Library UniMath.CategoryTheory.Adjunctions
**********************************************************
Benedikt Ahrens, Chris Kapulkin, Mike Shulman
january 2013
Extended by: Anders Mörtberg, 2016
**********************************************************
Contents :
- Definition of adjunction
- Construction of an adjunction from some partial data (Theorem 2 (iv) of Chapter IV.1 of MacLane)
- Post-composition with a left adjoint is a left adjoint (is_left_adjoint_post_composition_functor)
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.whiskering.
Local Open Scope cat.
Section adjunctions.
Definition adjunction_data (A B : precategory) : UU
:= ∑ (F : functor A B) (G : functor B A),
nat_trans (functor_identity A) (F ∙ G) ×
nat_trans (G ∙ F) (functor_identity B).
Definition left_functor {A B} (X : adjunction_data A B) : functor A B
:= pr1 X.
Definition right_functor {A B} (X : adjunction_data A B) : functor B A
:= pr1 (pr2 X).
Definition adjunit {A B} (X : adjunction_data A B)
: nat_trans (functor_identity _) (_ ∙ _)
:= pr1 (pr2 (pr2 X)).
Definition adjcounit {A B} (X : adjunction_data A B)
: nat_trans (_ ∙ _ ) (functor_identity _)
:= pr2 (pr2 (pr2 X)).
Definition triangle_1_statement {A B : precategory} (X : adjunction_data A B)
(F := left_functor X) (η := adjunit X) (ε := adjcounit X)
: UU
:= ∏ a : A, # F (η a) · ε (F a) = identity (F a).
Definition triangle_2_statement {A B : precategory} (X : adjunction_data A B)
(G := right_functor X) (η := adjunit X) (ε := adjcounit X)
: UU
:= ∏ b : B, η (G b) · # G (ε b) = identity (G b).
Definition form_adjunction' {A B} (X : adjunction_data A B) : UU
:= triangle_1_statement X × triangle_2_statement X.
Definition form_adjunction {A B : precategory} (F : functor A B) (G : functor B A)
(eta : nat_trans (functor_identity A) (functor_composite F G))
(eps : nat_trans (functor_composite G F) (functor_identity B)) : UU :=
form_adjunction' (F,,G,,eta,,eps).
Lemma isaprop_form_adjunction {A B : category} (F : functor A B) (G : functor B A)
(eta : nat_trans (functor_identity A) (functor_composite F G))
(eps : nat_trans (functor_composite G F) (functor_identity B))
: isaprop (form_adjunction F G eta eps).
Proof.
apply isapropdirprod; apply impred_isaprop; intro.
- apply B.
- apply A.
Defined.
Definition mk_form_adjunction {A B : precategory} {F : functor A B} {G : functor B A}
{eta : nat_trans (functor_identity A) (functor_composite F G)}
{eps : nat_trans (functor_composite G F) (functor_identity B)}
(H1 : ∏ a : A, # F (eta a) · eps (F a) = identity (F a))
(H2 : ∏ b : B, eta (G b) · # G (eps b) = identity (G b)) :
form_adjunction F G eta eps := (H1,,H2).
Definition are_adjoints {A B : precategory} (F : functor A B) (G : functor B A) : UU :=
∑ (etaeps : (nat_trans (functor_identity A) (functor_composite F G))
× (nat_trans (functor_composite G F) (functor_identity B))),
form_adjunction F G (pr1 etaeps) (pr2 etaeps).
Definition adjunction_data (A B : precategory) : UU
:= ∑ (F : functor A B) (G : functor B A),
nat_trans (functor_identity A) (F ∙ G) ×
nat_trans (G ∙ F) (functor_identity B).
Definition left_functor {A B} (X : adjunction_data A B) : functor A B
:= pr1 X.
Definition right_functor {A B} (X : adjunction_data A B) : functor B A
:= pr1 (pr2 X).
Definition adjunit {A B} (X : adjunction_data A B)
: nat_trans (functor_identity _) (_ ∙ _)
:= pr1 (pr2 (pr2 X)).
Definition adjcounit {A B} (X : adjunction_data A B)
: nat_trans (_ ∙ _ ) (functor_identity _)
:= pr2 (pr2 (pr2 X)).
Definition triangle_1_statement {A B : precategory} (X : adjunction_data A B)
(F := left_functor X) (η := adjunit X) (ε := adjcounit X)
: UU
:= ∏ a : A, # F (η a) · ε (F a) = identity (F a).
Definition triangle_2_statement {A B : precategory} (X : adjunction_data A B)
(G := right_functor X) (η := adjunit X) (ε := adjcounit X)
: UU
:= ∏ b : B, η (G b) · # G (ε b) = identity (G b).
Definition form_adjunction' {A B} (X : adjunction_data A B) : UU
:= triangle_1_statement X × triangle_2_statement X.
Definition form_adjunction {A B : precategory} (F : functor A B) (G : functor B A)
(eta : nat_trans (functor_identity A) (functor_composite F G))
(eps : nat_trans (functor_composite G F) (functor_identity B)) : UU :=
form_adjunction' (F,,G,,eta,,eps).
Lemma isaprop_form_adjunction {A B : category} (F : functor A B) (G : functor B A)
(eta : nat_trans (functor_identity A) (functor_composite F G))
(eps : nat_trans (functor_composite G F) (functor_identity B))
: isaprop (form_adjunction F G eta eps).
Proof.
apply isapropdirprod; apply impred_isaprop; intro.
- apply B.
- apply A.
Defined.
Definition mk_form_adjunction {A B : precategory} {F : functor A B} {G : functor B A}
{eta : nat_trans (functor_identity A) (functor_composite F G)}
{eps : nat_trans (functor_composite G F) (functor_identity B)}
(H1 : ∏ a : A, # F (eta a) · eps (F a) = identity (F a))
(H2 : ∏ b : B, eta (G b) · # G (eps b) = identity (G b)) :
form_adjunction F G eta eps := (H1,,H2).
Definition are_adjoints {A B : precategory} (F : functor A B) (G : functor B A) : UU :=
∑ (etaeps : (nat_trans (functor_identity A) (functor_composite F G))
× (nat_trans (functor_composite G F) (functor_identity B))),
form_adjunction F G (pr1 etaeps) (pr2 etaeps).
Note that this makes the second component opaque for efficiency reasons
Definition mk_are_adjoints {A B : precategory}
(F : functor A B) (G : functor B A)
(eta : nat_trans (functor_identity A) (functor_composite F G))
(eps : nat_trans (functor_composite G F) (functor_identity B))
(HH : form_adjunction F G eta eps) : are_adjoints F G.
Proof.
∃ (eta,,eps).
abstract (exact HH).
Defined.
Definition unit_from_are_adjoints {A B : precategory}
{F : functor A B} {G : functor B A} (H : are_adjoints F G) :
nat_trans (functor_identity A) (functor_composite F G) := pr1 (pr1 H).
Definition counit_from_are_adjoints {A B : precategory}
{F : functor A B} {G : functor B A} (H : are_adjoints F G) :
nat_trans (functor_composite G F) (functor_identity B) := pr2 (pr1 H).
Definition is_left_adjoint {A B : precategory} (F : functor A B) : UU :=
∑ (G : functor B A), are_adjoints F G.
Coercion adjunction_data_from_is_left_adjoint {A B : precategory}
{F : functor A B} (HF : is_left_adjoint F)
: adjunction_data A B
:= (F,, _ ,,unit_from_are_adjoints (pr2 HF) ,,counit_from_are_adjoints (pr2 HF) ).
Definition is_right_adjoint {A B : precategory} (G : functor B A) : UU :=
∑ (F : functor A B), are_adjoints F G.
Definition are_adjoints_to_is_left_adjoint {A B : precategory} (F : functor A B) (G : functor B A)
(H : are_adjoints F G) : is_left_adjoint F := (G,,H).
Coercion are_adjoints_to_is_left_adjoint : are_adjoints >-> is_left_adjoint.
Definition are_adjoints_to_is_right_adjoint {A B : precategory} (F : functor A B)
(G : functor B A) (H : are_adjoints F G) : is_right_adjoint G := (F,,H).
Coercion are_adjoints_to_is_right_adjoint : are_adjoints >-> is_right_adjoint.
Definition right_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) : functor B A := pr1 H.
Lemma is_right_adjoint_right_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) : is_right_adjoint (right_adjoint H).
Proof.
exact (F,,pr2 H).
Defined.
Definition left_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) : functor A B := pr1 H.
Lemma is_left_adjoint_left_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) : is_left_adjoint (left_adjoint H).
Proof.
exact (G,,pr2 H).
Defined.
Definition unit_from_left_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) :
nat_trans (functor_identity A) (functor_composite F (right_adjoint H))
:= adjunit H.
Definition unit_from_right_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) :
nat_trans (functor_identity A) (functor_composite (left_adjoint H) G)
:= unit_from_are_adjoints (pr2 H).
Definition counit_from_left_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) :
nat_trans (functor_composite (right_adjoint H) F) (functor_identity B)
:= counit_from_are_adjoints (pr2 H).
Definition counit_from_right_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) :
nat_trans (functor_composite G (left_adjoint H)) (functor_identity B)
:= counit_from_are_adjoints (pr2 H).
Definition triangle_id_left_ad {A B : precategory} {F : functor A B} {G : functor B A}
(H : are_adjoints F G) :
∏ a, # F (unit_from_are_adjoints H a)
· counit_from_are_adjoints H (F a) = identity (F a) := pr1 (pr2 H).
Definition triangle_id_right_ad {A B : precategory} {F : functor A B} {G : functor B A}
(H : are_adjoints F G) :
∏ b, unit_from_are_adjoints H (G b) · # G (counit_from_are_adjoints H b) = identity (G b)
:= pr2 (pr2 H).
Lemma are_adjoints_functor_composite
{A B C : precategory} {F1 : functor A B} {F2 : functor B C}
{G1 : functor B A} {G2 : functor C B}
(H1 : are_adjoints F1 G1) (H2 : are_adjoints F2 G2) :
are_adjoints (functor_composite F1 F2) (functor_composite G2 G1).
Proof.
destruct H1 as [[eta1 eps1] [H11 H12]].
destruct H2 as [[eta2 eps2] [H21 H22]].
simpl in ×.
use mk_are_adjoints.
- apply (nat_trans_comp _ _ _ eta1).
use (nat_trans_comp _ _ _ _ (nat_trans_functor_assoc_inv _ _ _)).
apply pre_whisker.
apply (nat_trans_comp _ _ _ (nat_trans_functor_id_right_inv _)
(post_whisker eta2 G1)).
- use (nat_trans_comp _ _ _ _ eps2).
apply (nat_trans_comp _ _ _ (nat_trans_functor_assoc _ _ _)).
apply pre_whisker.
apply (nat_trans_comp _ _ _ (nat_trans_functor_assoc_inv _ _ _)).
apply (nat_trans_comp _ _ _ (post_whisker eps1 _)
(nat_trans_functor_id_left _)).
- split; intros a; simpl.
+ rewrite !id_left, !id_right, <-functor_id, <- H11, !functor_comp, <-!assoc.
apply maponpaths; rewrite assoc.
etrans; [eapply cancel_postcomposition, pathsinv0, functor_comp|].
etrans.
apply cancel_postcomposition, maponpaths.
apply (nat_trans_ax eps1 (F1 a) (G2 (F2 (F1 a))) (eta2 (F1 a))).
simpl; rewrite functor_comp, <- assoc.
etrans; [eapply maponpaths, H21|].
now apply id_right.
+ rewrite !id_left, !id_right, <- functor_id, <- H22, !functor_comp, assoc.
apply cancel_postcomposition; rewrite <- assoc.
etrans; [eapply maponpaths, pathsinv0, functor_comp|].
etrans.
eapply maponpaths, maponpaths, pathsinv0.
apply (nat_trans_ax eta2 (F1 (G1 (G2 a))) (G2 a) (eps1 _)).
simpl; rewrite functor_comp, assoc.
etrans; [apply cancel_postcomposition, H12|].
now apply id_left.
Defined.
Lemma is_left_adjoint_functor_composite
{A B C : precategory} {F1 : functor A B} {F2 : functor B C}
(H1 : is_left_adjoint F1) (H2 : is_left_adjoint F2) :
is_left_adjoint (functor_composite F1 F2).
Proof.
use tpair.
- apply (functor_composite (pr1 H2) (pr1 H1)).
- apply are_adjoints_functor_composite.
+ apply (pr2 H1).
+ apply (pr2 H2).
Defined.
Lemma is_left_adjoint_iso {A B : precategory} (hsB : has_homsets B)
(F G : functor A B) (αiso : @iso [A,B,hsB] F G) (HF : is_left_adjoint F) :
is_left_adjoint G.
Proof.
set (α := pr1 αiso : nat_trans F G).
set (αinv := inv_from_iso αiso : nat_trans G F).
destruct HF as [F' [[α' β'] [HF1 HF2]]]; simpl in HF1, HF2.
use tpair.
- apply F'.
- use mk_are_adjoints.
+ apply (nat_trans_comp _ _ _ α' (post_whisker α F')).
+ apply (nat_trans_comp _ _ _ (pre_whisker F' αinv) β').
+ split.
× unfold triangle_1_statement.
simpl; intro a; rewrite assoc, functor_comp.
etrans; [ apply cancel_postcomposition; rewrite <- assoc;
apply maponpaths, (nat_trans_ax αinv)|].
etrans; [ rewrite assoc, <- !assoc;
apply maponpaths, maponpaths, (nat_trans_ax β')|].
simpl; rewrite assoc.
etrans; [ apply cancel_postcomposition, (nat_trans_ax αinv)|].
rewrite assoc.
etrans; [ apply cancel_postcomposition; rewrite <- assoc;
apply maponpaths, HF1|].
now rewrite id_right; apply (nat_trans_eq_pointwise (iso_after_iso_inv αiso)).
× unfold triangle_2_statement in ×.
simpl; intro b; rewrite functor_comp, assoc.
etrans; [ apply cancel_postcomposition; rewrite <- assoc;
eapply maponpaths, pathsinv0, functor_comp|].
etrans; [ apply cancel_postcomposition, maponpaths, maponpaths,
(nat_trans_eq_pointwise (iso_inv_after_iso αiso))|].
cbn. rewrite (functor_id F'), id_right. apply (HF2 b).
Defined.
(F : functor A B) (G : functor B A)
(eta : nat_trans (functor_identity A) (functor_composite F G))
(eps : nat_trans (functor_composite G F) (functor_identity B))
(HH : form_adjunction F G eta eps) : are_adjoints F G.
Proof.
∃ (eta,,eps).
abstract (exact HH).
Defined.
Definition unit_from_are_adjoints {A B : precategory}
{F : functor A B} {G : functor B A} (H : are_adjoints F G) :
nat_trans (functor_identity A) (functor_composite F G) := pr1 (pr1 H).
Definition counit_from_are_adjoints {A B : precategory}
{F : functor A B} {G : functor B A} (H : are_adjoints F G) :
nat_trans (functor_composite G F) (functor_identity B) := pr2 (pr1 H).
Definition is_left_adjoint {A B : precategory} (F : functor A B) : UU :=
∑ (G : functor B A), are_adjoints F G.
Coercion adjunction_data_from_is_left_adjoint {A B : precategory}
{F : functor A B} (HF : is_left_adjoint F)
: adjunction_data A B
:= (F,, _ ,,unit_from_are_adjoints (pr2 HF) ,,counit_from_are_adjoints (pr2 HF) ).
Definition is_right_adjoint {A B : precategory} (G : functor B A) : UU :=
∑ (F : functor A B), are_adjoints F G.
Definition are_adjoints_to_is_left_adjoint {A B : precategory} (F : functor A B) (G : functor B A)
(H : are_adjoints F G) : is_left_adjoint F := (G,,H).
Coercion are_adjoints_to_is_left_adjoint : are_adjoints >-> is_left_adjoint.
Definition are_adjoints_to_is_right_adjoint {A B : precategory} (F : functor A B)
(G : functor B A) (H : are_adjoints F G) : is_right_adjoint G := (F,,H).
Coercion are_adjoints_to_is_right_adjoint : are_adjoints >-> is_right_adjoint.
Definition right_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) : functor B A := pr1 H.
Lemma is_right_adjoint_right_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) : is_right_adjoint (right_adjoint H).
Proof.
exact (F,,pr2 H).
Defined.
Definition left_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) : functor A B := pr1 H.
Lemma is_left_adjoint_left_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) : is_left_adjoint (left_adjoint H).
Proof.
exact (G,,pr2 H).
Defined.
Definition unit_from_left_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) :
nat_trans (functor_identity A) (functor_composite F (right_adjoint H))
:= adjunit H.
Definition unit_from_right_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) :
nat_trans (functor_identity A) (functor_composite (left_adjoint H) G)
:= unit_from_are_adjoints (pr2 H).
Definition counit_from_left_adjoint {A B : precategory}
{F : functor A B} (H : is_left_adjoint F) :
nat_trans (functor_composite (right_adjoint H) F) (functor_identity B)
:= counit_from_are_adjoints (pr2 H).
Definition counit_from_right_adjoint {A B : precategory}
{G : functor B A} (H : is_right_adjoint G) :
nat_trans (functor_composite G (left_adjoint H)) (functor_identity B)
:= counit_from_are_adjoints (pr2 H).
Definition triangle_id_left_ad {A B : precategory} {F : functor A B} {G : functor B A}
(H : are_adjoints F G) :
∏ a, # F (unit_from_are_adjoints H a)
· counit_from_are_adjoints H (F a) = identity (F a) := pr1 (pr2 H).
Definition triangle_id_right_ad {A B : precategory} {F : functor A B} {G : functor B A}
(H : are_adjoints F G) :
∏ b, unit_from_are_adjoints H (G b) · # G (counit_from_are_adjoints H b) = identity (G b)
:= pr2 (pr2 H).
Lemma are_adjoints_functor_composite
{A B C : precategory} {F1 : functor A B} {F2 : functor B C}
{G1 : functor B A} {G2 : functor C B}
(H1 : are_adjoints F1 G1) (H2 : are_adjoints F2 G2) :
are_adjoints (functor_composite F1 F2) (functor_composite G2 G1).
Proof.
destruct H1 as [[eta1 eps1] [H11 H12]].
destruct H2 as [[eta2 eps2] [H21 H22]].
simpl in ×.
use mk_are_adjoints.
- apply (nat_trans_comp _ _ _ eta1).
use (nat_trans_comp _ _ _ _ (nat_trans_functor_assoc_inv _ _ _)).
apply pre_whisker.
apply (nat_trans_comp _ _ _ (nat_trans_functor_id_right_inv _)
(post_whisker eta2 G1)).
- use (nat_trans_comp _ _ _ _ eps2).
apply (nat_trans_comp _ _ _ (nat_trans_functor_assoc _ _ _)).
apply pre_whisker.
apply (nat_trans_comp _ _ _ (nat_trans_functor_assoc_inv _ _ _)).
apply (nat_trans_comp _ _ _ (post_whisker eps1 _)
(nat_trans_functor_id_left _)).
- split; intros a; simpl.
+ rewrite !id_left, !id_right, <-functor_id, <- H11, !functor_comp, <-!assoc.
apply maponpaths; rewrite assoc.
etrans; [eapply cancel_postcomposition, pathsinv0, functor_comp|].
etrans.
apply cancel_postcomposition, maponpaths.
apply (nat_trans_ax eps1 (F1 a) (G2 (F2 (F1 a))) (eta2 (F1 a))).
simpl; rewrite functor_comp, <- assoc.
etrans; [eapply maponpaths, H21|].
now apply id_right.
+ rewrite !id_left, !id_right, <- functor_id, <- H22, !functor_comp, assoc.
apply cancel_postcomposition; rewrite <- assoc.
etrans; [eapply maponpaths, pathsinv0, functor_comp|].
etrans.
eapply maponpaths, maponpaths, pathsinv0.
apply (nat_trans_ax eta2 (F1 (G1 (G2 a))) (G2 a) (eps1 _)).
simpl; rewrite functor_comp, assoc.
etrans; [apply cancel_postcomposition, H12|].
now apply id_left.
Defined.
Lemma is_left_adjoint_functor_composite
{A B C : precategory} {F1 : functor A B} {F2 : functor B C}
(H1 : is_left_adjoint F1) (H2 : is_left_adjoint F2) :
is_left_adjoint (functor_composite F1 F2).
Proof.
use tpair.
- apply (functor_composite (pr1 H2) (pr1 H1)).
- apply are_adjoints_functor_composite.
+ apply (pr2 H1).
+ apply (pr2 H2).
Defined.
Lemma is_left_adjoint_iso {A B : precategory} (hsB : has_homsets B)
(F G : functor A B) (αiso : @iso [A,B,hsB] F G) (HF : is_left_adjoint F) :
is_left_adjoint G.
Proof.
set (α := pr1 αiso : nat_trans F G).
set (αinv := inv_from_iso αiso : nat_trans G F).
destruct HF as [F' [[α' β'] [HF1 HF2]]]; simpl in HF1, HF2.
use tpair.
- apply F'.
- use mk_are_adjoints.
+ apply (nat_trans_comp _ _ _ α' (post_whisker α F')).
+ apply (nat_trans_comp _ _ _ (pre_whisker F' αinv) β').
+ split.
× unfold triangle_1_statement.
simpl; intro a; rewrite assoc, functor_comp.
etrans; [ apply cancel_postcomposition; rewrite <- assoc;
apply maponpaths, (nat_trans_ax αinv)|].
etrans; [ rewrite assoc, <- !assoc;
apply maponpaths, maponpaths, (nat_trans_ax β')|].
simpl; rewrite assoc.
etrans; [ apply cancel_postcomposition, (nat_trans_ax αinv)|].
rewrite assoc.
etrans; [ apply cancel_postcomposition; rewrite <- assoc;
apply maponpaths, HF1|].
now rewrite id_right; apply (nat_trans_eq_pointwise (iso_after_iso_inv αiso)).
× unfold triangle_2_statement in ×.
simpl; intro b; rewrite functor_comp, assoc.
etrans; [ apply cancel_postcomposition; rewrite <- assoc;
eapply maponpaths, pathsinv0, functor_comp|].
etrans; [ apply cancel_postcomposition, maponpaths, maponpaths,
(nat_trans_eq_pointwise (iso_inv_after_iso αiso))|].
cbn. rewrite (functor_id F'), id_right. apply (HF2 b).
Defined.
Lemma is_left_adjoint_functor_identity {A : precategory} :
is_left_adjoint (functor_identity A).
Proof.
use tpair.
+ exact (functor_identity A).
+ ∃ (nat_trans_id _,, nat_trans_id _).
abstract (now split; [intros a; apply id_left| intros a; apply id_left]).
Defined.
Section right_adjoint_from_partial.
Definition is_universal_arrow_from {D C : precategory}
(S : functor D C) (c : C) (r : D) (v : C⟦S r, c⟧) : UU :=
∏ (d : D) (f : C⟦S d,c⟧), ∃! (f' : D⟦d,r⟧), f = # S f' · v.
Context {X A : precategory}
(F : functor X A)
(G0 : ob A → ob X)
(eps : ∏ a, A⟦F (G0 a),a⟧)
(Huniv : ∏ a, is_universal_arrow_from F a (G0 a) (eps a)).
Local Definition G_data : functor_data A X.
Proof.
use tpair.
+ apply G0.
+ intros a b f.
apply (pr1 (pr1 (Huniv b (G0 a) (eps a · f)))).
Defined.
Local Definition G_is_functor : is_functor G_data.
Proof.
split.
+ intro a; simpl.
assert (H : eps a · identity a = # F (identity (G0 a)) · eps a).
{ now rewrite functor_id, id_left, id_right. }
set (H2 := Huniv a (G0 a) (eps a · identity a)).
apply (pathsinv0 (maponpaths pr1 (pr2 H2 (_,,H)))).
+ intros a b c f g; simpl.
set (H2 := Huniv c (G0 a) (eps a · (f · g))).
destruct H2 as [[fac Hfac] p]; simpl.
set (H1 := Huniv b (G0 a) (eps a · f)).
destruct H1 as [[fab Hfab] p1]; simpl.
set (H0 := Huniv c (G0 b) (eps b · g)).
destruct H0 as [[fbc Hfbc] p2]; simpl.
assert (H : eps a · (f · g) = # F (fab · fbc) · eps c).
{ now rewrite assoc, Hfab, <- assoc, Hfbc, assoc, <- functor_comp. }
apply (pathsinv0 (maponpaths pr1 (p (_,,H)))).
Qed.
Local Definition G : functor A X := tpair _ G_data G_is_functor.
Local Definition unit : nat_trans (functor_identity X) (functor_composite F G).
Proof.
use mk_nat_trans.
× intro x.
apply (pr1 (pr1 (Huniv (F x) x (identity _)))).
× intros x y f; simpl.
destruct (Huniv (F y) y (identity (F y))) as [t p], t as [t p0]; simpl.
destruct (Huniv (F x) x (identity (F x))) as [t0 p1], t0 as [t0 p2]; simpl.
destruct
(Huniv (F y) (G0 (F x)) (eps (F x) · # F f)) as [t1 p3], t1 as [t1 p4]; simpl.
assert (H1 : # F f = # F (t0 · t1) · eps (F y));
[now rewrite functor_comp, <- assoc, <- p4, assoc, <- p2, id_left|];
destruct (Huniv (F y) x (# F f)) as [t2 p5];
set (HH := (maponpaths pr1 (p5 (_,,H1))));
simpl in HH; rewrite HH.
assert (H2 : # F f = # F (f · t) · eps (F y));
[now rewrite functor_comp, <- assoc, <- p0, id_right|];
set (HHH := (maponpaths pr1 (p5 (_,,H2)))); simpl in HHH;
now rewrite HHH.
Defined.
Local Definition counit : nat_trans (functor_composite G F) (functor_identity A).
Proof.
use tpair.
× red. apply eps.
× abstract (intros a b f; simpl; apply (pathsinv0 (pr2 (pr1 (Huniv b (G0 a) (eps a · f)))))).
Defined.
Local Lemma form_adjunctionFG : form_adjunction F G unit counit.
Proof.
use tpair; simpl.
+ unfold triangle_1_statement; cbn.
intros x.
destruct (Huniv (F x) x (identity (F x))) as [[f hf] H]; simpl.
apply (!hf).
+ intros a; simpl.
destruct (Huniv (F (G0 a)) (G0 a) (identity (F (G0 a)))) as [[f hf] H]; simpl.
destruct ((Huniv a (G0 (F (G0 a))) (eps (F (G0 a)) · eps a))) as [[g hg] Hg]; simpl.
destruct (Huniv _ _ (eps a)) as [t p].
assert (H1 : eps a = # F (identity _) · eps a).
now rewrite functor_id, id_left.
assert (H2 : eps a = # F (f · g) · eps a).
now rewrite functor_comp, <- assoc, <- hg, assoc, <- hf, id_left.
set (HH := maponpaths pr1 (p (_,,H1))); simpl in HH.
set (HHH := maponpaths pr1 (p (_,,H2))); simpl in HHH.
now rewrite HHH, <- HH.
Qed.
Definition left_adjoint_from_partial : is_left_adjoint F :=
(G,, (unit,, counit),, form_adjunctionFG).
Definition right_adjoint_from_partial : is_right_adjoint G :=
(F,, (unit,, counit),, form_adjunctionFG).
End right_adjoint_from_partial.
Definition is_universal_arrow_from {D C : precategory}
(S : functor D C) (c : C) (r : D) (v : C⟦S r, c⟧) : UU :=
∏ (d : D) (f : C⟦S d,c⟧), ∃! (f' : D⟦d,r⟧), f = # S f' · v.
Context {X A : precategory}
(F : functor X A)
(G0 : ob A → ob X)
(eps : ∏ a, A⟦F (G0 a),a⟧)
(Huniv : ∏ a, is_universal_arrow_from F a (G0 a) (eps a)).
Local Definition G_data : functor_data A X.
Proof.
use tpair.
+ apply G0.
+ intros a b f.
apply (pr1 (pr1 (Huniv b (G0 a) (eps a · f)))).
Defined.
Local Definition G_is_functor : is_functor G_data.
Proof.
split.
+ intro a; simpl.
assert (H : eps a · identity a = # F (identity (G0 a)) · eps a).
{ now rewrite functor_id, id_left, id_right. }
set (H2 := Huniv a (G0 a) (eps a · identity a)).
apply (pathsinv0 (maponpaths pr1 (pr2 H2 (_,,H)))).
+ intros a b c f g; simpl.
set (H2 := Huniv c (G0 a) (eps a · (f · g))).
destruct H2 as [[fac Hfac] p]; simpl.
set (H1 := Huniv b (G0 a) (eps a · f)).
destruct H1 as [[fab Hfab] p1]; simpl.
set (H0 := Huniv c (G0 b) (eps b · g)).
destruct H0 as [[fbc Hfbc] p2]; simpl.
assert (H : eps a · (f · g) = # F (fab · fbc) · eps c).
{ now rewrite assoc, Hfab, <- assoc, Hfbc, assoc, <- functor_comp. }
apply (pathsinv0 (maponpaths pr1 (p (_,,H)))).
Qed.
Local Definition G : functor A X := tpair _ G_data G_is_functor.
Local Definition unit : nat_trans (functor_identity X) (functor_composite F G).
Proof.
use mk_nat_trans.
× intro x.
apply (pr1 (pr1 (Huniv (F x) x (identity _)))).
× intros x y f; simpl.
destruct (Huniv (F y) y (identity (F y))) as [t p], t as [t p0]; simpl.
destruct (Huniv (F x) x (identity (F x))) as [t0 p1], t0 as [t0 p2]; simpl.
destruct
(Huniv (F y) (G0 (F x)) (eps (F x) · # F f)) as [t1 p3], t1 as [t1 p4]; simpl.
assert (H1 : # F f = # F (t0 · t1) · eps (F y));
[now rewrite functor_comp, <- assoc, <- p4, assoc, <- p2, id_left|];
destruct (Huniv (F y) x (# F f)) as [t2 p5];
set (HH := (maponpaths pr1 (p5 (_,,H1))));
simpl in HH; rewrite HH.
assert (H2 : # F f = # F (f · t) · eps (F y));
[now rewrite functor_comp, <- assoc, <- p0, id_right|];
set (HHH := (maponpaths pr1 (p5 (_,,H2)))); simpl in HHH;
now rewrite HHH.
Defined.
Local Definition counit : nat_trans (functor_composite G F) (functor_identity A).
Proof.
use tpair.
× red. apply eps.
× abstract (intros a b f; simpl; apply (pathsinv0 (pr2 (pr1 (Huniv b (G0 a) (eps a · f)))))).
Defined.
Local Lemma form_adjunctionFG : form_adjunction F G unit counit.
Proof.
use tpair; simpl.
+ unfold triangle_1_statement; cbn.
intros x.
destruct (Huniv (F x) x (identity (F x))) as [[f hf] H]; simpl.
apply (!hf).
+ intros a; simpl.
destruct (Huniv (F (G0 a)) (G0 a) (identity (F (G0 a)))) as [[f hf] H]; simpl.
destruct ((Huniv a (G0 (F (G0 a))) (eps (F (G0 a)) · eps a))) as [[g hg] Hg]; simpl.
destruct (Huniv _ _ (eps a)) as [t p].
assert (H1 : eps a = # F (identity _) · eps a).
now rewrite functor_id, id_left.
assert (H2 : eps a = # F (f · g) · eps a).
now rewrite functor_comp, <- assoc, <- hg, assoc, <- hf, id_left.
set (HH := maponpaths pr1 (p (_,,H1))); simpl in HH.
set (HHH := maponpaths pr1 (p (_,,H2))); simpl in HHH.
now rewrite HHH, <- HH.
Qed.
Definition left_adjoint_from_partial : is_left_adjoint F :=
(G,, (unit,, counit),, form_adjunctionFG).
Definition right_adjoint_from_partial : is_right_adjoint G :=
(F,, (unit,, counit),, form_adjunctionFG).
End right_adjoint_from_partial.
Section left_adjoint_from_partial.
Definition is_universal_arrow_to {D C : precategory}
(S : functor D C) (c : C) (r : D) (v : C⟦c, S r⟧) : UU :=
∏ (d : D) (f : C⟦c, S d⟧), ∃! (f' : D⟦r,d⟧), v · #S f' = f.
Context {X A : precategory}
(G : functor A X)
(F0 : ob X → ob A)
(eta : ∏ x, X⟦x, G (F0 x)⟧)
(Huniv : ∏ x, is_universal_arrow_to G x (F0 x) (eta x)).
Local Definition F_data : functor_data X A.
Proof.
use tpair.
+ apply F0.
+ intros a b f.
use (pr1 (pr1 (Huniv _ _ _ ))). apply (f · eta _ ).
Defined.
Local Definition F_is_functor : is_functor F_data.
Proof.
split.
+ intro x; simpl.
apply pathsinv0, path_to_ctr.
rewrite functor_id, id_left, id_right; apply idpath.
+ intros a b c f g; simpl.
apply pathsinv0, path_to_ctr.
rewrite functor_comp, assoc.
set (H2 := Huniv _ _ (f · eta _ )).
rewrite (pr2 (pr1 H2)).
do 2 rewrite <- assoc; apply maponpaths.
set (H3 := Huniv _ _ (g · eta _ )).
apply (pr2 (pr1 H3)).
Defined.
Local Definition left_adj_from_partial : functor X A := F_data,, F_is_functor.
Local Notation F := left_adj_from_partial.
Local Definition counit_left_from_partial
: functor_composite G F ⟹ functor_identity A.
Proof.
use mk_nat_trans.
- intro a.
apply (pr1 (pr1 (Huniv _ _ (identity _)))).
- intros a b f; simpl.
destruct (Huniv _ _ (identity (G b))) as [t p], t as [t p0]; simpl.
destruct (Huniv _ _ (identity (G a))) as [t0 p1], t0 as [t0 p2]; simpl.
destruct
(Huniv _ _ (#G f · eta _ )) as [t1 p3], t1 as [t1 p4]; simpl.
assert (H1 : # G f = eta _ · # G (t1 · t) ).
{ rewrite functor_comp. rewrite assoc. rewrite p4.
rewrite <- assoc. rewrite p0. rewrite id_right; apply idpath. }
destruct (Huniv _ _ (# G f)) as [t2 p5].
set (HH := (maponpaths pr1 (p5 (_,,!H1))));
simpl in HH; rewrite HH.
assert (H2 : #G f = eta _ · #G (t0 · f)).
{ rewrite functor_comp. rewrite assoc. rewrite p2.
rewrite id_left; apply idpath. }
set (HHH := (maponpaths pr1 (p5 (_,,!H2)))); simpl in HHH;
now rewrite HHH.
Defined.
Local Definition unit_left_from_partial : functor_identity X ⟹ functor_composite F G.
Proof.
use tpair.
× red. apply eta.
× abstract (intros a b f; simpl; apply (pathsinv0 (pr2 (pr1 (Huniv _ _ (f · eta _ )))))).
Defined.
Local Lemma form_adjunctionFG_left_from_partial
: form_adjunction F G unit_left_from_partial counit_left_from_partial.
Proof.
use tpair; simpl.
+ unfold triangle_1_statement; cbn.
intros x; simpl.
destruct (Huniv _ _ (identity (G (F0 x)))) as [[f hf] H]; simpl.
destruct ((Huniv _ _
(eta _ · eta (G (F0 x))))) as [[g hg] Hg]; simpl.
destruct (Huniv _ _ (eta x)) as [t p].
assert (H1 : eta x = eta x · # G (identity _)).
{ now rewrite functor_id, id_right. }
assert (H2 : eta x = eta x · # G (g · f) ).
{ rewrite functor_comp. rewrite assoc. rewrite hg.
rewrite <- assoc. rewrite hf. now rewrite id_right. }
set (HH := maponpaths pr1 (p (_,,!H1))); simpl in HH.
set (HHH := maponpaths pr1 (p (_,,!H2))); simpl in HHH.
now rewrite HHH, <- HH.
+ unfold triangle_2_statement; cbn.
intro a.
destruct (Huniv _ _ (identity (G a))) as [[f hf] H]; simpl.
apply hf.
Defined.
Definition right_adjoint_left_from_partial : is_right_adjoint G :=
(F,, (unit_left_from_partial,, counit_left_from_partial),,
form_adjunctionFG_left_from_partial).
Definition left_adjoint_left_from_partial : is_left_adjoint F :=
(G,, (unit_left_from_partial,, _),, form_adjunctionFG_left_from_partial).
End left_adjoint_from_partial.
Section postcomp.
Context {C D E : precategory} (hsD : has_homsets D) (hsE : has_homsets E)
(F : functor D E) (HF : is_left_adjoint F).
Let G : functor E D := right_adjoint HF.
Let H : are_adjoints F G := pr2 HF.
Let η : nat_trans (functor_identity D) (functor_composite F G):= unit_from_left_adjoint H.
Let ε : nat_trans (functor_composite G F) (functor_identity E) := counit_from_left_adjoint H.
Let H1 : ∏ a : D, # F (η a) · ε (F a) = identity (F a) := triangle_id_left_ad H.
Let H2 : ∏ b : E, η (G b) · # G (ε b) = identity (G b) := triangle_id_right_ad H.
Lemma is_left_adjoint_post_composition_functor :
is_left_adjoint (post_composition_functor C D E hsD hsE F).
Proof.
∃ (post_composition_functor _ _ _ _ _ G).
use tpair.
- split.
+ use mk_nat_trans.
× simpl; intros F'. simpl in F'.
apply (nat_trans_comp _ _ _
(nat_trans_comp _ _ _ (nat_trans_functor_id_right_inv F')
(pre_whisker F' η))
(nat_trans_functor_assoc_inv _ _ _)).
× abstract (intros F1 F2 α; apply (nat_trans_eq hsD); intro c; simpl in *;
now rewrite !id_right, !id_left; apply (nat_trans_ax η (F1 c) _ (α c))).
+ use mk_nat_trans.
× simpl; intros F'. simpl in F'.
apply (nat_trans_comp _ _ _
(nat_trans_functor_assoc _ _ _)
(nat_trans_comp _ _ _ (pre_whisker F' ε)
(nat_trans_functor_id_left _))).
× abstract (intros F1 F2 α; apply (nat_trans_eq hsE); intro c; simpl in *;
now rewrite !id_right, !id_left; apply (nat_trans_ax ε _ _ (α c))).
- abstract (split; simpl; intro F';
[ apply (nat_trans_eq hsE); simpl; intro c;
now rewrite !id_left, !id_right; apply H1
| apply (nat_trans_eq hsD); simpl; intro c;
now rewrite !id_left, !id_right; apply H2]).
Defined.
End postcomp.
End adjunctions.
Section HomSetIso_from_Adjunction.
Context {C D : precategory} {F : functor C D} {G : functor D C} (H : are_adjoints F G).
Let η := unit_from_are_adjoints H.
Let ε := counit_from_are_adjoints H.
Context {C D E : precategory} (hsD : has_homsets D) (hsE : has_homsets E)
(F : functor D E) (HF : is_left_adjoint F).
Let G : functor E D := right_adjoint HF.
Let H : are_adjoints F G := pr2 HF.
Let η : nat_trans (functor_identity D) (functor_composite F G):= unit_from_left_adjoint H.
Let ε : nat_trans (functor_composite G F) (functor_identity E) := counit_from_left_adjoint H.
Let H1 : ∏ a : D, # F (η a) · ε (F a) = identity (F a) := triangle_id_left_ad H.
Let H2 : ∏ b : E, η (G b) · # G (ε b) = identity (G b) := triangle_id_right_ad H.
Lemma is_left_adjoint_post_composition_functor :
is_left_adjoint (post_composition_functor C D E hsD hsE F).
Proof.
∃ (post_composition_functor _ _ _ _ _ G).
use tpair.
- split.
+ use mk_nat_trans.
× simpl; intros F'. simpl in F'.
apply (nat_trans_comp _ _ _
(nat_trans_comp _ _ _ (nat_trans_functor_id_right_inv F')
(pre_whisker F' η))
(nat_trans_functor_assoc_inv _ _ _)).
× abstract (intros F1 F2 α; apply (nat_trans_eq hsD); intro c; simpl in *;
now rewrite !id_right, !id_left; apply (nat_trans_ax η (F1 c) _ (α c))).
+ use mk_nat_trans.
× simpl; intros F'. simpl in F'.
apply (nat_trans_comp _ _ _
(nat_trans_functor_assoc _ _ _)
(nat_trans_comp _ _ _ (pre_whisker F' ε)
(nat_trans_functor_id_left _))).
× abstract (intros F1 F2 α; apply (nat_trans_eq hsE); intro c; simpl in *;
now rewrite !id_right, !id_left; apply (nat_trans_ax ε _ _ (α c))).
- abstract (split; simpl; intro F';
[ apply (nat_trans_eq hsE); simpl; intro c;
now rewrite !id_left, !id_right; apply H1
| apply (nat_trans_eq hsD); simpl; intro c;
now rewrite !id_left, !id_right; apply H2]).
Defined.
End postcomp.
End adjunctions.
Section HomSetIso_from_Adjunction.
Context {C D : precategory} {F : functor C D} {G : functor D C} (H : are_adjoints F G).
Let η := unit_from_are_adjoints H.
Let ε := counit_from_are_adjoints H.
Definition φ_adj {A : C} {B : D} : F A --> B → A --> G B
:= λ f : F A --> B, η _ · #G f.
Definition φ_adj_inv {A : C} {B : D} : A --> G B → F A --> B
:= λ g : A --> G B, #F g · ε _ .
Lemma φ_adj_after_φ_adj_inv {A : C} {B : D} (g : A --> G B)
: φ_adj (φ_adj_inv g) = g.
Proof.
unfold φ_adj.
unfold φ_adj_inv.
assert (X':=triangle_id_right_ad H).
rewrite functor_comp.
rewrite assoc.
assert (X2 := nat_trans_ax η). simpl in X2.
rewrite <- X2; clear X2.
rewrite <- assoc.
intermediate_path (g · identity _).
- apply maponpaths.
apply X'.
- apply id_right.
Qed.
Lemma φ_adj_inv_after_φ_adj {A : C} {B : D} (f : F A --> B)
: φ_adj_inv (φ_adj f) = f.
Proof.
unfold φ_adj, φ_adj_inv.
rewrite functor_comp.
assert (X2 := nat_trans_ax ε); simpl in ×.
rewrite <- assoc.
rewrite X2; clear X2.
rewrite assoc.
intermediate_path (identity _ · f).
- apply cancel_postcomposition.
apply triangle_id_left_ad.
- apply id_left.
Qed.
Definition adjunction_hom_weq (A : C) (B : D) : F A --> B ≃ A --> G B.
Proof.
∃ φ_adj.
apply (isweq_iso _ φ_adj_inv).
- apply φ_adj_inv_after_φ_adj.
- apply φ_adj_after_φ_adj_inv.
Defined.
Lemma φ_adj_natural_precomp (A : C) (B : D) (f : F A --> B) (X : C) (h : X --> A)
: φ_adj (#F h · f) = h · φ_adj f.
Proof.
unfold φ_adj.
rewrite functor_comp.
set (T:=nat_trans_ax η); simpl in T.
rewrite assoc.
rewrite <- T.
apply pathsinv0, assoc.
Qed.
Lemma φ_adj_natural_postcomp (A : C) (B : D) (f : F A --> B) (Y : D) (k : B --> Y)
: φ_adj (f · k) = φ_adj f · #G k.
Proof.
unfold φ_adj.
rewrite <- assoc.
apply maponpaths.
apply (functor_comp G).
Qed.
Corollary φ_adj_natural_prepostcomp (A X : C) (B Y : D) (f : F A --> B) (h : X --> A) (k : B --> Y)
: φ_adj (#F h · f · k) = h · φ_adj f · #G k.
Proof.
etrans.
rewrite <- assoc.
apply φ_adj_natural_precomp.
rewrite <- assoc.
apply maponpaths.
apply φ_adj_natural_postcomp.
Qed.
Lemma φ_adj_inv_natural_precomp (A : C) (B : D) (g : A --> G B) (X : C) (h : X --> A)
: φ_adj_inv (h · g) = #F h · φ_adj_inv g.
Proof.
unfold φ_adj_inv.
rewrite functor_comp.
apply pathsinv0, assoc.
Qed.
Lemma φ_adj_inv_natural_postcomp (A : C) (B : D) (g : A --> G B) (Y : D) (k : B --> Y)
: φ_adj_inv (g · #G k) = φ_adj_inv g · k.
Proof.
unfold φ_adj_inv.
rewrite functor_comp.
set (T:=nat_trans_ax ε); simpl in T.
rewrite <- assoc.
rewrite T.
apply assoc.
Qed.
Corollary φ_adj_inv_natural_prepostcomp (A X : C) (B Y : D) (g : A --> G B) (h : X --> A) (k : B --> Y)
: φ_adj_inv (h · g · #G k) = #F h · φ_adj_inv g · k.
Proof.
etrans.
apply φ_adj_inv_natural_postcomp.
apply cancel_postcomposition.
apply φ_adj_inv_natural_precomp.
Qed.
End HomSetIso_from_Adjunction.
Definition natural_hom_weq {C D : precategory} (F : functor C D) (G : functor D C) : UU
:= ∑ (hom_weq : ∏ {A : C} {B : D}, F A --> B ≃ A --> G B),
(∏ (A : C) (B : D) (f : F A --> B) (X : C) (h : X --> A),
hom_weq (#F h · f) = h · hom_weq f) ×
(∏ (A : C) (B : D) (f : F A --> B) (Y : D) (k : B --> Y),
hom_weq (f · k) = hom_weq f · #G k).
Definition hom_weq {C D : precategory} {F : functor C D} {G : functor D C}
(H : natural_hom_weq F G) : ∏ {A : C} {B : D}, F A --> B ≃ A --> G B := pr1 H.
Definition hom_natural_precomp {C D : precategory} {F : functor C D} {G : functor D C}
(H : natural_hom_weq F G) : ∏ (A : C) (B : D) (f : F A --> B) (X : C) (h : X --> A),
hom_weq H (#F h · f) = h · hom_weq H f := pr1 (pr2 H).
Definition hom_natural_postcomp {C D : precategory} {F : functor C D} { G : functor D C}
(H : natural_hom_weq F G) : ∏ (A : C) (B : D) (f : F A --> B) (Y : D) (k : B --> Y),
hom_weq H (f · k) = hom_weq H f · #G k := pr2 (pr2 H).
Section Adjunction_from_HomSetIso.
Context {C D : precategory} {F : functor C D} {G : functor D C}
(H : natural_hom_weq F G).
Local Definition hom_inv : ∏ {A : C} {B : D}, A --> G B → F A --> B
:= λ A B, invmap (hom_weq H).
Definition inv_natural_precomp {A : C} {B : D} (g : A --> G B) {X : C} (h : X --> A)
: hom_inv (h · g) = #F h · hom_inv g.
Proof.
apply pathsinv0, pathsweq1.
rewrite hom_natural_precomp.
apply cancel_precomposition.
apply homotweqinvweq.
Defined.
Definition inv_natural_postcomp {A : C} {B : D} (g : A --> G B) {Y : D} (k : B --> Y)
: hom_inv (g · #G k) = hom_inv g · k.
Proof.
apply pathsinv0, pathsweq1.
rewrite hom_natural_postcomp.
apply cancel_postcomposition.
apply homotweqinvweq.
Defined.
Definition unit_from_hom : nat_trans (functor_identity C) (F ∙ G).
Proof.
use mk_nat_trans.
- exact (λ A, (hom_weq H (identity (F A)))).
- intros A A' h. cbn.
rewrite <- hom_natural_precomp.
rewrite <- hom_natural_postcomp.
apply maponpaths.
rewrite id_left.
apply id_right.
Defined.
Definition counit_from_hom : nat_trans (G ∙ F) (functor_identity D).
Proof.
use mk_nat_trans.
- exact (λ B, hom_inv (identity (G B))).
- intros B B' k. cbn.
rewrite <- inv_natural_postcomp.
rewrite <- inv_natural_precomp.
apply maponpaths.
rewrite id_left.
apply id_right.
Defined.
Definition adj_from_nathomweq : are_adjoints F G.
Proof.
apply (mk_are_adjoints F G unit_from_hom counit_from_hom).
apply dirprodpair.
- intro a. cbn.
rewrite <- inv_natural_precomp.
rewrite id_right.
apply homotinvweqweq.
- intro b. cbn.
rewrite <- hom_natural_postcomp.
rewrite id_left.
apply homotweqinvweq.
Defined.
End Adjunction_from_HomSetIso.
Section Adjunction_HomSetIso_weq.
Context {C D : category} {F : functor C D} {G : functor D C}.
Definition nathomweq_from_adj : (are_adjoints F G) → (natural_hom_weq F G)
:= λ H, (adjunction_hom_weq H,, (φ_adj_natural_precomp H,, φ_adj_natural_postcomp H)).
Lemma adj_after_nathomweq (H : are_adjoints F G)
: adj_from_nathomweq (nathomweq_from_adj H) = H.
Proof.
apply subtypeEquality'.
- apply dirprod_paths; cbn.
+ apply (nat_trans_eq (homset_property C)).
intro c. cbn.
unfold φ_adj, unit_from_are_adjoints.
rewrite functor_id.
apply id_right.
+ apply (nat_trans_eq (homset_property D)).
intro d. cbn.
unfold φ_adj_inv, counit_from_are_adjoints.
rewrite functor_id.
apply id_left.
- apply isaprop_form_adjunction.
Defined.
Lemma nathomweq_after_adj (H : natural_hom_weq F G)
: nathomweq_from_adj (adj_from_nathomweq H) = H.
Proof.
apply subtypeEquality'.
- cbn.
unfold adjunction_hom_weq.
do 2 (apply funextsec; intro).
apply subtypeEquality'.
+ cbn.
unfold φ_adj, adj_from_nathomweq. cbn.
apply funextsec.
intro f.
rewrite <- hom_natural_postcomp.
apply maponpaths.
apply id_left.
+ apply isapropisweq.
- apply isapropdirprod.
+ do 5 (apply impred_isaprop; intro).
apply C.
+ do 5 (apply impred_isaprop; intro).
apply C.
Defined.
Lemma adjunction_homsetiso_weq : (are_adjoints F G) ≃ (natural_hom_weq F G).
Proof.
∃ nathomweq_from_adj.
apply (isweq_iso _ adj_from_nathomweq).
- apply adj_after_nathomweq.
- apply nathomweq_after_adj.
Defined.
End Adjunction_HomSetIso_weq.
Section RelativeAdjunction_by_natural_hom_weq.
this definition is according to Altenkirch, Chapman and Uustalu
Reference:
Definition are_relative_adjoints {I: precategory_data} {C D: precategory_data}
(J: functor_data I C) (L: functor_data I D) (R: functor_data D C) : UU
:= ∑ (hom_weq : ∏ {X : I} {Y : D}, L X --> Y ≃ J X --> R Y),
(∏ (Y : I) (Z : D) (f : L Y --> Z) (X : I) (h : X --> Y),
hom_weq (#L h · f) = #J h · hom_weq f) ×
(∏ (X : I) (Y : D) (f : L X --> Y) (Z : D) (k : Y --> Z),
hom_weq (f · k) = hom_weq f · #R k).
the notion is a proper generalization of one of the criteria for being an adjunction
Lemma natural_hom_weq_is_are_relative_adjoints {C D: precategory}
(L: functor C D) (R: functor D C):
are_relative_adjoints (functor_identity C) L R = natural_hom_weq L R.
Proof.
apply idpath.
Qed.
End RelativeAdjunction_by_natural_hom_weq.
(L: functor C D) (R: functor D C):
are_relative_adjoints (functor_identity C) L R = natural_hom_weq L R.
Proof.
apply idpath.
Qed.
End RelativeAdjunction_by_natural_hom_weq.