Library UniMath.Bicategories.DisplayedBicats.DispBicat
Displayed bicategories
Benedikt Ahrens, Marco Maggesi February 2018Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Univalence.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Transport of displayed cells.
Definition disp_2cell_struct {C : prebicat_1_id_comp_cells} (D : disp_cat_ob_mor C) : UU
:= ∏ (c c' : C) (f g : C⟦c,c'⟧) (x : f ==> g)
(d : D c) (d' : D c') (f' : d -->[f] d') (g' : d -->[g] d'), UU.
Definition disp_prebicat_1_id_comp_cells (C : prebicat_1_id_comp_cells) : UU
:= ∑ D : disp_cat_data C, disp_2cell_struct D.
Coercion disp_cat_data_from_disp_prebicat_1_id_comp_cells
{C : prebicat_1_id_comp_cells} (D : disp_prebicat_1_id_comp_cells C)
: disp_cat_data C
:= pr1 D.
Definition disp_2cells {C : prebicat_1_id_comp_cells}
{D : disp_prebicat_1_id_comp_cells C}
{c c' : C} {f g : C⟦c,c'⟧} (x : f ==> g)
{d : D c} {d' : D c'} (f' : d -->[f] d') (g' : d -->[g] d')
: UU
:= pr2 D c c' f g x d d' f' g'.
Section Cell_Transport.
Context {C : bicat} {D : disp_prebicat_1_id_comp_cells C}.
Notation "f' ==>[ x ] g'" := (disp_2cells x f' g') (at level 60).
Definition cell_transportf
{a b : C} {f g : C⟦a,b⟧}
{α β : f ==> g}
(e : α = β)
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
(αα : ff ==>[α] gg)
: ff ==>[β] gg
:= transportf (λ x : f ==> g, ff ==>[x] gg) e αα.
Definition cell_transportb
{a b : C} {f g : C⟦a,b⟧}
{α β : f ==> g}
(e : α = β)
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
(ββ : ff ==>[β] gg)
: ff ==>[α] gg
:= transportb (λ x : f ==> g, ff ==>[x] gg) e ββ.
Lemma cell_transportf_pathsinv0
{a b : C} {f g : C⟦a,b⟧}
{α β : f ==> g}
(e : α = β)
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
{αα : ff ==>[α] gg}
{ββ : ff ==>[β] gg}
(ee : cell_transportf (!e) ββ = αα)
: cell_transportf e αα = ββ.
Proof.
unfold cell_transportf.
apply (transportf_pathsinv0 (λ x : f ==> g, ff ==>[x] gg)).
exact ee.
Defined.
Lemma cell_transportb_to_f
{a b : C} {f g : C⟦a,b⟧}
{α β : f ==> g}
{e : α = β}
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
{αα : ff ==>[α] gg}
{ββ : ff ==>[β] gg}
(ee : αα = cell_transportb e ββ)
: cell_transportf e αα = ββ.
Proof.
apply cell_transportf_pathsinv0.
apply pathsinv0.
exact ee.
Defined.
Lemma cell_transportf_to_b
{a b : C} {f g : C⟦a,b⟧}
{α β : f ==> g}
{e : α = β}
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
{αα : ff ==>[α] gg}
{ββ : ff ==>[β] gg}
(ee : cell_transportf e αα = ββ)
: αα = cell_transportb e ββ.
Proof.
apply pathsinv0.
apply (transportf_pathsinv0 (λ x : f ==> g, ff ==>[ x] gg)).
etrans.
{ apply maponpaths_2.
apply pathsinv0inv0. }
exact ee.
Defined.
End Cell_Transport.
Section disp_prebicat.
Context {C : bicat}.
Local Notation "f' ==>[ x ] g'" := (disp_2cells x f' g') (at level 60).
Local Notation "f' <==[ x ] g'" := (disp_2cells x g' f') (at level 60, only parsing).
Definition disp_prebicat_ops (D : disp_prebicat_1_id_comp_cells C) : UU
:= (∏ (a b : C) (f : C⟦a,b⟧) (x : D a) (y : D b) (f' : x -->[f] y),
f' ==>[id2 _] f')
× (∏ (a b : C) (f : C⟦a,b⟧) (x : D a) (y : D b) (f' : x -->[f] y),
id_disp x ;; f' ==>[lunitor _] f')
× (∏ (a b : C) (f : C⟦a,b⟧) (x : D a) (y : D b) (f' : x -->[f] y),
f' ;; id_disp y ==>[runitor _] f')
× (∏ (a b : C) (f : C⟦a,b⟧) (x : D a) (y : D b) (f' : x -->[f] y),
id_disp x ;; f' <==[linvunitor _] f')
× (∏ (a b : C) (f : C⟦a,b⟧) (x : D a) (y : D b) (f' : x -->[f] y),
f' ;; id_disp y <==[rinvunitor _] f')
× (∏ (a b c d : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧) (h : C⟦c,d⟧)
(w : D a) (x : D b) (y : D c) (z : D d)
(ff : w -->[f] x) (gg : x -->[g] y) (hh : y -->[h] z),
(ff ;; gg) ;; hh ==>[rassociator _ _ _] ff ;; (gg ;; hh))
× (∏ (a b c d : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧) (h : C⟦c,d⟧)
(w : D a) (x : D b) (y : D c) (z : D d)
(ff : w -->[f] x) (gg : x -->[g] y) (hh : y -->[h] z),
ff ;; (gg ;; hh) ==>[lassociator _ _ _] (ff ;; gg) ;; hh)
× (∏ (a b : C) (f g h : C⟦a,b⟧) (r : f ==> g) (s : g ==> h)
(x : D a) (y : D b) (ff : x -->[f] y) (gg : x -->[g] y) (hh : x -->[h] y),
ff ==>[r] gg → gg ==>[s] hh → ff ==>[r • s] hh)
× (∏ (a b c : C) (f : C⟦a,b⟧) (g1 g2 : C⟦b,c⟧)
(r : g1 ==> g2) (x : D a) (y : D b) (z : D c)
(ff : x -->[f] y) (gg1 : y -->[g1] z) (gg2 : y -->[g2] z),
gg1 ==>[r] gg2 → ff ;; gg1 ==>[f ◃ r] ff ;; gg2)
× (∏ (a b c : C) (f1 f2 : C⟦a,b⟧) (g : C⟦b,c⟧)
(r : f1 ==> f2) (x : D a) (y : D b) (z : D c)
(ff1 : x -->[f1] y) (ff2 : x -->[f2] y) (gg : y -->[g] z),
ff1 ==>[r] ff2 → ff1 ;; gg ==>[r ▹ g] ff2 ;; gg).
Definition disp_prebicat_data : UU
:= ∑ D : disp_prebicat_1_id_comp_cells C, disp_prebicat_ops D.
Coercion disp_prebicat_ob_mor_cells_1_id_comp_from_disp_prebicat_data
(D : disp_prebicat_data)
: disp_prebicat_1_id_comp_cells C
:= pr1 D.
Coercion disp_prebicat_ops_from_disp_prebicat_data (D : disp_prebicat_data)
: disp_prebicat_ops D
:= pr2 D.
Section disp_prebicat_ops_projections.
Context {D : disp_prebicat_data}.
Definition disp_id2 {a b : C} {f : C⟦a,b⟧} {x : D a} {y : D b} (f' : x -->[f] y)
: f' ==>[id2 _] f'
:= pr1 (pr2 D) a b f x y f'.
Definition disp_lunitor {a b : C} {f : C⟦a,b⟧} {x : D a} {y : D b} (f' : x -->[f] y)
: id_disp x ;; f' ==>[lunitor _] f'
:= pr1 (pr2 (pr2 D)) a b f x y f'.
Definition disp_runitor {a b : C} {f : C⟦a,b⟧} {x : D a} {y : D b} (f' : x -->[f] y)
: f' ;; id_disp y ==>[runitor _] f'
:= pr1 (pr2 (pr2 (pr2 D))) _ _ f _ _ f'.
Definition disp_linvunitor
{a b : C} {f : C⟦a,b⟧} {x : D a} {y : D b} (f' : x -->[f] y)
: id_disp x ;; f' <==[linvunitor _] f'
:= pr1 (pr2 (pr2 (pr2 (pr2 D)))) _ _ f _ _ f'.
Definition disp_rinvunitor
{a b : C} {f : C⟦a,b⟧} {x : D a} {y : D b} (f' : x -->[f] y)
: f' ;; id_disp y <==[rinvunitor _] f'
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 D))))) _ _ f _ _ f'.
Definition disp_rassociator
{a b c d : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧} {h : C⟦c,d⟧}
{w : D a} {x : D b} {y : D c} {z : D d}
(ff : w -->[f] x) (gg : x -->[g] y) (hh : y -->[h] z)
: (ff ;; gg) ;; hh ==>[rassociator _ _ _] ff ;; (gg ;; hh)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))) _ _ _ _ _ _ _ w _ _ _ ff gg hh.
Definition disp_lassociator
{a b c d : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧} {h : C⟦c,d⟧}
{w : D a} {x : D b} {y : D c} {z : D d}
(ff : w -->[f] x) (gg : x -->[g] y) (hh : y -->[h] z)
: ff ;; (gg ;; hh) ==>[lassociator _ _ _] (ff ;; gg) ;; hh
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))) _ _ _ _ _ _ _ w _ _ _ ff gg hh.
Definition disp_vcomp2
{a b : C} {f g h : C⟦a,b⟧}
{r : f ==> g} {s : g ==> h}
{x : D a} {y : D b}
{ff : x -->[f] y} {gg : x -->[g] y} {hh : x -->[h] y}
: ff ==>[r] gg → gg ==>[s] hh → ff ==>[r • s] hh
:= λ rr ss, pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))
_ _ _ _ _ _ _ _ _ _ _ _ rr ss.
Definition disp_lwhisker
{a b c : C} {f : C⟦a,b⟧} {g1 g2 : C⟦b,c⟧}
{r : g1 ==> g2}
{x : D a} {y : D b} {z : D c}
(ff : x -->[f] y) {gg1 : y -->[g1] z} {gg2 : y -->[g2] z}
: gg1 ==>[r] gg2 → ff ;; gg1 ==>[f ◃ r] ff ;; gg2
:= λ rr, pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ rr.
Definition disp_rwhisker
{a b c : C} {f1 f2 : C⟦a,b⟧} {g : C⟦b,c⟧}
{r : f1 ==> f2}
{x : D a} {y : D b} {z : D c}
{ff1 : x -->[f1] y} {ff2 : x -->[f2] y} (gg : y -->[g] z)
: ff1 ==>[r] ff2 → ff1 ;; gg ==>[r ▹ g] ff2 ;; gg
:= λ rr, pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ rr.
End disp_prebicat_ops_projections.
Local Notation "rr •• ss" := (disp_vcomp2 rr ss) (at level 60).
Local Notation "ff ◃◃ rr" := (disp_lwhisker ff rr) (at level 60).
Local Notation "rr ▹▹ gg" := (disp_rwhisker gg rr) (at level 60).
Section disp_prebicat_laws.
Context (D : disp_prebicat_data).
Definition disp_id2_left_law : UU
:= ∏ (a b : C) (f g : C⟦a,b⟧) (η : f ==> g)
(x : D a) (y : D b) (ff : x -->[f] y) (gg : x -->[g] y)
(ηη : ff ==>[η] gg),
disp_id2 _ •• ηη = transportb (λ α, _ ==>[α] _) (id2_left _) ηη.
Definition disp_id2_right_law : UU
:= ∏ (a b : C) (f g : C⟦a,b⟧) (η : f ==> g)
(x : D a) (y : D b) (ff : x -->[f] y) (gg : x -->[g] y)
(ηη : ff ==>[η] gg),
ηη •• disp_id2 _ = transportb (λ α, _ ==>[α] _) (id2_right _) ηη.
Definition disp_vassocr_law : UU
:= ∏ (a b : C) (f g h k : C⟦a,b⟧) (η : f ==> g) (φ : g ==> h) (ψ : h ==> k)
(x : D a) (y : D b)
(ff : x -->[f] y) (gg : x -->[g] y) (hh : x -->[h] y) (kk : x -->[k] y)
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh) (ψψ : hh ==>[ψ] kk),
ηη •• (φφ •• ψψ) =
transportb (λ α, _ ==>[α] _) (vassocr _ _ _) ((ηη •• φφ) •• ψψ).
Definition disp_lwhisker_id2_law : UU
:= ∏ (a b c : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧)
(x : D a) (y : D b) (z : D c) (ff : x -->[f] y) (gg : y -->[g] z),
ff ◃◃ disp_id2 gg =
transportb (λ α, _ ==>[α] _) (lwhisker_id2 _ _) (disp_id2 (ff ;; gg)).
Definition disp_id2_rwhisker_law : UU
:= ∏ (a b c : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧)
(x : D a) (y : D b) (z : D c) (ff : x -->[f] y) (gg : y -->[g] z),
disp_id2 ff ▹▹ gg =
transportb (λ α, _ ==>[α] _) (id2_rwhisker _ _) (disp_id2 (ff ;; gg)).
Definition disp_lwhisker_vcomp_law : UU
:= ∏ (a b c : C) (f : C⟦a,b⟧) (g h i : C⟦b,c⟧)
(η : g ==> h) (φ : h ==> i)
(x : D a) (y : D b) (z : D c) (ff : x -->[f] y)
(gg : y -->[g] z) (hh : y -->[h] z) (ii : y -->[i] z)
(ηη : gg ==>[η] hh) (φφ : hh ==>[φ] ii),
(ff ◃◃ ηη) •• (ff ◃◃ φφ) =
transportb (λ α, _ ==>[α] _) (lwhisker_vcomp _ _ _) (ff ◃◃ (ηη •• φφ)).
Definition disp_rwhisker_vcomp_law : UU
:= ∏ (a b c : C) (f g h : C⟦a,b⟧) (i : C⟦b,c⟧) (η : f ==> g) (φ : g ==> h)
(x : D a) (y : D b) (z : D c)
(ff : x -->[f] y) (gg : x -->[g] y) (hh : x -->[h] y)
(ii : y -->[i] z)
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh),
(ηη ▹▹ ii) •• (φφ ▹▹ ii) =
transportb (λ α, _ ==>[α] _) (rwhisker_vcomp _ _ _) ((ηη •• φφ) ▹▹ ii).
Definition disp_vcomp_lunitor_law : UU
:= ∏ (a b : C) (f g : C⟦a,b⟧) (η : f ==> g)
(x : D a) (y : D b) (ff : x -->[f] y) (gg : x -->[g] y)
(ηη : ff ==>[η] gg),
(id_disp _ ◃◃ ηη) •• disp_lunitor gg =
transportb (λ α, _ ==>[α] _) (vcomp_lunitor _ _ _) (disp_lunitor ff •• ηη).
Definition disp_vcomp_runitor_law : UU
:= ∏ (a b : C) (f g : C⟦a,b⟧) (η : f ==> g)
(x : D a) (y : D b) (ff : x -->[f] y) (gg : x -->[g] y)
(ηη : ff ==>[η] gg),
(ηη ▹▹ id_disp _) •• disp_runitor gg =
transportb (λ α, _ ==>[α] _) (vcomp_runitor _ _ _) (disp_runitor ff •• ηη).
Definition disp_lwhisker_lwhisker_law : UU
:= ∏ (a b c d : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧) (h i : c --> d) (η : h ==> i)
(w : D a) (x : D b) (y : D c) (z : D d)
(ff : w -->[f] x) (gg : x -->[g] y) (hh : y -->[h] z) (ii : y -->[i] z)
(ηη : hh ==>[η] ii),
ff ◃◃ (gg ◃◃ ηη) •• disp_lassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (lwhisker_lwhisker _ _ _)
(disp_lassociator _ _ _ •• (ff ;; gg ◃◃ ηη)).
Definition disp_rwhisker_lwhisker_law : UU
:= ∏ (a b c d : C) (f : C⟦a,b⟧) (g h : C⟦b,c⟧) (i : c --> d) (η : g ==> h)
(w : D a) (x : D b) (y : D c) (z : D d)
(ff : w -->[f] x) (gg : x -->[g] y) (hh : x -->[h] y) (ii : y -->[i] z)
(ηη : gg ==>[η] hh),
(ff ◃◃ (ηη ▹▹ ii)) •• disp_lassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (rwhisker_lwhisker _ _ _)
(disp_lassociator _ _ _ •• ((ff ◃◃ ηη) ▹▹ ii)).
Definition disp_rwhisker_rwhisker_law : UU
:= ∏ (a b c d : C) (f g : C⟦a,b⟧) (h : C⟦b,c⟧) (i : c --> d) (η : f ==> g)
(w : D a) (x : D b) (y : D c) (z : D d)
(ff : w -->[f] x) (gg : w -->[g] x) (hh : x -->[h] y) (ii : y -->[i] z)
(ηη : ff ==>[η] gg),
disp_lassociator _ _ _ •• ((ηη ▹▹ hh) ▹▹ ii) =
transportb (λ α, _ ==>[α] _) (rwhisker_rwhisker _ _ _)
((ηη ▹▹ hh ;; ii) •• disp_lassociator _ _ _).
Definition disp_vcomp_whisker_law : UU
:= ∏ (a b c : C) (f g : C⟦a,b⟧) (h i : C⟦b,c⟧)
(η : f ==> g) (φ : h ==> i)
(x : D a) (y : D b) (z : D c)
(ff : x -->[f] y) (gg : x -->[g] y)
(hh : y -->[h] z) (ii : y -->[i] z)
(ηη : ff ==>[η] gg) (φφ : hh ==>[φ] ii),
(ηη ▹▹ hh) •• (gg ◃◃ φφ) =
transportb (λ α, _ ==>[α] _) (vcomp_whisker _ _) ((ff ◃◃ φφ) •• (ηη ▹▹ ii)).
Definition disp_lunitor_linvunitor_law : UU
:= ∏ (a b : C) (f : C⟦a,b⟧)
(x : D a) (y : D b) (ff : x -->[f] y),
disp_lunitor ff •• disp_linvunitor _ =
transportb (λ α, _ ==>[α] _) (lunitor_linvunitor _) (disp_id2 (id_disp _ ;; ff)).
Definition disp_linvunitor_lunitor_law : UU
:= ∏ (a b : C) (f : C⟦a,b⟧)
(x : D a) (y : D b) (ff : x -->[f] y),
disp_linvunitor ff •• disp_lunitor _ =
transportb (λ α, _ ==>[α] _) (linvunitor_lunitor _) (disp_id2 _).
Definition disp_runitor_rinvunitor_law : UU
:= ∏ (a b : C) (f : C⟦a,b⟧)
(x : D a) (y : D b) (ff : x -->[f] y),
disp_runitor ff •• disp_rinvunitor _ =
transportb (λ α, _ ==>[α] _) (runitor_rinvunitor _) (disp_id2 _).
Definition disp_rinvunitor_runitor_law : UU
:= ∏ (a b : C) (f : C⟦a,b⟧)
(x : D a) (y : D b) (ff : x -->[f] y),
disp_rinvunitor ff •• disp_runitor _ =
transportb (λ α, _ ==>[α] _) (rinvunitor_runitor _) (disp_id2 _).
Definition disp_lassociator_rassociator_law : UU
:= ∏ (a b c d : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧) (h : c --> d)
(w : D a) (x : D b) (y : D c) (z : D d)
(ff : w -->[f] x) (gg : x -->[g] y)
(hh : y -->[h] z),
disp_lassociator ff gg hh •• disp_rassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (lassociator_rassociator _ _ _ ) (disp_id2 _).
Definition disp_rassociator_lassociator_law : UU
:= ∏ (a b c d : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧) (h : c --> d)
(w : D a) (x : D b) (y : D c) (z : D d)
(ff : w -->[f] x) (gg : x -->[g] y)
(hh : y -->[h] z),
disp_rassociator ff gg hh •• disp_lassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (rassociator_lassociator _ _ _ ) (disp_id2 _).
Definition disp_runitor_rwhisker_law : UU
:= ∏ (a b c : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧)
(x : D a) (y : D b) (z : D c)
(ff : x -->[f] y) (gg : y -->[g] z),
disp_lassociator _ _ _ •• (disp_runitor ff ▹▹ gg) =
transportb (λ α, _ ==>[α] _) (runitor_rwhisker _ _) (ff ◃◃ disp_lunitor gg).
Definition disp_lassociator_lassociator_law : UU
:= ∏ (a b c d e: C) (f : C⟦a,b⟧) (g : C⟦b,c⟧) (h : c --> d) (i : C⟦d,e⟧)
(v : D a) (w : D b) (x : D c) (y : D d) (z : D e)
(ff : v -->[f] w) (gg : w -->[g] x)
(hh : x -->[h] y) (ii : y -->[i] z),
(ff ◃◃ disp_lassociator gg hh ii) •• disp_lassociator _ _ _ ••
(disp_lassociator _ _ _ ▹▹ ii) =
transportb (λ α, _ ==>[α] _) (lassociator_lassociator _ _ _ _)
(disp_lassociator ff gg _ •• disp_lassociator _ _ _).
Definition disp_prebicat_laws : UU
:= disp_id2_left_law
× disp_id2_right_law
× disp_vassocr_law
× disp_lwhisker_id2_law
× disp_id2_rwhisker_law
× disp_lwhisker_vcomp_law
× disp_rwhisker_vcomp_law
× disp_vcomp_lunitor_law
× disp_vcomp_runitor_law
× disp_lwhisker_lwhisker_law
× disp_rwhisker_lwhisker_law
× disp_rwhisker_rwhisker_law
× disp_vcomp_whisker_law
× disp_lunitor_linvunitor_law
× disp_linvunitor_lunitor_law
× disp_runitor_rinvunitor_law
× disp_rinvunitor_runitor_law
× disp_lassociator_rassociator_law
× disp_rassociator_lassociator_law
× disp_runitor_rwhisker_law
× disp_lassociator_lassociator_law.
End disp_prebicat_laws.
Laws projections
Definition disp_prebicat : UU
:= ∑ D : disp_prebicat_data, disp_prebicat_laws D.
Coercion disp_prebicat_data_from_disp_prebicat (D : disp_prebicat)
: disp_prebicat_data
:= pr1 D.
Section disp_prebicat_law_projections.
Context {D : disp_prebicat}.
Definition disp_id2_left {a b : C} {f g : C⟦a,b⟧} {η : f ==> g}
{x : D a} {y : D b} {ff : x -->[f] y} {gg : x -->[g] y}
(ηη : ff ==>[η] gg)
: disp_id2 _ •• ηη = transportb (λ α, _ ==>[α] _) (id2_left _) ηη
:= pr1 (pr2 D) _ _ _ _ _ x y ff gg ηη.
Definition disp_id2_right {a b : C} {f g : C⟦a,b⟧} {η : f ==> g}
{x : D a} {y : D b} {ff : x -->[f] y} {gg : x -->[g] y}
(ηη : ff ==>[η] gg)
: ηη •• disp_id2 _ = transportb (λ α, _ ==>[α] _) (id2_right _) ηη
:= pr1 (pr2 (pr2 D)) _ _ _ _ _ _ _ _ _ ηη.
Definition disp_vassocr {a b : C} {f g h k : C⟦a,b⟧}
{η : f ==> g} {φ : g ==> h} {ψ : h ==> k}
{x : D a} {y : D b}
{ff : x -->[f] y} {gg : x -->[g] y} {hh : x -->[h] y} {kk : x -->[k] y}
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh) (ψψ : hh ==>[ψ] kk)
: ηη •• (φφ •• ψψ) =
transportb (λ α, _ ==>[α] _) (vassocr _ _ _) ((ηη •• φφ) •• ψψ)
:= pr1 (pr2 (pr2 (pr2 D))) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ηη φφ ψψ .
Definition disp_vassocr' {a b : C} {f g h k : C⟦a,b⟧}
{η : f ==> g} {φ : g ==> h} {ψ : h ==> k}
{x : D a} {y : D b}
{ff : x -->[f] y} {gg : x -->[g] y} {hh : x -->[h] y} {kk : x -->[k] y}
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh) (ψψ : hh ==>[ψ] kk)
: transportf (λ α, _ ==>[α] _) (vassocr _ _ _) (ηη •• (φφ •• ψψ)) =
((ηη •• φφ) •• ψψ).
Proof.
use (transportf_transpose_left (P := λ x' : f ==> k, ff ==>[x'] kk)).
apply disp_vassocr.
Defined.
Definition disp_lwhisker_id2 {a b c : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{x : D a} {y : D b} {z : D c} (ff : x -->[f] y) (gg : y -->[g] z)
: ff ◃◃ disp_id2 gg =
transportb (λ α, _ ==>[α] _) (lwhisker_id2 _ _) (disp_id2 (ff ;; gg))
:= pr1 (pr2 (pr2 (pr2 (pr2 D)))) _ _ _ _ _ _ _ _ ff gg.
Definition disp_id2_rwhisker {a b c : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{x : D a} {y : D b} {z : D c}
(ff : x -->[f] y) (gg : y -->[g] z)
: disp_id2 ff ▹▹ gg =
transportb (λ α, _ ==>[α] _) (id2_rwhisker _ _) (disp_id2 (ff ;; gg))
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 D))))) _ _ _ _ _ _ _ _ ff gg.
Definition disp_lwhisker_vcomp {a b c : C} {f : C⟦a,b⟧} {g h i : C⟦b,c⟧}
{η : g ==> h} {φ : h ==> i}
{x : D a} {y : D b} {z : D c} {ff : x -->[f] y}
{gg : y -->[g] z} {hh : y -->[h] z} {ii : y -->[i] z}
(ηη : gg ==>[η] hh) (φφ : hh ==>[φ] ii)
: (ff ◃◃ ηη) •• (ff ◃◃ φφ) =
transportb (λ α, _ ==>[α] _) (lwhisker_vcomp _ _ _) (ff ◃◃ (ηη •• φφ))
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ηη φφ.
Definition disp_rwhisker_vcomp {a b c : C} {f g h : C⟦a,b⟧} {i : C⟦b,c⟧}
{η : f ==> g} {φ : g ==> h}
{x : D a} {y : D b} {z : D c}
{ff : x -->[f] y} {gg : x -->[g] y} {hh : x -->[h] y} {ii : y -->[i] z}
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh)
: (ηη ▹▹ ii) •• (φφ ▹▹ ii) =
transportb (λ α, _ ==>[α] _) (rwhisker_vcomp _ _ _) ((ηη •• φφ) ▹▹ ii)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ηη φφ.
Definition disp_vcomp_lunitor {a b : C} {f g : C⟦a,b⟧} {η : f ==> g}
{x : D a} {y : D b} {ff : x -->[f] y} {gg : x -->[g] y}
(ηη : ff ==>[η] gg)
: (id_disp _ ◃◃ ηη) •• disp_lunitor gg =
transportb (λ α, _ ==>[α] _) (vcomp_lunitor _ _ _) (disp_lunitor ff •• ηη)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))) _ _ _ _ _ _ _ _ _ ηη.
Definition disp_vcomp_runitor {a b : C} {f g : C⟦a,b⟧} {η : f ==> g}
{x : D a} {y : D b} {ff : x -->[f] y} {gg : x -->[g] y}
(ηη : ff ==>[η] gg)
: (ηη ▹▹ id_disp _) •• disp_runitor gg =
transportb (λ α, _ ==>[α] _) (vcomp_runitor _ _ _) (disp_runitor ff •• ηη)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))) _ _ _ _ _ _ _ _ _ ηη.
Definition disp_lwhisker_lwhisker {a b c d : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{h i : c --> d} {η : h ==> i}
{w : D a} {x : D b} {y : D c} {z : D d}
(ff : w -->[f] x) (gg : x -->[g] y) {hh : y -->[h] z} {ii : y -->[i] z}
(ηη : hh ==>[η] ii)
: ff ◃◃ (gg ◃◃ ηη) •• disp_lassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (lwhisker_lwhisker _ _ _)
(disp_lassociator _ _ _ •• (ff ;; gg ◃◃ ηη))
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ηη.
Definition disp_rwhisker_lwhisker {a b c d : C} {f : C⟦a,b⟧} {g h : C⟦b,c⟧}
{i : c --> d} {η : g ==> h}
{w : D a} {x : D b} {y : D c} {z : D d}
(ff : w -->[f] x) {gg : x -->[g] y} {hh : x -->[h] y} (ii : y -->[i] z)
(ηη : gg ==>[η] hh)
: (ff ◃◃ (ηη ▹▹ ii)) •• disp_lassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (rwhisker_lwhisker _ _ _)
(disp_lassociator _ _ _ •• ((ff ◃◃ ηη) ▹▹ ii))
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ηη.
Definition disp_rwhisker_rwhisker {a b c d : C} {f g : C⟦a,b⟧} {h : C⟦b,c⟧}
(i : c --> d) (η : f ==> g)
{w : D a} {x : D b} {y : D c} {z : D d}
{ff : w -->[f] x} {gg : w -->[g] x} (hh : x -->[h] y) (ii : y -->[i] z)
(ηη : ff ==>[η] gg)
: disp_lassociator _ _ _ •• ((ηη ▹▹ hh) ▹▹ ii) =
transportb (λ α, _ ==>[α] _) (rwhisker_rwhisker _ _ _)
((ηη ▹▹ hh ;; ii) •• disp_lassociator _ _ _)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ηη.
Definition disp_vcomp_whisker {a b c : C} {f g : C⟦a,b⟧} {h i : C⟦b,c⟧}
(η : f ==> g) (φ : h ==> i)
(x : D a) (y : D b) (z : D c)
(ff : x -->[f] y) (gg : x -->[g] y) (hh : y -->[h] z) (ii : y -->[i] z)
(ηη : ff ==>[η] gg) (φφ : hh ==>[φ] ii)
: (ηη ▹▹ hh) •• (gg ◃◃ φφ) =
transportb (λ α, _ ==>[α] _) (vcomp_whisker _ _) ((ff ◃◃ φφ) •• (ηη ▹▹ ii))
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ηη φφ.
Definition disp_lunitor_linvunitor {a b : C} {f : C⟦a,b⟧}
{x : D a} {y : D b} (ff : x -->[f] y)
: disp_lunitor ff •• disp_linvunitor _ =
transportb (λ α, _ ==>[α] _) (lunitor_linvunitor _) (disp_id2 (id_disp _ ;; ff))
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))))))
_ _ _ _ _ ff.
Definition disp_linvunitor_lunitor {a b : C} {f : C⟦a,b⟧}
{x : D a} {y : D b} (ff : x -->[f] y)
: disp_linvunitor ff •• disp_lunitor _ =
transportb (λ α, _ ==>[α] _) (linvunitor_lunitor _) (disp_id2 _)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))))))) _ _ _ _ _ ff.
Definition disp_runitor_rinvunitor {a b : C} {f : C⟦a,b⟧}
{x : D a} {y : D b} (ff : x -->[f] y)
: disp_runitor ff •• disp_rinvunitor _ =
transportb (λ α, _ ==>[α] _) (runitor_rinvunitor _) (disp_id2 _)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))))))))))) _ _ _ _ _ ff.
Definition disp_rinvunitor_runitor {a b : C} {f : C⟦a,b⟧}
{x : D a} {y : D b} (ff : x -->[f] y)
: disp_rinvunitor ff •• disp_runitor _ =
transportb (λ α, _ ==>[α] _) (rinvunitor_runitor _) (disp_id2 _)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))))))))) _ _ _ _ _ ff.
Definition disp_lassociator_rassociator {a b c d : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{h : c --> d} {w : D a} {x : D b} {y : D c} {z : D d}
(ff : w -->[f] x) (gg : x -->[g] y) (hh : y -->[h] z)
: disp_lassociator ff gg hh •• disp_rassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (lassociator_rassociator _ _ _ ) (disp_id2 _)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))))))))))
_ _ _ _ _ _ _ _ _ _ _ ff gg hh.
Definition disp_rassociator_lassociator
{a b c d : C} (f : C⟦a,b⟧) {g : C⟦b,c⟧} {h : c --> d}
{w : D a} {x : D b} {y : D c} {z : D d}
(ff : w -->[f] x) (gg : x -->[g] y)
(hh : y -->[h] z)
: disp_rassociator ff gg hh •• disp_lassociator _ _ _ =
transportb (λ α, _ ==>[α] _) (rassociator_lassociator _ _ _ ) (disp_id2 _)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D)))))))))))))))))))
_ _ _ _ _ _ _ _ _ _ _ ff gg hh.
Definition disp_runitor_rwhisker {a b c : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{x : D a} {y : D b} {z : D c} (ff : x -->[f] y) (gg : y -->[g] z)
: disp_lassociator _ _ _ •• (disp_runitor ff ▹▹ gg) =
transportb (λ α, _ ==>[α] _) (runitor_rwhisker _ _) (ff ◃◃ disp_lunitor gg)
:= pr1 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))))))))))))
_ _ _ _ _ _ _ _ ff gg.
Definition disp_lassociator_lassociator {a b c d e: C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{h : c --> d} {i : C⟦d,e⟧}
{v : D a} {w : D b} {x : D c} {y : D d} {z : D e}
(ff : v -->[f] w) (gg : w -->[g] x) (hh : x -->[h] y) (ii : y -->[i] z)
: (ff ◃◃ disp_lassociator gg hh ii) •• disp_lassociator _ _ _ ••
(disp_lassociator _ _ _ ▹▹ ii) =
transportb (λ α, _ ==>[α] _) (lassociator_lassociator _ _ _ _)
(disp_lassociator ff gg _ •• disp_lassociator _ _ _)
:= pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2
(pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 (pr2 D))))))))))))))))))))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ ff gg hh ii.
End disp_prebicat_law_projections.
Definition disp_hcomp
{D : disp_prebicat}
{b₁ b₂ b₃ : C}
{f₁ f₂ : b₁ --> b₂}
{g₁ g₂ : b₂ --> b₃}
{α : f₁ ==> f₂}
{β : g₁ ==> g₂}
{bb₁ : D b₁}
{bb₂ : D b₂}
{bb₃ : D b₃}
{ff₁ : bb₁ -->[ f₁ ] bb₂}
{ff₂ : bb₁ -->[ f₂ ] bb₂}
{gg₁ : bb₂ -->[ g₁ ] bb₃}
{gg₂ : bb₂ -->[ g₂ ] bb₃}
(αα : ff₁ ==>[ α ] ff₂)
(ββ : gg₁ ==>[ β ] gg₂)
: ff₁ ;; gg₁ ==>[ β ⋆⋆ α ] ff₂ ;; gg₂
:= (αα ▹▹ gg₁) •• (ff₂ ◃◃ ββ).
Lemma disp_vassocl {D : disp_prebicat} {a b : C} {f g h k : C⟦a,b⟧}
{η : f ==> g} {φ : g ==> h} {ψ : h ==> k} {x : D a} {y : D b}
{ff : x -->[f] y} {gg : x -->[g] y} {hh : x -->[h] y} {kk : x -->[k] y}
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh) (ψψ : hh ==>[ψ] kk)
: (ηη •• φφ) •• ψψ
= transportb (λ α, _ ==>[α] _) (vassocl _ _ _) (ηη •• (φφ •• ψψ)).
Proof.
apply (transportf_transpose_right (P := λ x', _ ==>[x'] _)).
apply pathsinv0.
etrans.
apply disp_vassocr.
apply maponpaths_2.
unfold vassocl.
apply pathsinv0, pathsinv0inv0.
Qed.
Section Display_Invertible_2cell.
Context {D : disp_prebicat}.
Section Def_inv_2cell.
Context {c c' : C} {f f' : C⟦c,c'⟧} {d : D c} {d' : D c'}.
Definition is_disp_invertible_2cell' {α : invertible_2cell f f'}
{ff : d -->[f] d'} {ff' : d -->[f'] d'} (x : ff ==>[α] ff')
: UU
:= ∑ (y : ff' ==>[α^-1] ff),
(x •• y =
transportb (λ α, _ ==>[α] _) (vcomp_rinv α)
(disp_id2 ff))
× (y •• x =
transportb (λ α, _ ==>[α] _) (vcomp_linv α)
(disp_id2 ff')).
Definition is_disp_invertible_2cell {α : f ==> f'} (inv_α : is_invertible_2cell α)
{ff : d -->[f] d'} {ff' : d -->[f'] d'} (x : ff ==>[α] ff')
: UU
:= ∑ (y : ff' ==>[inv_α^-1] ff),
(x •• y =
transportb (λ α, _ ==>[α] _) (vcomp_rinv inv_α)
(disp_id2 ff))
× (y •• x =
transportb (λ α, _ ==>[α] _) (vcomp_linv inv_α)
(disp_id2 ff')).
Definition disp_invertible_2cell (α : invertible_2cell f f')
(ff : d -->[f] d') (ff' : d -->[f'] d')
: UU
:= ∑ (x : ff ==>[α] ff'), is_disp_invertible_2cell α x.
Coercion disp_cell_from_invertible_2cell {α : invertible_2cell f f'}
{ff : d -->[f] d'} {ff' : d -->[f'] d'}
(e : disp_invertible_2cell α ff ff')
: ff ==>[α] ff'
:= pr1 e.
Definition disp_inv_cell {α : invertible_2cell f f'}
{ff : d -->[f] d'} {ff' : d -->[f'] d'}
(e : disp_invertible_2cell α ff ff')
: ff' ==>[α^-1] ff
:= pr1 (pr2 e).
Definition disp_vcomp_rinv {α : invertible_2cell f f'}
{ff : d -->[f] d'} {ff' : d -->[f'] d'}
(e : disp_invertible_2cell α ff ff')
: e •• disp_inv_cell e =
transportb (λ α, _ ==>[α] _) (vcomp_rinv α) (disp_id2 ff)
:= pr1 (pr2 (pr2 e)).
Definition disp_vcomp_linv {α : invertible_2cell f f'}
{ff : d -->[f] d'} {ff' : d -->[f'] d'}
(e : disp_invertible_2cell α ff ff')
: disp_inv_cell e •• e =
transportb (λ α, _ ==>[α] _) (vcomp_linv α) (disp_id2 ff')
:= pr2 (pr2 (pr2 e)).
End Def_inv_2cell.
Lemma disp_mor_transportf_postwhisker (a b : C) {x y z : C⟦a,b⟧} {f f' : x ==> y}
(ef : f = f') {g : y ==> z} {aa : D a} {bb : D b}
{xx : aa -->[x] bb} {yy} {zz} (ff : xx ==>[f] yy) (gg : yy ==>[g] zz)
: (transportf (λ x, _ ==>[x] _) ef ff) •• gg
= transportf (λ x, _ ==>[x] _) (maponpaths (λ h, h • g) ef) (ff •• gg).
Proof.
induction ef; apply idpath.
Qed.
Lemma disp_mor_transportf_prewhisker (a b : C) {x y z : C⟦a,b⟧}
{f : x ==> y} {g g' : y ==> z} (ef : g = g')
{aa : D a} {bb : D b}
{xx : aa -->[x] bb} {yy} {zz} (ff : xx ==>[f] yy) (gg : yy ==>[g] zz)
: ff •• (transportf (λ x, _ ==>[x] _) ef gg)
= transportf (λ x, _ ==>[x] _) (maponpaths (λ h, f • h) ef) (ff •• gg).
Proof.
induction ef; apply idpath.
Qed.
Lemma disp_mor_transportf_prewhisker_gen (a b : C) {x y z : C⟦a,b⟧} {f : x ==> y}
{A : UU} {t : A → y ==> z} {g g' : A} (ef : g = g')
{aa : D a} {bb : D b}
{xx : aa -->[x] bb} {yy} {zz} (ff : xx ==>[f] yy) (gg : yy ==>[t g] zz)
: ff •• (transportf (λ x, _ ==>[t x] _) ef gg)
= transportf (λ x, _ ==>[x] _) (maponpaths (λ h, f • t h) ef) (ff •• gg).
Proof.
induction ef; apply idpath.
Qed.
Lemma disp_lhs_right_invert_cell' {a b : C} {f g h : a --> b}
{x : f ==> g} {y : invertible_2cell g h} {z : f ==> h}
{p : x = z • y^-1}
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
{hh : aa -->[h] bb}
(xx : ff ==>[x] gg)
(yy : gg ==>[y] hh)
(zz : ff ==>[z] hh)
(H : is_disp_invertible_2cell y yy)
(q := lhs_right_invert_cell _ _ _ _ p)
(pp : xx = transportb (λ x, _ ==>[x] _) p (zz •• disp_inv_cell (yy,,H)))
: xx •• yy = transportb (λ x, _ ==>[x] _) q zz.
Proof.
set (yy' := (yy,,H) : disp_invertible_2cell _ _ _).
etrans. apply maponpaths_2. apply pp.
etrans. apply disp_mor_transportf_postwhisker.
etrans. apply maponpaths. apply disp_vassocl.
etrans. unfold transportb. apply (transport_f_f (λ x' : f ==> h, ff ==>[x'] hh)).
etrans. apply maponpaths. apply maponpaths.
apply disp_vcomp_linv.
etrans. apply maponpaths.
apply disp_mor_transportf_prewhisker.
etrans. unfold transportb. apply (transport_f_f (λ x' : f ==> h, ff ==>[x'] hh)).
etrans. apply maponpaths.
apply disp_id2_right.
etrans. unfold transportb. apply (transport_f_f (λ x' : f ==> h, ff ==>[x'] hh)).
unfold transportb.
apply maponpaths_2.
apply cellset_property.
Qed.
Lemma disp_lhs_right_invert_cell {a b : C} {f g h : a --> b}
{x : f ==> g} {y : g ==> h} {z : f ==> h}
(inv_y : is_invertible_2cell y)
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
{hh : aa -->[h] bb}
(xx : ff ==>[x] gg)
(yy : gg ==>[y] hh)
(zz : ff ==>[z] hh)
(H : is_disp_invertible_2cell inv_y yy)
(q : x • y = z)
(p := rhs_right_inv_cell _ _ _ inv_y q : x = z • inv_y^-1)
(pp : xx =
transportb
(λ x, _ ==>[x] _) p
(zz •• disp_inv_cell ((yy,,H):disp_invertible_2cell (y,,inv_y) gg hh)))
: xx •• yy = transportb (λ x, _ ==>[x] _) q zz.
Proof.
etrans.
use (disp_lhs_right_invert_cell' _ _ _ _ pp).
apply maponpaths_2.
apply cellset_property.
Qed.
Lemma disp_lhs_left_invert_cell {a b : C} {f g h : a --> b}
{x : f ==> g} {y : g ==> h} {z : f ==> h} {inv_x : is_invertible_2cell x}
{aa : D a} {bb : D b}
{ff : aa -->[f] bb}
{gg : aa -->[g] bb}
{hh : aa -->[h] bb}
(xx : ff ==>[x] gg)
(yy : gg ==>[y] hh)
(zz : ff ==>[z] hh)
(inv_xx : is_disp_invertible_2cell inv_x xx)
(q : x • y = z)
(p := rhs_left_inv_cell _ _ _ inv_x q : y = inv_x^-1 • z)
(pp : yy =
transportb
(λ x, _ ==>[x] _) p
(disp_inv_cell ((xx,,inv_xx):disp_invertible_2cell (x,,inv_x) ff gg) •• zz))
: xx •• yy = transportb (λ x, _ ==>[x] _) q zz.
Proof.
etrans. apply maponpaths. apply pp.
etrans.
apply disp_mor_transportf_prewhisker.
etrans. apply maponpaths.
apply disp_vassocr.
etrans. apply (transport_f_f (λ x, _ ==>[x] _)).
etrans. apply maponpaths.
apply maponpaths_2.
apply (disp_vcomp_rinv
((xx,,inv_xx):disp_invertible_2cell (x,,inv_x) _ _)).
etrans. apply maponpaths. apply disp_mor_transportf_postwhisker.
etrans. unfold transportb. apply (transport_f_f (λ x, _ ==>[x] _)).
etrans. apply maponpaths. apply disp_id2_left.
etrans. unfold transportb. apply (transport_f_f (λ x, _ ==>[x] _)).
unfold transportb.
apply maponpaths_2. apply cellset_property.
Qed.
End Display_Invertible_2cell.
Section Derived_Laws.
Context {D : disp_prebicat}.
Definition is_disp_invertible_2cell_lassociator {a b c d : C}
{f1 : C⟦a,b⟧} {f2 : C⟦b,c⟧} {f3 : C⟦c,d⟧}
{aa : D a} {bb : D b} {cc : D c} {dd : D d}
(ff1 : aa -->[f1] bb)
(ff2 : bb -->[f2] cc)
(ff3 : cc -->[f3] dd)
: is_disp_invertible_2cell (is_invertible_2cell_lassociator _ _ _)
(disp_lassociator ff1 ff2 ff3).
Proof.
∃ (disp_rassociator ff1 ff2 ff3).
split.
- apply disp_lassociator_rassociator.
- apply disp_rassociator_lassociator.
Defined.
Definition is_disp_invertible_2cell_rassociator {a b c d : C}
{f1 : C⟦a,b⟧} {f2 : C⟦b,c⟧} {f3 : C⟦c,d⟧}
{aa : D a} {bb : D b} {cc : D c} {dd : D d}
(ff1 : aa -->[f1] bb)
(ff2 : bb -->[f2] cc)
(ff3 : cc -->[f3] dd)
: is_disp_invertible_2cell (is_invertible_2cell_rassociator _ _ _)
(disp_rassociator ff1 ff2 ff3).
Proof.
∃ (disp_lassociator ff1 ff2 ff3).
split.
- apply disp_rassociator_lassociator.
- apply disp_lassociator_rassociator.
Defined.
Lemma disp_lassociator_to_rassociator_post' {a b c d : C}
{f : C⟦a,b⟧} {g : C⟦b,c⟧} {h : C⟦c,d⟧} {k : C⟦a,d⟧}
{x : k ==> (f · g) · h}
{y : k ==> f · (g · h)}
(p : x = y • lassociator f g h)
{aa : D a} {bb : D b} {cc : D c} {dd : D d}
{ff : aa -->[f] bb}
{gg : bb -->[g] cc}
{hh : cc -->[h] dd}
{kk : aa -->[k] dd}
(xx : kk ==>[x] (ff ;; gg) ;; hh)
(yy : kk ==>[y] ff ;; (gg ;; hh))
(q := lassociator_to_rassociator_post x y p)
(pp : xx = transportb (λ x, _ ==>[x] _) p (yy •• disp_lassociator ff gg hh))
: xx •• disp_rassociator ff gg hh = transportb (λ x, _ ==>[x] _) q (yy).
Proof.
etrans.
use disp_lhs_right_invert_cell.
- exact y.
- apply is_invertible_2cell_rassociator.
- exact yy.
- apply is_disp_invertible_2cell_rassociator.
- apply lassociator_to_rassociator_post. exact p.
- cbn. etrans. apply pp.
apply maponpaths_2.
apply cellset_property.
- apply maponpaths_2. apply cellset_property.
Qed.
Lemma disp_lassociator_to_rassociator_post {a b c d : C}
{f : C⟦a,b⟧} {g : C⟦b,c⟧} {h : C⟦c,d⟧} {k : C⟦a,d⟧}
{x : k ==> (f · g) · h}
{y : k ==> f · (g · h)}
{aa : D a} {bb : D b} {cc : D c} {dd : D d}
{ff : aa -->[f] bb}
{gg : bb -->[g] cc}
{hh : cc -->[h] dd}
{kk : aa -->[k] dd}
(xx : kk ==>[x] (ff ;; gg) ;; hh)
(yy : kk ==>[y] ff ;; (gg ;; hh))
(q : x • rassociator f g h = y)
(p := rassociator_to_lassociator_post _ _ q : x = y • lassociator f g h)
(pp : xx = transportb (λ x, _ ==>[x] _) p (yy •• disp_lassociator ff gg hh))
: xx •• disp_rassociator ff gg hh = transportb (λ x, _ ==>[x] _) q (yy).
Proof.
etrans.
use disp_lassociator_to_rassociator_post'.
- exact y.
- exact p.
- exact yy.
- exact pp.
- apply maponpaths_2. apply cellset_property.
Qed.
Lemma disp_lassociator_to_rassociator_pre {a b c d : C}
{f : C⟦a,b⟧} {g : C⟦b,c⟧} {h : C⟦c, d⟧} {k : C⟦a,d⟧}
{x : f · (g · h) ==> k}
{y : (f · g) · h ==> k}
{aa : D a} {bb : D b} {cc : D c} {dd : D d}
{ff : aa -->[f] bb}
{gg : bb -->[g] cc}
{hh : cc -->[h] dd}
{kk : aa -->[k] dd}
(xx : ff ;; (gg ;; hh) ==>[x] kk)
(yy : (ff ;; gg) ;; hh ==>[y] kk)
(q : rassociator f g h • x = y)
(p := rassociator_to_lassociator_pre _ _ q : x = lassociator f g h • y)
(pp : xx = transportb (λ x, _ ==>[x] _) p (disp_lassociator ff gg hh •• yy))
: disp_rassociator ff gg hh •• xx = transportb (λ x, _ ==>[x] _) q (yy).
Proof.
etrans.
use disp_lhs_left_invert_cell.
- exact y.
- apply is_invertible_2cell_rassociator.
- exact yy.
- apply is_disp_invertible_2cell_rassociator.
- apply lassociator_to_rassociator_pre. exact p.
- cbn. etrans. apply pp.
apply maponpaths_2.
apply cellset_property.
- apply maponpaths_2.
apply cellset_property.
Qed.
Lemma disp_lunitor_lwhisker {a b c : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{aa : D a} {bb : D b} {cc : D c}
(ff : aa -->[f] bb)
(gg : bb -->[g] cc)
: (disp_rassociator _ _ _ •• (ff ◃◃ disp_lunitor gg)) =
transportb (λ α, _ ==>[α] _) (lunitor_lwhisker _ _)
(disp_runitor ff ▹▹ gg).
Proof.
etrans.
use disp_lassociator_to_rassociator_pre.
- exact (runitor f ▹ g).
- exact (disp_runitor ff ▹▹ gg).
- apply lunitor_lwhisker.
- apply pathsinv0.
etrans.
apply maponpaths. apply disp_runitor_rwhisker.
etrans.
apply (transport_f_f (λ α, _ ==>[α] _)).
apply (transportf_set (λ α, _ ==>[α] _)).
apply cellset_property.
- apply maponpaths_2, cellset_property.
Qed.
Lemma disp_rwhisker_transport_left {a b c : C}
{f1 f2 : C⟦a,b⟧} {g : C⟦b,c⟧}
{x x' : f1 ==> f2} (p : x = x')
{aa : D a} {bb : D b} {cc : D c}
{ff1 : aa -->[f1] bb}
{ff2 : aa -->[f2] bb}
(xx : ff1 ==>[x] ff2)
(gg : bb -->[g] cc)
: (transportf (λ x, _ ==>[x] _) p xx) ▹▹ gg =
transportf (λ x, _ ==>[x ▹ g] _) p (xx ▹▹ gg).
Proof.
induction p. apply idpath.
Defined.
Lemma disp_rwhisker_transport_left_new {a b c : C}
{f1 f2 : C⟦a,b⟧} {g : C⟦b,c⟧}
{x x' : f1 ==> f2} (p : x = x')
{aa : D a} {bb : D b} {cc : D c}
{ff1 : aa -->[f1] bb}
{ff2 : aa -->[f2] bb}
(xx : ff1 ==>[x] ff2)
(gg : bb -->[g] cc)
: (transportf (λ x, _ ==>[x] _) p xx) ▹▹ gg =
transportf (λ x, _ ==>[x] _) (maponpaths (λ x, x ▹ g) p) (xx ▹▹ gg).
Proof.
induction p. apply idpath.
Defined.
Lemma disp_rwhisker_transport_right {a b c : C}
{f : C⟦a,b⟧} {g1 g2 : C⟦b,c⟧}
{x x' : g1 ==> g2} (p : x = x')
{aa : D a} {bb : D b} {cc : D c}
{ff : aa -->[f] bb}
(gg1 : bb -->[g1] cc)
(gg2 : bb -->[g2] cc)
(xx : gg1 ==>[x] gg2)
: ff ◃◃ (transportf (λ x, _ ==>[x] _) p xx) =
transportf (λ x, _ ==>[x] _) (maponpaths (λ x, f ◃ x) p) (ff ◃◃ xx).
Proof.
induction p. apply idpath.
Defined.
Definition disp_lwhisker_vcomp_alt
{a b c : C} {f : C⟦a,b⟧} {g h i : C⟦b,c⟧}
{η : g ==> h} {φ : h ==> i}
{x : D a} {y : D b} {z : D c} {ff : x -->[f] y}
{gg : y -->[g] z} {hh : y -->[h] z} {ii : y -->[i] z}
(ηη : gg ==>[η] hh) (φφ : hh ==>[φ] ii)
: ff ◃◃ (ηη •• φφ)
=
transportf (λ α, _ ==>[α] _) (lwhisker_vcomp _ _ _) ((ff ◃◃ ηη) •• (ff ◃◃ φφ)).
Proof.
refine (!_).
apply (@transportf_transpose_left _ (λ α, _ ==>[α] _)).
apply disp_lwhisker_vcomp.
Qed.
Definition disp_rwhisker_vcomp_alt
{a b c : C} {f g h : C⟦a,b⟧} {i : C⟦b,c⟧}
{η : f ==> g} {φ : g ==> h}
{x : D a} {y : D b} {z : D c}
{ff : x -->[f] y} {gg : x -->[g] y} {hh : x -->[h] y} {ii : y -->[i] z}
(ηη : ff ==>[η] gg) (φφ : gg ==>[φ] hh)
: (ηη •• φφ) ▹▹ ii
=
transportf (λ α, _ ==>[α] _) (rwhisker_vcomp _ _ _) ((ηη ▹▹ ii) •• (φφ ▹▹ ii)).
Proof.
refine (!_).
apply (@transportf_transpose_left _ (λ α, _ ==>[α] _)).
apply disp_rwhisker_vcomp.
Qed.
Definition disp_vcomp_whisker_alt
{a b c : C} {f g : C⟦a,b⟧} {h i : C⟦b,c⟧}
(η : f ==> g) (φ : h ==> i)
(x : D a) (y : D b) (z : D c)
(ff : x -->[f] y) (gg : x -->[g] y) (hh : y -->[h] z) (ii : y -->[i] z)
(ηη : ff ==>[η] gg) (φφ : hh ==>[φ] ii)
: (ff ◃◃ φφ) •• (ηη ▹▹ ii)
=
transportf (λ α, _ ==>[α] _) (vcomp_whisker _ _) ((ηη ▹▹ hh) •• (gg ◃◃ φφ)).
Proof.
refine (!_).
apply (@transportf_transpose_left _ (λ α, _ ==>[α] _)).
apply disp_vcomp_whisker.
Qed.
Definition disp_id2_rwhisker_alt
{a b c : C} {f : C⟦a,b⟧} {g : C⟦b,c⟧}
{x : D a} {y : D b} {z : D c}
(ff : x -->[f] y) (gg : y -->[g] z)
: transportf (λ α, _ ==>[α] _) (id2_rwhisker _ _) (disp_id2 ff ▹▹ gg)
=
disp_id2 (ff ;; gg).
Proof.
apply (@transportf_transpose_left _ (λ α, _ ==>[α] _)).
apply disp_id2_rwhisker.
Qed.
Definition disp_vcomp_runitor_alt
{a b : C} {f g : C⟦a,b⟧} {η : f ==> g}
{x : D a} {y : D b} {ff : x -->[f] y} {gg : x -->[g] y}
(ηη : ff ==>[η] gg)
: disp_runitor ff •• ηη
=
transportf
(λ α, _ ==>[α] _)
(vcomp_runitor _ _ _)
((ηη ▹▹ id_disp _) •• disp_runitor gg).
Proof.
refine (!_).
etrans.
{
apply maponpaths.
apply disp_vcomp_runitor.
}
apply (transportfbinv (λ z, _ ==>[ z ] _) _ _).
Qed.
Definition disp_vcomp_rcancel
{b₁ b₂ : C}
{f g h : b₁ --> b₂}
{α : f ==> g}
{β : g ==> h}
(Hβ : is_invertible_2cell β)
{bb₁ : D b₁}
{bb₂ : D b₂}
{ff : bb₁ -->[ f ] bb₂}
{gg : bb₁ -->[ g ] bb₂}
{hh : bb₁ -->[ h ] bb₂}
{αα₁ : ff ==>[ α ] gg}
{αα₂ : ff ==>[ α ] gg}
{ββ : gg ==>[ β ] hh}
(Hββ : is_disp_invertible_2cell Hβ ββ)
(p : αα₁ •• ββ = αα₂ •• ββ)
: αα₁ = αα₂.
Proof.
assert (q := maponpaths (λ z, z •• pr1 Hββ) p).
cbn in q.
rewrite !disp_vassocl in q.
rewrite !(pr12 Hββ) in q.
unfold transportb in q.
rewrite !disp_mor_transportf_prewhisker in q.
rewrite !transport_f_f in q.
rewrite !disp_id2_right in q.
unfold transportb in q.
rewrite !transport_f_f in q.
pose (q' := @transportb_transpose_right
_
(λ z, _ ==>[ z ] _)
_ _ _ _ _
q).
rewrite transportbfinv in q'.
exact q'.
Qed.
End Derived_Laws.
Section total_prebicat.
Variable D : disp_prebicat.
Definition total_prebicat_1_data : precategory_data
:= total_category_ob_mor D ,, total_category_id_comp D.
Definition total_prebicat_cell_struct : prebicat_2cell_struct (total_category_ob_mor D)
:= λ a b f g, ∑ η : pr1 f ==> pr1 g, pr2 f ==>[η] pr2 g.
Definition total_prebicat_1_id_comp_cells : prebicat_1_id_comp_cells
:= (total_prebicat_1_data,, total_prebicat_cell_struct).
Definition total_prebicat_2_id_comp_struct
: prebicat_2_id_comp_struct total_prebicat_1_id_comp_cells.
Proof.
repeat split; cbn; unfold total_prebicat_cell_struct.
- intros. ∃ (id2 _). exact (disp_id2 _).
- intros. ∃ (lunitor _). exact (disp_lunitor _).
- intros. ∃ (runitor _). exact (disp_runitor _).
- intros. ∃ (linvunitor _). exact (disp_linvunitor _).
- intros. ∃ (rinvunitor _). exact (disp_rinvunitor _).
- intros. ∃ (rassociator _ _ _).
exact (disp_rassociator _ _ _).
- intros. ∃ (lassociator _ _ _).
exact (disp_lassociator _ _ _).
- intros a b f g h r s. ∃ (pr1 r • pr1 s).
exact (pr2 r •• pr2 s).
- intros a b d f g1 g2 r. ∃ (pr1 f ◃ pr1 r).
exact (pr2 f ◃◃ pr2 r).
- intros a b c f1 f2 g r. ∃ (pr1 r ▹ pr1 g).
exact (pr2 r ▹▹ pr2 g).
Defined.
Definition total_prebicat_data : prebicat_data
:= _ ,, total_prebicat_2_id_comp_struct.
Lemma total_prebicat_laws : prebicat_laws total_prebicat_data.
Proof.
repeat split; intros.
- use total2_paths_b.
+ apply id2_left.
+ apply disp_id2_left.
- use total2_paths_b.
+ apply id2_right.
+ apply disp_id2_right.
- use total2_paths_b.
+ apply vassocr.
+ apply disp_vassocr.
- use total2_paths_b.
+ apply lwhisker_id2.
+ apply disp_lwhisker_id2.
- use total2_paths_b.
+ apply id2_rwhisker.
+ apply disp_id2_rwhisker.
- use total2_paths_b.
+ apply lwhisker_vcomp.
+ apply disp_lwhisker_vcomp.
- use total2_paths_b.
+ apply rwhisker_vcomp.
+ apply disp_rwhisker_vcomp.
- use total2_paths_b.
+ apply vcomp_lunitor.
+ apply disp_vcomp_lunitor.
- use total2_paths_b.
+ apply vcomp_runitor.
+ apply disp_vcomp_runitor.
- use total2_paths_b.
+ apply lwhisker_lwhisker.
+ apply disp_lwhisker_lwhisker.
- use total2_paths_b.
+ apply rwhisker_lwhisker.
+ apply disp_rwhisker_lwhisker.
- use total2_paths_b.
+ apply rwhisker_rwhisker.
+ apply disp_rwhisker_rwhisker.
- use total2_paths_b.
+ apply vcomp_whisker.
+ apply disp_vcomp_whisker.
- use total2_paths_b.
+ apply lunitor_linvunitor.
+ apply disp_lunitor_linvunitor.
- use total2_paths_b.
+ apply linvunitor_lunitor.
+ apply disp_linvunitor_lunitor.
- use total2_paths_b.
+ apply runitor_rinvunitor.
+ apply disp_runitor_rinvunitor.
- use total2_paths_b.
+ apply rinvunitor_runitor.
+ apply disp_rinvunitor_runitor.
- use total2_paths_b.
+ apply lassociator_rassociator.
+ apply disp_lassociator_rassociator.
- use total2_paths_b.
+ apply rassociator_lassociator.
+ apply disp_rassociator_lassociator.
- use total2_paths_b.
+ apply runitor_rwhisker.
+ apply disp_runitor_rwhisker.
- use total2_paths_b.
+ apply lassociator_lassociator.
+ apply disp_lassociator_lassociator.
Defined.
Definition total_prebicat : prebicat := _ ,, total_prebicat_laws.
End total_prebicat.
Definition has_disp_cellset (D : disp_prebicat) : UU
:= ∏ (a b : C) (f g : C⟦a,b⟧) (x : f ==> g)
(aa : D a) (bb : D b)
(ff : aa -->[f] bb)
(gg : aa -->[g] bb),
isaset (ff ==>[x] gg).
Definition disp_bicat : UU
:= ∑ D : disp_prebicat, has_disp_cellset D.
Coercion disp_prebicat_of_disp_bicat (D : disp_bicat)
: disp_prebicat
:= pr1 D.
Definition disp_cellset_property (D : disp_bicat)
: has_disp_cellset D
:= pr2 D.
Lemma isaset_cells_total_prebicat (D : disp_bicat)
: isaset_cells (total_prebicat D).
Proof.
red.
cbn.
intros.
unfold total_prebicat_cell_struct.
apply isaset_total2.
apply cellset_property.
intros.
apply disp_cellset_property.
Qed.
Definition total_bicat (D : disp_bicat) : bicat
:= total_prebicat D,, isaset_cells_total_prebicat D.
End disp_prebicat.
Arguments disp_prebicat_1_id_comp_cells _ : clear implicits.
Arguments disp_prebicat_data _ : clear implicits.
Arguments disp_prebicat _ : clear implicits.
Arguments disp_bicat _ : clear implicits.
Theorem disp_lunitor_runitor_identity {C : bicat} {D : disp_bicat C} (a : C) (aa : D a)
: disp_lunitor (id_disp aa) =
cell_transportb (lunitor_runitor_identity a) (disp_runitor (id_disp aa)).
Proof.
set (TT := fiber_paths (lunitor_runitor_identity (C := total_bicat D) (a ,, aa))).
cbn in TT.
apply cell_transportf_to_b.
etrans.
2: now apply TT.
unfold cell_transportf.
apply maponpaths_2.
apply cellset_property.
Qed.
Theorem disp_runitor_lunitor_identity {C : bicat} {D : disp_bicat C} {a : C} (aa : D a)
: disp_runitor (id_disp aa) =
transportb (λ x, disp_2cells x _ _) (runitor_lunitor_identity a)
(disp_lunitor (id_disp aa)).
Proof.
apply (transportf_transpose_right (P := (λ x, disp_2cells x _ _))).
apply pathsinv0.
etrans.
1: now apply disp_lunitor_runitor_identity.
unfold cell_transportb.
apply maponpaths_2, cellset_property.
Qed.
Lemma adjequiv_base_adjequiv_tot
{B : bicat}
(HB : is_univalent_2_0 B)
{D : disp_bicat B}
{a b : B}
: adjoint_equivalence a b → ∏ (aa : D a), ∑ (bb : D b), @adjoint_equivalence (total_bicat D) (a ,, aa) (b ,, bb).
Proof.
use (J_2_0 HB (λ _ _ _, _)).
intros c aa.
exact (aa ,, internal_adjoint_equivalence_identity _).
Defined.
Definition disp_2cells_isaprop
{B : bicat} (D : disp_prebicat_1_id_comp_cells B)
:= ∏ (a b : B) (f g : a --> b) (x : f ==> g)
(aa : D a) (bb : D b) (ff : aa -->[f] bb) (gg : aa -->[g] bb),
isaprop (disp_2cells x ff gg).
Definition disp_locally_groupoid
{B : bicat} (D : disp_bicat B)
:= ∏ (a b : B) (f g : a --> b) (x : invertible_2cell f g)
(aa : D a) (bb : D b) (ff : aa -->[f] bb) (gg : aa -->[g] bb)
(xx : disp_2cells x ff gg), is_disp_invertible_2cell x xx.
Definition disp_locally_sym
{B : bicat} (D : disp_bicat B)
:= ∏ (a b : B) (f g : a --> b) (x : invertible_2cell f g)
(aa : D a) (bb : D b) (ff : aa -->[f] bb) (gg : aa -->[g] bb)
(xx : disp_2cells x ff gg), disp_2cells (x^-1) gg ff.
Definition make_disp_locally_groupoid
{B : bicat} (D : disp_bicat B)
(H : disp_locally_sym D)
(HD : disp_2cells_isaprop D)
: disp_locally_groupoid D.
Proof.
intros a b f g x aa bb ff gg xx.
use tpair.
- apply H.
exact xx.
- split; apply HD.
Defined.
Definition disp_locally_groupoid_over_id
{B : bicat} (D : disp_bicat B)
: UU
:= ∏ (a b : B)
(f : B ⟦ a, b ⟧)
(aa : D a)
(bb : D b)
(ff gg : aa -->[ f] bb)
(xx : disp_2cells (id2_invertible_2cell f) ff gg),
is_disp_invertible_2cell (is_invertible_2cell_id₂ f) xx.
Definition make_disp_locally_groupoid_univalent_2_1
{B : bicat} (D : disp_bicat B)
(HD : disp_locally_groupoid_over_id D)
(HB : is_univalent_2_1 B)
: disp_locally_groupoid D.
Proof.
use (J_2_1 HB).
exact HD.
Defined.
Section HomDisplayedCategory.
Context {B : bicat}
{D : disp_bicat B}.
Notation "f' ==>[ x ] g'" := (disp_2cells x f' g') (at level 60).
Notation "rr •• ss" := (disp_vcomp2 rr ss) (at level 60).
Definition disp_hom_ob_mor
{x y : B}
(xx : D x)
(yy : D y)
: disp_cat_ob_mor (hom x y).
Proof.
simple refine (_ ,, _).
- exact (λ f, xx -->[ f ] yy).
- exact (λ f g ff gg α, ff ==>[ α ] gg).
Defined.
Definition disp_hom_id_comp
{x y : B}
(xx : D x)
(yy : D y)
: disp_cat_id_comp _ (disp_hom_ob_mor xx yy).
Proof.
simple refine (_ ,, _).
- exact (λ f ff, disp_id2 ff).
- exact (λ f g h α β ff gg hh αα ββ, αα •• ββ).
Defined.
Definition disp_hom_data
{x y : B}
(xx : D x)
(yy : D y)
: disp_cat_data (hom x y).
Proof.
simple refine (_ ,, _).
- exact (disp_hom_ob_mor xx yy).
- exact (disp_hom_id_comp xx yy).
Defined.
Definition disp_hom_laws
{x y : B}
(xx : D x)
(yy : D y)
: disp_cat_axioms _ (disp_hom_data xx yy).
Proof.
repeat split ; intro ; intros ; cbn.
- rewrite disp_id2_left.
apply maponpaths_2.
apply cellset_property.
- rewrite disp_id2_right.
apply maponpaths_2.
apply cellset_property.
- rewrite disp_vassocr.
apply maponpaths_2.
apply cellset_property.
- apply D.
Qed.
Definition disp_hom
{x y : B}
(xx : D x)
(yy : D y)
: disp_cat (hom x y).
Proof.
simple refine (_ ,, _).
- exact (disp_hom_data xx yy).
- exact (disp_hom_laws xx yy).
Defined.
End HomDisplayedCategory.
Module Notations.
Export Bicat.Notations.
Notation "f' ==>[ x ] g'" := (disp_2cells x f' g') (at level 60).
Notation "f' <==[ x ] g'" := (disp_2cells x g' f') (at level 60, only parsing).
Notation "rr •• ss" := (disp_vcomp2 rr ss) (at level 60).
Notation "ff ◃◃ rr" := (disp_lwhisker ff rr) (at level 60).
Notation "rr ▹▹ gg" := (disp_rwhisker gg rr) (at level 60).
End Notations.