Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.DomainCleaving
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispInvertibles.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Domain.
Require Import UniMath.Bicategories.Colimits.Pullback.
Local Open Scope cat.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispInvertibles.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Domain.
Require Import UniMath.Bicategories.Colimits.Pullback.
Local Open Scope cat.
The domain displayed bicategory has a cleaving
Every 2-cell is cartesian
Definition dom_is_cartesian_2cell
{c₁ c₂ : B}
{s₁ s₂ : c₁ --> c₂}
{α : s₁ ==> s₂}
{t₁ : dom_disp_bicat B a c₁}
{t₂ : dom_disp_bicat B a c₂}
{ss₁ : t₁ -->[ s₁ ] t₂}
{ss₂ : t₁ -->[ s₂ ] t₂}
(αα : ss₁ ==>[ α ] ss₂)
: is_cartesian_2cell (dom_disp_bicat B a) αα.
Proof.
intros s₃ ss₃ γ γα.
use iscontraprop1.
- use isaproptotal2.
+ intro ; apply (dom_disp_bicat B a).
+ intros.
apply cellset_property.
- simple refine (_ ,, _).
+ cbn in ×.
rewrite γα, αα.
rewrite !vassocr.
apply maponpaths_2.
rewrite rwhisker_vcomp.
apply idpath.
+ apply cellset_property.
Qed.
Definition dom_local_cleaving
: local_cleaving (dom_disp_bicat B a).
Proof.
intros c₁ c₂ t₁ t₂ s₁ s₂ α β ; cbn in ×.
simple refine (_ ,, _) ; cbn.
- exact ((β ▹ t₂) • α).
- simple refine (idpath _ ,, _).
apply dom_is_cartesian_2cell.
Defined.
{c₁ c₂ : B}
{s₁ s₂ : c₁ --> c₂}
{α : s₁ ==> s₂}
{t₁ : dom_disp_bicat B a c₁}
{t₂ : dom_disp_bicat B a c₂}
{ss₁ : t₁ -->[ s₁ ] t₂}
{ss₂ : t₁ -->[ s₂ ] t₂}
(αα : ss₁ ==>[ α ] ss₂)
: is_cartesian_2cell (dom_disp_bicat B a) αα.
Proof.
intros s₃ ss₃ γ γα.
use iscontraprop1.
- use isaproptotal2.
+ intro ; apply (dom_disp_bicat B a).
+ intros.
apply cellset_property.
- simple refine (_ ,, _).
+ cbn in ×.
rewrite γα, αα.
rewrite !vassocr.
apply maponpaths_2.
rewrite rwhisker_vcomp.
apply idpath.
+ apply cellset_property.
Qed.
Definition dom_local_cleaving
: local_cleaving (dom_disp_bicat B a).
Proof.
intros c₁ c₂ t₁ t₂ s₁ s₂ α β ; cbn in ×.
simple refine (_ ,, _) ; cbn.
- exact ((β ▹ t₂) • α).
- simple refine (idpath _ ,, _).
apply dom_is_cartesian_2cell.
Defined.
Characterizations of cartesian 1-cells
Definition dom_invertible_2cell_is_cartesian_1cell
{c₁ c₂ : B}
{s : c₁ --> c₂}
{t₁ : dom_disp_bicat B a c₁}
{t₂ : dom_disp_bicat B a c₂}
(ss : t₁ -->[ s ] t₂)
(Hss : is_invertible_2cell ss)
: cartesian_1cell (dom_disp_bicat B a) ss.
Proof.
split.
- intros c₃ t₃ s' ss'.
simple refine (_ ,, _).
+ exact ((s' ◃ Hss^-1) • lassociator _ _ _ • ss').
+ simple refine (_ ,, _).
× abstract
(cbn ;
rewrite !vassocr ;
apply maponpaths_2 ;
rewrite id2_rwhisker ;
etrans ;
[ apply maponpaths_2 ;
rewrite !vassocl ;
rewrite lwhisker_vcomp ;
rewrite vcomp_rinv ;
rewrite lwhisker_id2 ;
apply id2_right
| ] ;
apply rassociator_lassociator).
× apply dom_disp_locally_groupoid.
- cbn.
intros c₃ t₃ s₁ s₂ α αα β ββ Lh Lh' ; cbn in ×.
use iscontraprop1.
+ abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply (dom_disp_bicat B a) | ] ;
apply cellset_property).
+ cbn.
simple refine (_ ,, _).
× abstract
(use (vcomp_lcancel (s₁ ◃ ss)) ; [ is_iso ; apply Hss | ] ;
use (vcomp_lcancel (rassociator _ _ _)) ; [ is_iso | ] ;
rewrite !vassocr ;
refine (pr12 Lh @ _) ;
cbn ;
rewrite id2_rwhisker, id2_left ;
rewrite ββ ;
pose (p := pr12 Lh') ;
cbn in p ;
rewrite id2_rwhisker, id2_left in p ;
etrans ; [apply maponpaths ; exact (!p) |] ;
rewrite !vassocr ;
apply maponpaths_2 ;
rewrite rwhisker_rwhisker_alt ;
rewrite !vassocl ;
rewrite vcomp_whisker ;
apply idpath).
× apply cellset_property.
Defined.
Definition dom_cartesian_1cell_is_invertible_2cell
{c₁ c₂ : B}
{s : c₁ --> c₂}
{t₁ : dom_disp_bicat B a c₁}
{t₂ : dom_disp_bicat B a c₂}
(ss : t₁ -->[ s ] t₂)
(Hss : cartesian_1cell (dom_disp_bicat B a) ss)
: is_invertible_2cell ss.
Proof.
cbn in ×.
pose (pr1 Hss c₁ (s · t₂) (id₁ _) (rassociator _ _ _ • lunitor _)) as p.
unfold lift_1cell_factor in p.
cbn in p.
pose (maponpaths (λ z, lassociator _ _ _ • z) (pr12 p)) as d.
cbn in d.
rewrite id2_rwhisker in d.
rewrite id2_left in d.
rewrite !vassocr in d.
rewrite !lassociator_rassociator in d.
rewrite !id2_left in d.
use make_is_invertible_2cell.
- exact (linvunitor _ • pr1 p).
- rewrite !vassocr.
rewrite linvunitor_natural.
rewrite <- lwhisker_hcomp.
rewrite !vassocl.
rewrite d.
rewrite linvunitor_lunitor.
apply idpath.
- pose (@cartesian_1cell_lift_2cell
_ _ _ _ _ _ _ _ Hss
c₁
t₁
(id₁ _) (id₁ _)
(rassociator _ _ _ • lunitor _ • ss)
(rassociator _ _ _ • lunitor _ • ss)
(id2 _)) as lift2.
cbn in lift2.
rewrite !id2_rwhisker, !id2_left in lift2.
pose (lift2 (idpath _)) as l'.
rewrite !vassocl.
use vcomp_move_R_pM ; [ is_iso | ] ; cbn.
rewrite id2_right.
refine (_ @ id2_left _).
use (l' (pr1 p • ss ,, _) (lunitor _ ,, _)) ; cbn.
+ simple refine (_ ,, _).
× cbn.
rewrite id2_rwhisker, id2_left.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite d.
apply idpath.
× apply dom_disp_locally_groupoid.
+ simple refine (_ ,, _).
× cbn.
rewrite id2_rwhisker, id2_left.
rewrite !vassocl.
rewrite vcomp_lunitor.
apply idpath.
× apply dom_disp_locally_groupoid.
Qed.
Definition dom_global_cleaving
: global_cleaving (dom_disp_bicat B a).
Proof.
intros c₁ c₂ t₁ s.
simple refine (s · t₁ ,, id₂ _ ,, _) ; cbn.
apply dom_invertible_2cell_is_cartesian_1cell.
is_iso.
Defined.
Definition dom_cleaving_of_bicats
: cleaving_of_bicats (dom_disp_bicat B a).
Proof.
repeat split.
- exact dom_local_cleaving.
- exact dom_global_cleaving.
- intro ; intros.
apply dom_is_cartesian_2cell.
- intro ; intros.
apply dom_is_cartesian_2cell.
Defined.
End DomainCleaving.
{c₁ c₂ : B}
{s : c₁ --> c₂}
{t₁ : dom_disp_bicat B a c₁}
{t₂ : dom_disp_bicat B a c₂}
(ss : t₁ -->[ s ] t₂)
(Hss : is_invertible_2cell ss)
: cartesian_1cell (dom_disp_bicat B a) ss.
Proof.
split.
- intros c₃ t₃ s' ss'.
simple refine (_ ,, _).
+ exact ((s' ◃ Hss^-1) • lassociator _ _ _ • ss').
+ simple refine (_ ,, _).
× abstract
(cbn ;
rewrite !vassocr ;
apply maponpaths_2 ;
rewrite id2_rwhisker ;
etrans ;
[ apply maponpaths_2 ;
rewrite !vassocl ;
rewrite lwhisker_vcomp ;
rewrite vcomp_rinv ;
rewrite lwhisker_id2 ;
apply id2_right
| ] ;
apply rassociator_lassociator).
× apply dom_disp_locally_groupoid.
- cbn.
intros c₃ t₃ s₁ s₂ α αα β ββ Lh Lh' ; cbn in ×.
use iscontraprop1.
+ abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply (dom_disp_bicat B a) | ] ;
apply cellset_property).
+ cbn.
simple refine (_ ,, _).
× abstract
(use (vcomp_lcancel (s₁ ◃ ss)) ; [ is_iso ; apply Hss | ] ;
use (vcomp_lcancel (rassociator _ _ _)) ; [ is_iso | ] ;
rewrite !vassocr ;
refine (pr12 Lh @ _) ;
cbn ;
rewrite id2_rwhisker, id2_left ;
rewrite ββ ;
pose (p := pr12 Lh') ;
cbn in p ;
rewrite id2_rwhisker, id2_left in p ;
etrans ; [apply maponpaths ; exact (!p) |] ;
rewrite !vassocr ;
apply maponpaths_2 ;
rewrite rwhisker_rwhisker_alt ;
rewrite !vassocl ;
rewrite vcomp_whisker ;
apply idpath).
× apply cellset_property.
Defined.
Definition dom_cartesian_1cell_is_invertible_2cell
{c₁ c₂ : B}
{s : c₁ --> c₂}
{t₁ : dom_disp_bicat B a c₁}
{t₂ : dom_disp_bicat B a c₂}
(ss : t₁ -->[ s ] t₂)
(Hss : cartesian_1cell (dom_disp_bicat B a) ss)
: is_invertible_2cell ss.
Proof.
cbn in ×.
pose (pr1 Hss c₁ (s · t₂) (id₁ _) (rassociator _ _ _ • lunitor _)) as p.
unfold lift_1cell_factor in p.
cbn in p.
pose (maponpaths (λ z, lassociator _ _ _ • z) (pr12 p)) as d.
cbn in d.
rewrite id2_rwhisker in d.
rewrite id2_left in d.
rewrite !vassocr in d.
rewrite !lassociator_rassociator in d.
rewrite !id2_left in d.
use make_is_invertible_2cell.
- exact (linvunitor _ • pr1 p).
- rewrite !vassocr.
rewrite linvunitor_natural.
rewrite <- lwhisker_hcomp.
rewrite !vassocl.
rewrite d.
rewrite linvunitor_lunitor.
apply idpath.
- pose (@cartesian_1cell_lift_2cell
_ _ _ _ _ _ _ _ Hss
c₁
t₁
(id₁ _) (id₁ _)
(rassociator _ _ _ • lunitor _ • ss)
(rassociator _ _ _ • lunitor _ • ss)
(id2 _)) as lift2.
cbn in lift2.
rewrite !id2_rwhisker, !id2_left in lift2.
pose (lift2 (idpath _)) as l'.
rewrite !vassocl.
use vcomp_move_R_pM ; [ is_iso | ] ; cbn.
rewrite id2_right.
refine (_ @ id2_left _).
use (l' (pr1 p • ss ,, _) (lunitor _ ,, _)) ; cbn.
+ simple refine (_ ,, _).
× cbn.
rewrite id2_rwhisker, id2_left.
rewrite !vassocl.
apply maponpaths.
rewrite !vassocr.
rewrite d.
apply idpath.
× apply dom_disp_locally_groupoid.
+ simple refine (_ ,, _).
× cbn.
rewrite id2_rwhisker, id2_left.
rewrite !vassocl.
rewrite vcomp_lunitor.
apply idpath.
× apply dom_disp_locally_groupoid.
Qed.
Definition dom_global_cleaving
: global_cleaving (dom_disp_bicat B a).
Proof.
intros c₁ c₂ t₁ s.
simple refine (s · t₁ ,, id₂ _ ,, _) ; cbn.
apply dom_invertible_2cell_is_cartesian_1cell.
is_iso.
Defined.
Definition dom_cleaving_of_bicats
: cleaving_of_bicats (dom_disp_bicat B a).
Proof.
repeat split.
- exact dom_local_cleaving.
- exact dom_global_cleaving.
- intro ; intros.
apply dom_is_cartesian_2cell.
- intro ; intros.
apply dom_is_cartesian_2cell.
Defined.
End DomainCleaving.