Library UniMath.SubstitutionSystems.Notation
**********************************************************
Benedikt Ahrens, Ralph Matthes
SubstitutionSystems
2015
**********************************************************
Contents :
- Definition of heterogeneous substitution systems
- Various lemmas about the substitution ("bracket") operation
- Definition of precategory of substitution systems
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Arguments functor_composite {_ _ _} _ _ .
Arguments nat_trans_comp {_ _ _ _ _} _ _ .
Delimit Scope subsys with subsys.
Notation "G • F" := (functor_composite F G : [ _ , _ , _ ]) (at level 35) : subsys.
Notation "α ∙∙ β" := (horcomp β α) (at level 20) : subsys.
Notation "α 'ø' Z" := (pre_whisker Z α) (at level 25) : subsys.
Notation "Z ∘ α" := (post_whisker α Z) : subsys.
Notation "` T" := (alg_carrier _ T) (at level 3, format "` T") : subsys.
Notation "α •• Z" := (# (pre_composition_functor_data _ _ _ _ _ Z) α) (at level 25) : subsys.
Notation "A ⊗ B" := (precatbinprodpair A B) : subsys.
Notation "A 'XX' B" := (precategory_binproduct A B) (at level 2) : subsys.
Notation "'ℓ'" := (pre_composition_functor _ _ _ _ _ ) : subsys.
Notation "Z 'p•' Z'" := (ptd_composite _ _ Z Z') (at level 25) : subsys.
Notation "'U'" := (functor_ptd_forget _ _ ) : subsys.