Library UniMath.SubstitutionSystems.SubstitutionSystems_Summary
Interface file to the package SubstitutionSystems
The purpose of this file is to provide a stable interface to
the formalization of heterogeneous substitution systems as
defined by Matthes and Uustalu
PLEASE DO NOT RENAME THIS FILE - its name is referenced in
an article about this formalization
TODO: provide reference to the article/preprint
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.yoneda.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.BinSumOfSignatures.
Require Import UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.CategoryTheory.RightKanExtension.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.CategoryTheory.EndofunctorsMonoidal.
Require Import UniMath.SubstitutionSystems.LiftingInitial.
Require Import UniMath.SubstitutionSystems.MonadsFromSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.LamSignature.
Require Import UniMath.SubstitutionSystems.Lam.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Notation "⦃ f ⦄" := (fbracket _ f)(at level 0).
Notation "G • F" := (functor_composite F G).
Definition GenMendlerIteration :
∏ (C : precategory) (hsC : has_homsets C) (F : functor C C)
(μF_Initial : Initial (FunctorAlg F hsC)) (C' : precategory)
(hsC' : has_homsets C') (X : C') (L : functor C C'),
Adjunctions.is_left_adjoint L
→ ∏ ψ : ψ_source C C' hsC' X L ⟹ ψ_target C F C' hsC' X L,
∃! h : C' ⟦ L ` (InitialObject μF_Initial), X ⟧,
# L (alg_map F (InitialObject μF_Initial)) · h =
ψ ` (InitialObject μF_Initial) h.
Proof.
simpl.
apply GenMendlerIteration.
Defined.
Arguments It {_ _ _} _ {_} _ _ _ _ _ .
Lemma 9
Theorem fusion_law
: ∏ (C : precategory) (hsC : has_homsets C)
(F : functor C C)
(μF_Initial : Initial (precategory_FunctorAlg F hsC))
(C' : precategory) (hsC' : has_homsets C')
(X X' : C') (L : functor C C')
(is_left_adj_L : Adjunctions.is_left_adjoint L)
(ψ : ψ_source C C' hsC' X L ⟹ ψ_target C F C' hsC' X L)
(L' : functor C C')
(is_left_adj_L' : Adjunctions.is_left_adjoint L')
(ψ' : ψ_source C C' hsC' X' L' ⟹ ψ_target C F C' hsC' X' L')
(Φ : yoneda_objects C' hsC' X • functor_opp L
⟹
yoneda_objects C' hsC' X' • functor_opp L'),
let T:= (` (InitialObject μF_Initial)) in
ψ T · Φ (F T) = Φ T · ψ' T
→
Φ T (It μF_Initial hsC' X L is_left_adj_L ψ) =
It μF_Initial hsC' X' L' is_left_adj_L' ψ'.
Proof.
apply fusion_law.
Qed.
Lemma fbracket_natural
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C)
(H : Signature C hs C hs) (T : hss CP H) (Z Z' : precategory_Ptd C hs)
(f : precategory_Ptd C hs ⟦ Z, Z' ⟧)
(g : precategory_Ptd C hs ⟦ Z', ptd_from_alg T ⟧),
(`T ∘ # U f : [C,C,hs] ⟦ `T • U Z , `T • U Z' ⟧) · ⦃ g ⦄ = ⦃ f · g ⦄ .
Proof.
apply fbracket_natural.
Qed.
Lemma compute_fbracket
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C)
(H : Signature C hs C hs) (T : hss CP H) (Z : precategory_Ptd C hs)
(f : precategory_Ptd C hs ⟦ Z, ptd_from_alg T ⟧),
⦃ f ⦄ = (`T ∘ # U f : [C,C,hs] ⟦ `T • U Z , `T • U _ ⟧) · ⦃ identity (ptd_from_alg T) ⦄.
Proof.
apply compute_fbracket.
Qed.
Definition Monad_from_hss
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C)
(H : Signature C hs C hs), hss CP H → Monad C.
Proof.
apply Monad_from_hss.
Defined.
Theorem 25
Definition hss_to_monad_functor
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C)
(H : Signature C hs C hs),
functor (hss_precategory CP H) (precategory_Monad C hs).
Proof.
apply hss_to_monad_functor.
Defined.
Lemma 26
Lemma faithful_hss_to_monad
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C)
(H : Signature C hs C hs), faithful (hss_to_monad_functor C hs CP H).
Proof.
apply faithful_hss_to_monad.
Defined.
Lifting initiality
- the operation itself
- its compatibility with variables
- its compatibility with signature-dependent constructions
Definition bracket_for_initial_algebra
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C),
(∏ Z : precategory_Ptd C hs, GlobalRightKanExtensionExists C C (U Z) C hs hs)
→ ∏ (H : Signature C hs C hs)
(IA : Initial (FunctorAlg (Id_H C hs CP H) (functor_category_has_homsets C C hs)))
(Z : precategory_Ptd C hs),
precategory_Ptd C hs ⟦ Z, ptd_from_alg (InitAlg C hs CP H IA) ⟧
→
[C, C, hs] ⟦ ℓ (U Z) ` (InitialObject IA), ` (InitAlg C hs CP H IA) ⟧.
Proof.
apply bracket_Thm15.
Defined.
Lemma bracket_Thm15_ok_η
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C)
(KanExt : ∏ Z : precategory_Ptd C hs,
GlobalRightKanExtensionExists C C (U Z) C hs hs)
(H : Signature C hs C hs)
(IA : Initial (FunctorAlg (Id_H C hs CP H) (functor_category_has_homsets C C hs)))
(Z : precategory_Ptd C hs)
(f : precategory_Ptd C hs ⟦ Z, ptd_from_alg (InitAlg C hs CP H IA)⟧),
# U f =
# (pr1 (ℓ (U Z))) (η (InitAlg C hs CP H IA)) ·
bracket_Thm15 C hs CP KanExt H IA Z f.
Proof.
apply bracket_Thm15_ok_part1.
Qed.
Lemma bracket_Thm15_ok_τ
: ∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C)
(KanExt : ∏ Z : precategory_Ptd C hs, GlobalRightKanExtensionExists C C (U Z) C hs hs)
(H : Signature C hs C hs)
(IA : Initial (FunctorAlg (Id_H C hs CP H) (functor_category_has_homsets C C hs)))
(Z : precategory_Ptd C hs)
(f : precategory_Ptd C hs ⟦ Z, ptd_from_alg (InitAlg C hs CP H IA) ⟧),
(theta H) (` (InitAlg C hs CP H IA) ⊗ Z) ·
# H (bracket_Thm15 C hs CP KanExt H IA Z f) ·
τ (InitAlg C hs CP H IA)
=
# (pr1 (ℓ (U Z))) (τ (InitAlg C hs CP H IA)) ·
bracket_Thm15 C hs CP KanExt H IA Z f.
Proof.
apply bracket_Thm15_ok_part2.
Qed.
Theorem 29
Definition Initial_HSS :
∏ (C : precategory) (hs : has_homsets C) (CP : BinCoproducts C),
(∏ Z : precategory_Ptd C hs,
GlobalRightKanExtensionExists C C (U Z) C hs hs)
→ ∏ H : Signature C hs C hs,
Initial (FunctorAlg (Id_H C hs CP H) (functor_category_has_homsets C C hs))
→ Initial (hss_precategory CP H).
Proof.
apply InitialHSS.
Defined.
Definition Sum_of_Signatures
: ∏ (C : precategory) (hsC : has_homsets C)(D : precategory) (hs : has_homsets D),
BinCoproducts D → Signature C hsC D hs → Signature C hsC D hs → Signature C hsC D hs.
Proof.
apply BinSum_of_Signatures.
Defined.
Definition App_Sig
: ∏ (C : precategory) (hs : has_homsets C), BinProducts C → Signature C hs C hs.
Proof.
apply App_Sig.
Defined.
Definition 32
Definition Lam_Sig
: ∏ (C : precategory) (hs : has_homsets C),
Terminal C → BinCoproducts C → BinProducts C → Signature C hs C hs.
Proof.
apply Lam_Sig.
Defined.
Definition 33
Definition Flat_Sig
: ∏ (C : precategory) (hs : has_homsets C), Signature C hs C hs.
Proof.
apply Flat_Sig.
Defined.
Definition Lam_Flatten
: ∏ (C : precategory) (hs : has_homsets C)
(terminal : Terminal C)
(CC : BinCoproducts C) (CP : BinProducts C),
(∏ Z : precategory_Ptd C hs,
GlobalRightKanExtensionExists C C (U Z) C hs hs)
→ ∏ Lam_Initial : Initial (FunctorAlg (Id_H C hs CC (Lam_Sig C hs terminal CC CP))
(functor_category_has_homsets C C hs)),
[C, C, hs] ⟦ (Flat_H C hs) ` (InitialObject Lam_Initial), ` (InitialObject Lam_Initial) ⟧.
Proof.
apply Lam_Flatten.
Defined.
Lemma 37, construction of the bracket
Definition fbracket_for_LamE_algebra_on_Lam
: ∏ (C : precategory) (hs : has_homsets C) (terminal : Terminal C)
(CC : BinCoproducts C) (CP : BinProducts C)
(KanExt : ∏ Z : precategory_Ptd C hs, GlobalRightKanExtensionExists C C (U Z) C hs hs)
(Lam_Initial : Initial (FunctorAlg (Id_H C hs CC (Lam_Sig C hs terminal CC CP))
(functor_category_has_homsets C C hs)))
(Z : precategory_Ptd C hs),
precategory_Ptd C hs ⟦ Z ,
(ptd_from_alg_functor CC (LamE_Sig C hs terminal CC CP))
(LamE_algebra_on_Lam C hs terminal CC CP KanExt Lam_Initial) ⟧
→ [C, C, hs]
⟦ functor_composite (U Z)
` (LamE_algebra_on_Lam C hs terminal CC CP KanExt Lam_Initial),
` (LamE_algebra_on_Lam C hs terminal CC CP KanExt Lam_Initial) ⟧.
Proof.
apply fbracket_for_LamE_algebra_on_Lam.
Defined.
Morphism from initial hss to construed hss, consequence of Lemma 37
Definition EVAL
: ∏ (C : precategory) (hs : has_homsets C) (terminal : Terminal C)
(CC : BinCoproducts C) (CP : BinProducts C)
(KanExt : ∏ Z : precategory_Ptd C hs, GlobalRightKanExtensionExists C C (U Z) C hs hs)
(Lam_Initial : Initial
(FunctorAlg
(Id_H C hs CC
(LamSignature.Lam_Sig C hs terminal CC CP))
(functor_category_has_homsets C C hs)))
(LamE_Initial : Initial
(FunctorAlg
(Id_H C hs CC (LamE_Sig C hs terminal CC CP))
(functor_category_has_homsets C C hs))),
hss_precategory CC (LamE_Sig C hs terminal CC CP)
⟦ InitialObject
(LamEHSS_Initial C hs terminal CC CP KanExt LamE_Initial),
LamE_model_on_Lam C hs terminal CC CP KanExt Lam_Initial ⟧.
Proof.
apply FLATTEN.
Defined.