr1 Z')))
       (identity(C:=[C, C]) (X) ø (pr1 (functor_compose (pr1 Z) (pr1 Z')))) =
    identity (functor_compose (functor_compose (pr1 Z) (pr1 Z')) X).
Proof.
  apply nat_trans_eq; try apply homset_property; intro c.
  cbn.
  rewrite id_right.
  apply functor_id.
Qed.

Section relative_strength_instantiates_to_signature.

  Context (H : functor [C, C] [C, C])
          (rs : rel_strength forget H).

  Local Definition ϛ : rel_strength_nat forget H := pr1 rs.

  Local Definition ϛ_pentagon_eq : rel_strength_pentagon_eq forget H ϛ
    := pr1 (pr2 rs).

  Local Definition ϛ_rectangle_eq : rel_strength_rectangle_eq forget H ϛ
    := pr2 (pr2 rs).

  Local Definition θ : θ_source C C C H θ_target C C C H
    := pre_whisker binswap_pair_functor ϛ.

  Lemma signature_from_rel_strength_laws : θ_Strength1_int C C C H θ ×
                                           θ_Strength2_int C C C H θ.
  Proof.
    split; red.
    - intro X.
      cbn.
      apply nat_trans_eq_alt; intro c.
      cbn.
      assert (Hyp := nat_trans_eq_weq (homset_property C) _ _ (ϛ_pentagon_eq X) c).
      cbn in Hyp.
      rewrite (functor_id (H X)) in Hyp.
      do 2 rewrite id_left in Hyp.
      etrans; [| exact Hyp].
      clear Hyp.
      rewrite <- assoc.
      apply maponpaths.
      etrans.
      apply pathsinv0.
      apply id_left.
      apply cancel_postcomposition.
      apply pathsinv0.
      apply (nat_trans_eq_weq (homset_property C) _ _ (auxH1 H X) c).
    - intros X Z Z'.
      cbn.
      apply nat_trans_eq; try apply homset_property; intro c.
      cbn.
      rewrite id_left.
      assert (Hyp := nat_trans_eq_weq (homset_property C) _ _ (ϛ_rectangle_eq Z Z' X) c).
      cbn in Hyp.
      do 2 rewrite functor_id in Hyp.
      rewrite (functor_id (H X)) in Hyp.
      do 2 rewrite id_right in Hyp.
      do 2 rewrite id_left in Hyp.
      etrans; [| exact Hyp ].
      clear Hyp.
      apply cancel_postcomposition.
      etrans.
      { apply pathsinv0. apply id_right. }
      apply maponpaths.
      apply pathsinv0.
      etrans.
      use (maponpaths (fun xpr1 (# H x) c)).
      + exact (identity (functor_compose (functor_compose (pr1 Z) (pr1 Z')) X)).
      + apply auxH2aux.
      + rewrite functor_id.
        apply idpath.
  Qed.

  Definition signature_from_rel_strength : Signature C C C.
  Proof.
     H. θ.
    exact signature_from_rel_strength_laws.
  Defined.

End relative_strength_instantiates_to_signature.

Section strength_in_signature_is_a_relative_strength.

  Context (sig : Signature C C C).

  Local Definition H := pr1 sig.
  Local Definition θ' := pr1 (pr2 sig).
  Local Definition ϛ' : rel_strength_nat forget H := pre_whisker binswap_pair_functor θ'.

  Local Definition θ'_strength_law1 := Sig_strength_law1 _ _ _ sig.
  Local Definition θ'_strength_law2 := Sig_strength_law2 _ _ _ sig.

  Lemma rel_strength_from_signature_laws : rel_strength_pentagon_eq forget H ϛ' ×
                                           rel_strength_rectangle_eq forget H ϛ'.
  Proof.
    split.
    - intro X.
      apply nat_trans_eq_alt; intro c.
      cbn.
      assert (Hyp := nat_trans_eq_weq (homset_property C) _ _ (θ'_strength_law1 X) c).
      cbn in Hyp.
      fold θ' H in Hyp.
      rewrite (functor_id (H X)).
      do 2 rewrite id_left.
      etrans; [| exact Hyp ].
      clear Hyp.
      rewrite <- assoc.
      apply maponpaths.
      apply pathsinv0.
      etrans.
      { apply pathsinv0.
        apply id_left. }
      apply cancel_postcomposition.
      apply pathsinv0.
      apply (nat_trans_eq_weq (homset_property C) _ _ (auxH1 H X) c).
    - intros Z Z' X.
      apply nat_trans_eq_alt; intro c.
      cbn.
      unfold PointedFunctorsComposition.ptd_compose.
      rewrite functorial_composition_post_pre.
      assert (Hyp := nat_trans_eq_weq (homset_property C) _ _ (θ'_strength_law2 X Z Z') c).
      cbn in Hyp.
      fold θ' H in Hyp.
      do 2 rewrite functor_id.
      do 2 rewrite id_right.
      rewrite (functor_id (H X)).
      do 2 rewrite id_left.
      rewrite id_left in Hyp.
      etrans; [| exact Hyp ].
      clear Hyp.
      apply cancel_postcomposition.
      etrans; [| apply id_right ].
      apply maponpaths.
now identical reasoning as in signature_from_rel_strength_laws
      etrans.
      use (maponpaths (fun xpr1 (# H x) c)).
      + exact (identity (functor_compose (functor_compose (pr1 Z) (pr1 Z')) X)).
      + apply auxH2aux.
      + rewrite functor_id.
        apply idpath.
  Qed.

  Definition rel_strength_from_signature : rel_strength forget H := (ϛ',,rel_strength_from_signature_laws).

End strength_in_signature_is_a_relative_strength.

End homogeneous_case.

Arguments PrestrengthForSignature {_ _ _} _ .
Arguments StrengthForSignature {_ _ _} _ .
Arguments Presignature_Signature {_ _ _} _ .
Arguments theta {_ _ _} _ .
Arguments θ_source {_ _ _ } _ .
Arguments θ_target {_ _ _ } _ .
Arguments θ_Strength1 {_ _ _ _ } _ .
Arguments θ_Strength2 {_ _ _ _ } _ .
Arguments θ_Strength1_int {_ _ _ _} _ .
Arguments θ_Strength2_int {_ _ _ _} _ .
Arguments Sig_strength_law1 {_ _ _} _.
Arguments Sig_strength_law2 {_ _ _} _.
Arguments Signature_Functor {_ _ _} _.
Arguments θ_Strength1_int_implies_θ_Strength1 {_ _ _ _} _ _.
Arguments θ_Strength2_int_implies_θ_Strength2 {_ _ _ _} _ _.
Arguments θ_Strength2_int_implies_θ_Strength2_int_nicer {_ _ _ _} _ _.