Library UniMath.Bicategories.DisplayedBicats.Examples.Domain

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.

Local Open Scope cat.
Local Open Scope mor_disp_scope.

Section DomainArrow.
  Variable (B : bicat)
           (a : B).

  Definition dom_disp_cat_ob_mor
    : disp_cat_ob_mor B.
  Proof.
    use tpair.
    - exact (λ c, c --> a).
    - exact (λ c₁ c₂ t₁ t₂ s, s · t₂ ==> t₁).
  Defined.

  Definition dom_disp_cat_id_comp
    : disp_cat_id_comp B dom_disp_cat_ob_mor.
  Proof.
    use tpair.
    - exact (λ c t, lunitor _).
    - exact (λ c₁ c₂ c₃ s₁ s₂ t₁ t₂ t₃ α β, rassociator _ _ _ (s₁ β) α).
  Defined.

  Definition dom_disp_cat_data
    : disp_cat_data B.
  Proof.
    use tpair.
    - exact dom_disp_cat_ob_mor.
    - exact dom_disp_cat_id_comp.
  Defined.

  Definition dom_disp_prebicat_1_id_comp_cells
    : disp_prebicat_1_id_comp_cells B.
  Proof.
    use tpair.
    - exact dom_disp_cat_data.
    - exact (λ c₁ c₂ s₁ s₂ α t₁ t₂ ss₁ ss₂, ss₁ = (α t₂) ss₂).
  Defined.

  Definition dom_disp_prebicat_ops
    : disp_prebicat_ops dom_disp_prebicat_1_id_comp_cells.
  Proof.
    repeat split ; cbn.
    - intros.
      rewrite id2_rwhisker.
      rewrite id2_left.
      apply idpath.
    - intros.
      rewrite !vassocl.
      rewrite vcomp_lunitor.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite <- lunitor_triangle.
      rewrite !vassocr.
      rewrite rassociator_lassociator.
      apply id2_left.
    - intros.
      apply maponpaths_2.
      rewrite lwhisker_hcomp.
      rewrite triangle_l.
      rewrite <- rwhisker_hcomp.
      apply idpath.
    - intros.
      rewrite !vassocl.
      use vcomp_move_L_pM.
      {
        is_iso.
      }
      cbn.
      rewrite vcomp_lunitor.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite <- lunitor_triangle.
      rewrite !vassocr.
      rewrite rassociator_lassociator.
      rewrite id2_left.
      apply idpath.
    - intros.
      rewrite !vassocl.
      use vcomp_move_L_pM.
      {
        is_iso.
      }
      cbn.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite lwhisker_hcomp.
      rewrite triangle_l.
      rewrite <- rwhisker_hcomp.
      apply idpath.
    - intros.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite !vassocl.
      etrans.
      {
        apply maponpaths.
        rewrite !vassocr.
        rewrite <- lwhisker_lwhisker_rassociator.
        apply idpath.
      }
      rewrite <- !lwhisker_vcomp.
      rewrite !vassocr.
      do 2 apply maponpaths_2.
      rewrite rassociator_rassociator.
      apply idpath.
    - intros.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite <- !lwhisker_vcomp.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite !vassocl.
      rewrite <- lwhisker_lwhisker_rassociator.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite !vassocl.
      rewrite <- rassociator_rassociator.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite rwhisker_vcomp.
      rewrite lassociator_rassociator.
      rewrite id2_rwhisker.
      rewrite id2_left.
      apply idpath.
    - intros ? ? ? ? ? ? ? ? ? ? ? ? α β.
      rewrite <- rwhisker_vcomp.
      rewrite !vassocl.
      rewrite α.
      rewrite β.
      apply idpath.
    - intros ? ? ? ? ? ? ? ? ? ? ? ? ? α.
      rewrite α.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite <- lwhisker_vcomp.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite rwhisker_lwhisker_rassociator.
      apply idpath.
    - intros ? ? ? ? ? ? ? ? ? ? ? ? ? α.
      rewrite α.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite !vassocl.
      rewrite <- vcomp_whisker.
      rewrite !vassocr.
      apply maponpaths_2.
      rewrite rwhisker_rwhisker_alt.
      apply idpath.
  Qed.

  Definition dom_disp_prebicat_data
    : disp_prebicat_data B.
  Proof.
    use tpair.
    - exact dom_disp_prebicat_1_id_comp_cells.
    - exact dom_disp_prebicat_ops.
  Defined.

  Definition dom_disp_prebicat_laws
    : disp_prebicat_laws dom_disp_prebicat_data.
  Proof.
    repeat split ; intro ; intros ; apply B.
  Qed.

  Definition dom_disp_prebicat
    : disp_prebicat B.
  Proof.
    use tpair.
    - exact dom_disp_prebicat_data.
    - exact dom_disp_prebicat_laws.
  Defined.

  Definition dom_disp_bicat
    : disp_bicat B.
  Proof.
    use tpair.
    - exact dom_disp_prebicat.
    - intro ; intros.
      apply isasetaprop.
      apply B.
  Defined.

  Definition dom_disp_2cells_isaprop
    : disp_2cells_isaprop dom_disp_bicat.
  Proof.
    intro ; intros.
    apply B.
  Qed.

  Definition dom_disp_locally_sym
    : disp_locally_sym dom_disp_bicat.
  Proof.
    intros c₁ c₂ s₁ s₂ α t₁ t₂ φ φ p ; cbn in ×.
    rewrite p.
    rewrite !vassocr.
    rewrite rwhisker_vcomp.
    rewrite vcomp_linv.
    rewrite id2_rwhisker.
    rewrite id2_left.
    apply idpath.
  Qed.

  Definition dom_disp_locally_groupoid
    : disp_locally_groupoid dom_disp_bicat.
  Proof.
    use make_disp_locally_groupoid.
    - exact dom_disp_locally_sym.
    - exact dom_disp_2cells_isaprop.
  Defined.

  Definition dom_disp_univalent_2_1
    : disp_univalent_2_1 dom_disp_bicat.
  Proof.
    use fiberwise_local_univalent_is_univalent_2_1.
    intros c₁ c₂ s t₁ t₂ φ φ.
    use isweqimplimpl.
    - intros α.
      pose (pr1 α) as p ; cbn in p.
      rewrite id2_rwhisker in p.
      rewrite id2_left in p.
      exact p.
    - apply B.
    - use isaproptotal2.
      + intro.
        apply isaprop_is_disp_invertible_2cell.
      + intros.
        apply B.
  Qed.

  Definition dom_invertible_2cell_to_disp_adj_equiv
             {c : B}
             {t₁ t₂ : dom_disp_bicat c}
    : invertible_2cell t₁ t₂
      
      disp_adjoint_equivalence (internal_adjoint_equivalence_identity c) t₁ t₂.
  Proof.
    intros α.
    simple refine (_ ,, ((_ ,, (_ ,, _)) ,, ((_ ,, _) ,, (_ ,, _)))).
    - exact (lunitor _ α^-1).
    - exact (lunitor _ α).
    - abstract
        (cbn ;
         rewrite <- !lwhisker_vcomp ;
         rewrite !vassocl ;
         refine (!_) ;
         etrans ;
         [ do 3 apply maponpaths ;
           rewrite !vassocr ;
           rewrite vcomp_lunitor ;
           rewrite !vassocl ;
           rewrite vcomp_rinv ;
           apply id2_right
         | ] ;
         rewrite !vassocr ;
         refine (_ @ id2_left _) ;
         apply maponpaths_2 ;
         rewrite !vassocl ;
         rewrite <- runitor_rwhisker ;
         etrans ;
         [ apply maponpaths ;
           rewrite !vassocr ;
           rewrite rassociator_lassociator ;
           apply id2_left
         | ] ;
         rewrite rwhisker_vcomp ;
         rewrite runitor_lunitor_identity ;
         rewrite linvunitor_lunitor ;
         apply id2_rwhisker).
    - abstract
        (cbn ;
         rewrite <- !lwhisker_vcomp ;
         rewrite !vassocl ;
         etrans ;
         [ do 2 apply maponpaths ;
           rewrite !vassocr ;
           rewrite vcomp_lunitor ;
           rewrite !vassocl ;
           rewrite vcomp_linv ;
           apply id2_right
         | ] ;
         rewrite !vassocr ;
         apply maponpaths_2 ;
         rewrite lunitor_lwhisker ;
         rewrite lunitor_runitor_identity ;
         apply idpath).
    - apply dom_disp_2cells_isaprop.
    - apply dom_disp_2cells_isaprop.
    - apply dom_disp_locally_groupoid.
    - apply dom_disp_locally_groupoid.
  Defined.

  Definition dom_disp_adj_equiv_to_invertible_2cell
             {c : B}
             {t₁ t₂ : dom_disp_bicat c}
    : disp_adjoint_equivalence (internal_adjoint_equivalence_identity c) t₁ t₂
      
      invertible_2cell t₁ t₂.
  Proof.
    intros e.
    use make_invertible_2cell.
    - exact (linvunitor _ pr112 e).
    - use make_is_invertible_2cell.
      + exact (linvunitor _ pr1 e).
      + abstract
          (pose (pr1 (pr212 e)) as m ;
           cbn in m ;
           rewrite !vassocr in m ;
           rewrite <- linvunitor_assoc in m ;
           rewrite !vassocl ;
           etrans ;
           [ apply maponpaths ;
             rewrite !vassocr ;
             rewrite linvunitor_natural ;
             rewrite <- lwhisker_hcomp ;
             apply idpath
           | ] ;
           use vcomp_move_R_pM ; [ is_iso | ] ; cbn ;
           rewrite id2_right ;
           rewrite m ;
           apply idpath).
      + abstract
          (pose (pr2 (pr212 e)) as m ;
           cbn in m ;
           rewrite !vassocl ;
           etrans ;
             [ apply maponpaths ;
               rewrite !vassocr ;
               rewrite linvunitor_natural ;
               rewrite <- lwhisker_hcomp ;
               apply idpath
             | ] ;
           use vcomp_move_R_pM ; [ is_iso | ] ; cbn ;
           rewrite !vassocl ;
           rewrite !id2_right ;
           rewrite linvunitor_assoc ;
           rewrite !vassocl ;
           use vcomp_move_R_pM ; [ is_iso | ] ; cbn ;
           rewrite !vassocr ;
           exact m).
  Defined.

  Definition dom_invertible_2cell_weq_disp_adj_equiv
             (HB_2_1 : is_univalent_2_1 B)
             {c : B}
             (t₁ t₂ : dom_disp_bicat c)
    : invertible_2cell t₁ t₂
      
      disp_adjoint_equivalence (internal_adjoint_equivalence_identity c) t₁ t₂.
  Proof.
    use make_weq.
    - exact dom_invertible_2cell_to_disp_adj_equiv.
    - use gradth.
      + exact dom_disp_adj_equiv_to_invertible_2cell.
      + abstract
          (intros α ;
           use subtypePath ; [ intro ; apply isaprop_is_invertible_2cell | ] ;
           cbn ;
           rewrite vassocr ;
           rewrite linvunitor_lunitor ;
           apply id2_left).
      + abstract
          (intros α ;
           use subtypePath ;
           [ intro ;
             use isaprop_disp_left_adjoint_equivalence ;
             [ exact HB_2_1
             | apply dom_disp_univalent_2_1 ]
           | ] ;
           cbn ;
           rewrite vassocr ;
           rewrite lunitor_linvunitor ;
           apply id2_left).
  Defined.

  Definition dom_disp_univalent_2_0
             (HB_2_1 : is_univalent_2_1 B)
    : disp_univalent_2_0 dom_disp_bicat.
  Proof.
    use fiberwise_univalent_2_0_to_disp_univalent_2_0.
    intros c t₁ t₂.
    use weqhomot.
    - exact (dom_invertible_2cell_weq_disp_adj_equiv HB_2_1 t₁ t₂
              make_weq _ (HB_2_1 _ _ _ _))%weq.
    - abstract
        (intros p ;
         cbn in p ;
         induction p ;
         use subtypePath ;
           [ intro ;
             use isaprop_disp_left_adjoint_equivalence ;
             [ exact HB_2_1
             | apply dom_disp_univalent_2_1 ]
           | ] ;
           apply id2_right).
  Qed.
End DomainArrow.