Library UniMath.CategoryTheory.categories.HSET.Colimits
Colimits in HSET
Contents
- Minimal equivalence relations
- General colimits ColimsHSET
- Binary coproducs BinCoproductsHSET
- General indexed coproducs CoproductsHSET
- Binary coproducts from colimits BinCoproductsHSET_from_Colims
- Pushouts from colimits PushoutsHSET_from_Colims
- Initial object InitialHSET
- Initial object from colimits InitialHSET_from_Colims
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.PartA. Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.MoreFoundations.Sets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.pushouts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.coproducts.
Require Import UniMath.CategoryTheory.limits.coequalizers.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.categories.HSET.Core.
Local Open Scope cat.
General colimits ColimsHSET
Section colimits.
Variable g : graph.
Variable D : diagram g HSET.
Local Definition cobase : UU := ∑ j : vertex g, pr1hSet (dob D j).
Local Definition rel0 : hrel cobase := λ (ia jb : cobase),
make_hProp (ishinh (∑ f : edge (pr1 ia) (pr1 jb), dmor D f (pr2 ia) = pr2 jb))
(isapropishinh _).
Local Definition rel : hrel cobase := eqrel_from_hrel rel0.
Lemma iseqrel_rel : iseqrel rel.
Proof.
now apply iseqrel_eqrel_from_hrel.
Qed.
Local Definition eqr : eqrel cobase := make_eqrel _ iseqrel_rel.
Definition colimHSET : HSET :=
make_hSet (setquot eqr) (isasetsetquot _).
Local Definition injections j : HSET ⟦dob D j, colimHSET⟧.
Proof.
intros Fj; apply (setquotpr _).
exact (j,,Fj).
Defined.
Section from_colim.
Variables (c : HSET) (cc : cocone D c).
Local Definition from_cobase : cobase → pr1hSet c.
Proof.
now intro iA; apply (coconeIn cc (pr1 iA) (pr2 iA)).
Defined.
Local Definition from_cobase_rel : hrel cobase.
Proof.
intros x x'; ∃ (from_cobase x = from_cobase x').
now apply setproperty.
Defined.
Local Definition from_cobase_eqrel : eqrel cobase.
Proof.
∃ from_cobase_rel.
abstract (
repeat split;
[ intros x y z H1 H2 ;
exact (pathscomp0 H1 H2)
|
intros x y H;
exact (pathsinv0 H)
]).
Defined.
Lemma rel0_impl a b (Hab : rel0 a b) : from_cobase_eqrel a b.
Proof.
use Hab. clear Hab.
intro H; simpl.
destruct H as [f Hf].
generalize (toforallpaths _ _ _ (coconeInCommutes cc (pr1 a) (pr1 b) f) (pr2 a)).
unfold compose, from_cobase; simpl; intro H.
rewrite <- H.
rewrite <- Hf.
apply idpath.
Qed.
Lemma rel_impl a b (Hab : rel a b) : from_cobase_eqrel a b.
Proof.
now apply (@minimal_eqrel_from_hrel _ rel0); [apply rel0_impl|].
Qed.
Lemma iscomprel_from_base : iscomprelfun rel from_cobase.
Proof.
now intros a b; apply rel_impl.
Qed.
Definition from_colimHSET : HSET ⟦colimHSET, c⟧.
Proof.
now simpl; apply (setquotuniv _ _ from_cobase iscomprel_from_base).
Defined.
End from_colim.
Definition colimCoconeHSET : cocone D colimHSET.
Proof.
use make_cocone.
- now apply injections.
- abstract (intros u v e;
apply funextfun; intros Fi; simpl;
unfold compose, injections; simpl;
apply (weqpathsinsetquot eqr), (eqrelsymm eqr), eqrel_impl, hinhpr; simpl;
now ∃ e).
Defined.
Definition ColimHSETArrow (c : HSET) (cc : cocone D c) :
∑ x : HSET ⟦ colimHSET, c ⟧, ∏ v : vertex g, injections v · x = coconeIn cc v.
Proof.
∃ (from_colimHSET _ cc).
abstract (intro i; simpl; unfold injections, compose, from_colimHSET; simpl;
apply funextfun; intro Fi; now rewrite (setquotunivcomm eqr)).
Defined.
Definition ColimCoconeHSET : ColimCocone D.
Proof.
apply (make_ColimCocone _ colimHSET colimCoconeHSET); intros c cc.
∃ (ColimHSETArrow _ cc).
abstract (intro f; apply subtypePath;
[ intro; now apply impred; intro i; apply has_homsets_HSET
| apply funextfun; intro x; simpl;
apply (surjectionisepitosets (setquotpr eqr));
[now apply issurjsetquotpr | now apply pr2 | ];
intro y; destruct y as [u fu]; destruct f as [f Hf];
now apply (toforallpaths _ _ _ (Hf u) fu)]).
Defined.
End colimits.
Opaque from_colimHSET.
Lemma ColimsHSET : Colims HSET.
Proof.
now intros g d; apply ColimCoconeHSET.
Defined.
Lemma ColimsHSET_of_shape (g : graph) :
Colims_of_shape g HSET.
Proof.
now intros d; apply ColimCoconeHSET.
Defined.
Binary coproducs BinCoproductsHSET
Lemma BinCoproductIn1CommutesHSET (A B : HSET) (CC : BinCoproduct A B)(C : HSET)
(f : A --> C)(g: B --> C) (a:pr1 A):
BinCoproductArrow CC f g (BinCoproductIn1 CC a) = f a.
Proof.
set (H1 := BinCoproductIn1Commutes _ _ _ CC _ f g).
apply toforallpaths in H1.
now apply H1.
Qed.
Lemma BinCoproductIn2CommutesHSET (A B : HSET) (CC : BinCoproduct A B)(C : HSET)
(f : A --> C)(g: B --> C) (b:pr1 B):
BinCoproductArrow CC f g (BinCoproductIn2 CC b) = g b.
Proof.
set (H1 := BinCoproductIn2Commutes _ _ _ CC _ f g).
apply toforallpaths in H1.
now apply H1.
Qed.
Lemma postcompWithBinCoproductArrowHSET {A B : HSET} (CCAB : BinCoproduct A B) {C : HSET}
(f : A --> C) (g : B --> C) {X : HSET} (k : C --> X) z:
k (BinCoproductArrow CCAB f g z) = BinCoproductArrow CCAB (f · k) (g · k) z.
Proof.
set (H1 := postcompWithBinCoproductArrow _ CCAB f g k).
apply toforallpaths in H1.
now apply H1.
Qed.
Lemma BinCoproductsHSET : BinCoproducts HSET.
Proof.
intros A B.
use make_BinCoproduct.
- apply (setcoprod A B).
- simpl in *; apply ii1.
- simpl in *; intros x; apply (ii2 x).
- apply (make_isBinCoproduct _ HSET).
intros C f g; simpl in ×.
use tpair.
× ∃ (sumofmaps f g); abstract (split; apply idpath).
× abstract (intros h; apply subtypePath;
[ intros x; apply isapropdirprod; apply has_homsets_HSET
| destruct h as [t [ht1 ht2]]; simpl;
apply funextfun; intro x;
rewrite <- ht2, <- ht1; unfold compose; simpl;
case x; intros; apply idpath]).
Defined.
General indexed coproducs CoproductsHSET
Lemma CoproductsHSET (I : UU) (HI : isaset I) : Coproducts I HSET.
Proof.
intros A.
use make_Coproduct.
- ∃ (∑ i, pr1 (A i)).
apply (isaset_total2 _ HI); intro i; apply setproperty.
- simpl; apply tpair.
- apply (make_isCoproduct _ _ HSET).
intros C f; simpl in ×.
use tpair.
× ∃ (λ X, f (pr1 X) (pr2 X)); abstract (intro i; apply idpath).
× abstract (intros h; apply subtypePath; simpl;
[ intro; apply impred; intro; apply has_homsets_HSET
| destruct h as [t ht]; simpl; apply funextfun;
intro x; rewrite <- ht; destruct x; apply idpath]).
Defined.
Binary coproducts from colimits BinCoproductsHSET_from_Colims
Require UniMath.CategoryTheory.limits.graphs.bincoproducts.
Lemma BinCoproductsHSET_from_Colims : graphs.bincoproducts.BinCoproducts HSET.
Proof.
now apply bincoproducts.BinCoproducts_from_Colims, ColimsHSET_of_shape.
Defined.
Pushouts from colimits PushoutsHSET_from_Colims
Lemma PushoutsHSET_from_Colims : graphs.pushouts.Pushouts HSET.
Proof.
red; intros; apply ColimsHSET_of_shape.
Qed.
Initial object InitialHSET
Lemma InitialHSET : Initial HSET.
Proof.
apply (make_Initial emptyHSET).
apply make_isInitial; intro a.
use tpair.
- simpl; intro e; induction e.
- abstract (intro f; apply funextfun; intro e; induction e).
Defined.
Initial object from colimits InitialHSET_from_Colims
Require UniMath.CategoryTheory.limits.graphs.initial.
Lemma InitialHSET_from_Colims : graphs.initial.Initial HSET.
Proof.
apply initial.Initial_from_Colims, ColimsHSET_of_shape.
Defined.