Library UniMath.SubstitutionSystems.LiftingInitial
**********************************************************
Benedikt Ahrens, Ralph Matthes
SubstitutionSystems
2015
**********************************************************
Contents :
- Construction of a substitution system from an initial algebra
- Proof that the substitution system constructed from an initial algebra is an initial substitution system
Set Kernel Term Sharing.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.yoneda.
Require Import UniMath.CategoryTheory.categories.HSET.Core.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.CategoryTheory.RightKanExtension.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.CategoryTheory.EndofunctorsMonoidal.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Local Open Scope cat.
Local Coercion alg_carrier : algebra_ob >-> ob.
Section category_Algebra.
Variable C : precategory.
Variable hs : has_homsets C.
Variable CP : BinCoproducts C.
Local Notation "'EndC'":= ([C, C, hs]) .
Local Notation "'Ptd'" := (precategory_Ptd C hs).
Let hsEndC : has_homsets EndC := functor_category_has_homsets C C hs.
Let CPEndC : BinCoproducts EndC := BinCoproducts_functor_precat _ _ CP hs.
Let EndEndC := [EndC, EndC, hsEndC].
Let CPEndEndC:= BinCoproducts_functor_precat _ _ CPEndC hsEndC: BinCoproducts EndEndC.
Variable KanExt : ∏ Z : Ptd, GlobalRightKanExtensionExists _ _ (U Z) _ hs hs.
Variable H : Signature C hs C hs.
Let θ := theta H.
Definition Const_plus_H (X : EndC) : functor EndC EndC
:= BinCoproduct_of_functors _ _ CPEndC (constant_functor _ _ X) H.
Definition Id_H : functor [C, C, hs] [C, C, hs]
:= Const_plus_H (functor_identity _ : EndC).
Let Alg : precategory := FunctorAlg Id_H hsEndC.
Variable IA : Initial Alg.
Definition SpecializedGMIt (Z : Ptd) (X : EndC)
: ∏ (G : functor [C, C, hs] [C, C, hs])
(ρ : [C, C, hs] ⟦ G X, X ⟧)
(θ : functor_composite Id_H (ℓ (U Z)) ⟹ functor_composite (ℓ (U Z)) G),
∃! h : [C, C, hs] ⟦ ℓ (U Z) (` (InitialObject IA)), X ⟧,
# (ℓ (U Z)) (alg_map Id_H (InitialObject IA)) · h
=
θ (` (InitialObject IA)) · # G h · ρ
:=
SpecialGenMendlerIteration _ _ _ IA EndC hsEndC X _ (KanExt Z) .
Definition θ_in_first_arg (Z: Ptd)
: functor_fix_snd_arg [C, C,hs] Ptd [C, C, hs] (θ_source H) Z
⟹
functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_target H) Z
:= nat_trans_fix_snd_arg _ _ _ _ _ θ Z.
Definition InitAlg : Alg := InitialObject IA.
Local Lemma aux_iso_1_is_nat_trans (Z : Ptd) :
is_nat_trans
(functor_composite Id_H (ℓ (U Z)))
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_source H) Z))))
(λ X : [C, C, hs],
BinCoproductOfArrows [C, C, hs]
(CPEndC (functor_composite (U Z) (functor_identity C))
((θ_source H) (X ⊗ Z))) (CPEndC (U Z) ((θ_source H) (X ⊗ Z)))
(ρ_functor (U Z)) (nat_trans_id ((θ_source H) (X ⊗ Z):functor C C))).
Proof.
unfold is_nat_trans; simpl.
intros X X' α.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
unfold coproduct_nat_trans_data; simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data; simpl.
eapply pathscomp0; [apply BinCoproductOfArrows_comp |].
eapply pathscomp0.
2: { eapply pathsinv0. apply BinCoproductOfArrows_comp. }
apply BinCoproductOfArrows_eq.
- eapply pathscomp0. apply id_left.
apply pathsinv0.
apply id_right.
- rewrite functor_id.
do 2 rewrite id_right.
apply pathsinv0, id_left.
Qed.
Definition aux_iso_1 (Z : Ptd)
: EndEndC
⟦ functor_composite Id_H (ℓ (U Z)),
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_source H) Z))⟧.
Proof.
use tpair.
- intro X.
exact (BinCoproductOfArrows EndC (CPEndC _ _) (CPEndC _ _) (ρ_functor (U Z))
(nat_trans_id (θ_source H (X⊗Z):functor C C))).
- exact (aux_iso_1_is_nat_trans Z).
Defined.
Local Lemma aux_iso_1_inv_is_nat_trans (Z : Ptd) :
is_nat_trans
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_source H) Z))) )
(functor_composite Id_H (ℓ (U Z)))
(λ X : [C, C, hs],
BinCoproductOfArrows [C, C, hs]
(CPEndC (functor_composite (functor_identity C) (U Z))
((θ_source H) (X ⊗ Z))) (CPEndC (U Z) ((θ_source H) (X ⊗ Z)))
(λ_functor (U Z)) (nat_trans_id ((θ_source H) (X ⊗ Z):functor C C))).
Proof.
unfold is_nat_trans;
intros X X' α.
apply nat_trans_eq; try (exact hs).
intro c; simpl.
unfold coproduct_nat_trans_data; simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data; simpl.
eapply pathscomp0. apply BinCoproductOfArrows_comp.
eapply pathscomp0.
2: { eapply pathsinv0. apply BinCoproductOfArrows_comp. }
apply BinCoproductOfArrows_eq.
- rewrite id_right.
apply pathsinv0.
apply id_right.
- rewrite functor_id.
do 2 rewrite id_right.
apply pathsinv0.
apply id_left.
Qed.
Local Definition aux_iso_1_inv (Z: Ptd)
: EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_source H) Z)),
functor_composite Id_H (ℓ (U Z)) ⟧.
Proof.
use tpair.
- intro X.
exact (BinCoproductOfArrows EndC (CPEndC _ _) (CPEndC _ _) (λ_functor (U Z))
(nat_trans_id (θ_source H (X⊗Z):functor C C))).
- exact (aux_iso_1_inv_is_nat_trans Z).
Defined.
Local Lemma aux_iso_2_inv_is_nat_trans (Z : Ptd) :
is_nat_trans
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs](θ_target H) Z))) )
(functor_composite (ℓ (U Z))
(Const_plus_H (U Z)))
(λ X : [C, C, hs],
nat_trans_id
(BinCoproductObject [C, C, hs] (CPEndC (U Z) ((θ_target H) (X ⊗ Z)))
:functor C C)).
Proof.
unfold is_nat_trans; simpl.
intros X X' α.
rewrite (@id_left EndC).
rewrite (@id_right EndC).
apply nat_trans_eq; try (exact hs).
intro c; simpl.
unfold coproduct_nat_trans_data; simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data; simpl.
apply BinCoproductOfArrows_eq.
+ apply idpath.
+ unfold functor_fix_snd_arg_mor; simpl.
unfold θ_target_mor; simpl.
revert c.
apply nat_trans_eq_pointwise.
apply maponpaths.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
rewrite <- (nat_trans_ax α).
rewrite functor_id.
apply id_left.
Qed.
Local Definition aux_iso_2_inv (Z : Ptd)
: EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_target H) Z)),
functor_composite (ℓ (U Z) ) (Const_plus_H (U Z)) ⟧.
Proof.
use tpair.
- intro X.
exact (nat_trans_id ((@BinCoproductObject EndC (U Z) (θ_target H (X⊗Z)) (CPEndC _ _) )
: functor C C)).
- exact (aux_iso_2_inv_is_nat_trans Z).
Defined.
Definition θ'_Thm15 (Z: Ptd)
: EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_source H) Z)),
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_target H) Z)) ⟧
:= BinCoproductOfArrows
EndEndC (CPEndEndC _ _) (CPEndEndC _ _)
(identity (constant_functor EndC _ (U Z): functor_precategory EndC EndC hsEndC))
(θ_in_first_arg Z).
Definition ρ_Thm15 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧)
: [C, C, hs] ⟦ BinCoproductObject [C, C, hs] (CPEndC (U Z) (H `InitAlg)), `InitAlg ⟧
:= @BinCoproductArrow
EndC _ _ (CPEndC (U Z)
(H (alg_carrier _ InitAlg))) (alg_carrier _ InitAlg) (#U f)
(BinCoproductIn2 _ (CPEndC _ _) · (alg_map _ InitAlg)).
Definition SpecializedGMIt_Thm15 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧)
: ∃! h : [C, C, hs] ⟦ ℓ (U Z) (` (InitialObject IA)), pr1 InitAlg ⟧,
# (ℓ (U Z)) (alg_map Id_H (InitialObject IA)) · h
=
pr1 ((aux_iso_1 Z · θ'_Thm15 Z · aux_iso_2_inv Z)) (` (InitialObject IA)) ·
# (Const_plus_H (U Z)) h · ρ_Thm15 Z f
:= SpecializedGMIt Z (pr1 InitAlg) (Const_plus_H (U Z))
(ρ_Thm15 Z f) (aux_iso_1 Z · θ'_Thm15 Z · aux_iso_2_inv Z).
Definition bracket_Thm15 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧)
: [C, C, hs] ⟦ ℓ (U Z) (` (InitialObject IA)), `InitAlg ⟧
:= pr1 (pr1 (SpecializedGMIt_Thm15 Z f)).
Notation "⦃ f ⦄" := (bracket_Thm15 _ f) (at level 0).
Lemma bracket_Thm15_ok_part1 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧):
# U f
=
# (pr1 (ℓ (U Z))) (η InitAlg) · ⦃f⦄.
Proof.
apply nat_trans_eq; try (exact hs).
intro c.
assert (h_eq := pr2 (pr1 (SpecializedGMIt_Thm15 Z f))).
assert (h_eq' := maponpaths (fun m:EndC⟦_,pr1 InitAlg⟧ ⇒
(((aux_iso_1_inv Z):(_ ⟹ _)) _)· m) h_eq);
clear h_eq.
simpl in h_eq'.
assert (h_eq1' := maponpaths (fun m:EndC⟦_,pr1 InitAlg⟧ ⇒
(BinCoproductIn1 EndC (CPEndC _ _))· m) h_eq');
clear h_eq'.
assert (h_eq1'_inst := nat_trans_eq_pointwise h_eq1' c);
clear h_eq1'.
match goal with |[ H1 : _ = ?f |- _ = _ ] ⇒
intermediate_path f end.
- clear h_eq1'_inst.
unfold coproduct_nat_trans_data; simpl.
unfold coproduct_nat_trans_in1_data ; simpl.
repeat rewrite <- assoc .
apply BinCoproductIn1Commutes_right_in_ctx_dir.
unfold λ_functor; simpl.
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
unfold ρ_functor; simpl.
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite (@id_left EndC).
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite (@id_left EndC).
apply BinCoproductIn1Commutes_right_dir.
apply idpath.
- rewrite <- h_eq1'_inst.
clear h_eq1'_inst.
apply BinCoproductIn1Commutes_left_in_ctx_dir.
unfold λ_functor, nat_trans_id; simpl.
rewrite id_left.
repeat rewrite (id_left EndEndC).
repeat rewrite (id_left EndC).
unfold functor_fix_snd_arg_ob.
repeat rewrite assoc.
apply idpath.
Qed.
Lemma bracket_Thm15_ok_part2 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧):
(theta H) ((alg_carrier _ InitAlg) ⊗ Z) · # H ⦃f⦄ · τ InitAlg
=
# (pr1 (ℓ (U Z))) (τ InitAlg) · ⦃f⦄.
Proof.
apply nat_trans_eq; try (exact hs).
intro c.
assert (h_eq := pr2 (pr1 (SpecializedGMIt_Thm15 Z f))).
assert (h_eq' := maponpaths (fun m:EndC⟦_,pr1 InitAlg⟧ ⇒
(((aux_iso_1_inv Z):(_⟹_)) _)· m) h_eq);
clear h_eq.
assert (h_eq2' := maponpaths (fun m:EndC⟦_,pr1 InitAlg⟧ ⇒
(BinCoproductIn2 EndC (CPEndC _ _))· m) h_eq').
clear h_eq'.
assert (h_eq2'_inst := nat_trans_eq_pointwise h_eq2' c).
clear h_eq2'.
match goal with |[ H1 : _ = ?f |- _ = _ ] ⇒
intermediate_path (f) end.
- clear h_eq2'_inst.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
unfold aux_iso_1; simpl.
rewrite id_right.
rewrite id_left.
do 3 rewrite <- assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
unfold nat_trans_id; simpl. rewrite id_left.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
unfold nat_trans_fix_snd_arg_data.
apply BinCoproductIn2Commutes_right_in_double_ctx_dir.
rewrite <- assoc.
apply maponpaths.
eapply pathscomp0. 2: apply assoc.
apply maponpaths.
apply pathsinv0.
apply BinCoproductIn2Commutes.
- rewrite <- h_eq2'_inst. clear h_eq2'_inst.
apply BinCoproductIn2Commutes_left_in_ctx_dir.
repeat rewrite id_left.
apply assoc.
Qed.
Lemma bracket_Thm15_ok (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧):
bracket_property_parts f ⦃f⦄.
Proof.
split.
+ exact (bracket_Thm15_ok_part1 Z f).
+ exact (bracket_Thm15_ok_part2 Z f).
Qed.
Lemma bracket_Thm15_ok_cor (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧):
bracket_property f (bracket_Thm15 Z f).
Proof.
apply whole_from_parts.
apply bracket_Thm15_ok.
Qed.
Local Lemma foo' (Z : Ptd) (f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧) :
∏ t : ∑ h : [C, C, hs] ⟦ functor_composite (U Z) (pr1 InitAlg),
pr1 InitAlg ⟧,
bracket_property f h,
t
=
tpair
(λ h : [C, C, hs]
⟦ functor_composite (U Z) (pr1 InitAlg),
pr1 InitAlg ⟧,
bracket_property f h)
⦃f⦄ (bracket_Thm15_ok_cor Z f).
Proof.
intros [h' h'_eq].
apply subtypeEquality.
- intro.
unfold bracket_property.
apply isaset_nat_trans. exact hs.
- simpl.
apply parts_from_whole in h'_eq.
unfold bracket_Thm15.
apply path_to_ctr.
apply nat_trans_eq; try (exact hs).
intro c; simpl.
unfold coproduct_nat_trans_data.
repeat rewrite (@id_left EndC).
rewrite id_right.
repeat rewrite <- @assoc.
eapply pathscomp0.
2: { eapply pathsinv0. apply postcompWithBinCoproductArrow. }
apply BinCoproductArrowUnique.
+ destruct h'_eq as [h'_eq1 _ ]. simpl.
rewrite id_left.
assert (h'_eq1_inst := nat_trans_eq_pointwise h'_eq1 c);
clear h'_eq1.
simpl in h'_eq1_inst.
unfold coproduct_nat_trans_in1_data in h'_eq1_inst; simpl in h'_eq1_inst.
rewrite <- @assoc in h'_eq1_inst.
eapply pathscomp0.
eapply pathsinv0. exact h'_eq1_inst.
clear h'_eq1_inst.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
apply BinCoproductIn1Commutes_right_dir.
apply idpath.
+ destruct h'_eq as [_ h'_eq2]. assert (h'_eq2_inst := nat_trans_eq_pointwise h'_eq2 c);
clear h'_eq2.
simpl in h'_eq2_inst.
unfold coproduct_nat_trans_in2_data in h'_eq2_inst; simpl in h'_eq2_inst.
apply pathsinv0 in h'_eq2_inst.
rewrite <- assoc in h'_eq2_inst.
eapply pathscomp0. exact h'_eq2_inst. clear h'_eq2_inst.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
apply BinCoproductIn2Commutes_right_in_double_ctx_dir.
unfold nat_trans_fix_snd_arg_data; simpl.
do 2 rewrite <- assoc.
apply maponpaths.
rewrite <- assoc.
apply maponpaths.
apply pathsinv0.
apply BinCoproductIn2Commutes.
Qed.
Definition bracket_for_InitAlg : bracket InitAlg.
Proof.
intros Z f.
use tpair.
- use tpair.
+ exact (bracket_Thm15 Z f).
+ exact (bracket_Thm15_ok_cor Z f).
- simpl; apply foo'.
Defined.
Definition InitHSS : hss_precategory CP H.
Proof.
∃ (InitAlg).
exact bracket_for_InitAlg.
Defined.
Local Definition Ghat : EndEndC := Const_plus_H (pr1 InitAlg).
Definition constant_nat_trans (C' D : precategory)
(hsD : has_homsets D)
(d d' : D)
(m : d --> d')
: [C', D, hsD] ⟦constant_functor C' D d, constant_functor C' D d'⟧.
Proof.
∃ (λ _, m).
abstract (
intros ? ? ? ;
intermediate_path m ;
[
apply id_left |
apply pathsinv0 ;
apply id_right] ).
Defined.
Definition thetahat_0 (Z : Ptd) (f : Z --> ptd_from_alg InitAlg):
EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_source H) Z)),
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (pr1 InitAlg))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_target H) Z)) ⟧ .
Proof.
exact (BinCoproductOfArrows EndEndC (CPEndEndC _ _) (CPEndEndC _ _)
(constant_nat_trans _ _ hsEndC _ _ (#U f))
(θ_in_first_arg Z)).
Defined.
Local Definition iso1' (Z : Ptd) : EndEndC ⟦ functor_composite Id_H
(ℓ (U Z)),
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (U Z))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_source H) Z)) ⟧.
Proof.
exact (aux_iso_1 Z).
Defined.
Local Lemma is_nat_trans_iso2' (Z : Ptd) :
is_nat_trans
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (pr1 InitAlg))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_target H) Z))))
(functor_composite (ℓ (U Z)) Ghat)
(λ X : [C, C, hs],
nat_trans_id
(BinCoproductObject [C, C, hs]
(CPEndC
((constant_functor [C, C, hs] [C, C, hs] (pr1 InitAlg)) X)
((θ_target H) (X ⊗ Z)))
:functor C C)).
Proof.
unfold is_nat_trans; simpl.
intros X X' α.
rewrite (@id_left EndC).
rewrite (@id_right EndC).
apply nat_trans_eq; try (exact hs).
intro c; simpl.
unfold coproduct_nat_trans_data; simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data; simpl.
apply BinCoproductOfArrows_eq.
- apply idpath.
- unfold functor_fix_snd_arg_mor; simpl.
unfold θ_target_mor; simpl.
revert c.
apply nat_trans_eq_pointwise.
apply maponpaths.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
rewrite <- (nat_trans_ax α).
rewrite functor_id.
apply id_left.
Qed.
Local Definition iso2' (Z : Ptd) : EndEndC ⟦
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hs] [C, C, hs] (pr1 InitAlg))
(functor_fix_snd_arg [C, C, hs] Ptd [C, C, hs] (θ_target H) Z)),
functor_composite (ℓ (U Z)) Ghat ⟧.
Proof.
use tpair.
- intro X.
exact (nat_trans_id ((@BinCoproductObject EndC _ (θ_target H (X⊗Z)) (CPEndC _ _) )
: functor C C)).
- exact (is_nat_trans_iso2' Z).
Defined.
Definition thetahat (Z : Ptd) (f : Z --> ptd_from_alg InitAlg)
: EndEndC ⟦ functor_composite Id_H
(ℓ (U Z)),
functor_composite (ℓ (U Z)) (Ghat) ⟧.
Proof.
exact (iso1' Z · thetahat_0 Z f · iso2' Z).
Defined.
Local Notation "C '^op'" := (opp_precat C) (at level 3, format "C ^op").
Let Yon (X : EndC) : functor EndC^op HSET := yoneda_objects EndC hsEndC X.
Definition Phi_fusion (Z : Ptd) (X : EndC) (b : pr1 InitAlg --> X) :
functor_composite (functor_opp (ℓ (U Z))) (Yon (pr1 InitAlg))
⟹
functor_composite (functor_opp (ℓ (U Z))) (Yon X) .
Proof.
use tpair.
- intro Y.
intro a.
exact (a · b).
- abstract (
intros ? ? ? ; simpl ;
apply funextsec ;
intro ;
unfold yoneda_objects_ob ; simpl ;
unfold compose ;
simpl ;
apply nat_trans_eq ;
[
assumption
|
simpl ; intros ? ;
apply pathsinv0, assoc ]).
Defined.
Lemma ishssMor_InitAlg (T' : hss CP H) :
@ishssMor C hs CP H
InitHSS T'
(InitialArrow IA (pr1 T') : @algebra_mor EndC Id_H InitAlg T' ).
Proof.
unfold ishssMor.
unfold isbracketMor.
intros Z f.
set (β0 := InitialArrow IA (pr1 T')).
match goal with | [|- _ · ?b = _ ] ⇒ set (β := b) end.
set ( rhohat := BinCoproductArrow EndC (CPEndC _ _ ) β (tau_from_alg T')
: pr1 Ghat T' --> T').
set (X:= SpecializedGMIt Z _ Ghat rhohat (thetahat Z f)).
intermediate_path (pr1 (pr1 X)).
- set (TT:= fusion_law _ _ _ IA _ hsEndC (pr1 InitAlg) T' _ (KanExt Z)).
set (Psi := ψ_from_comps _ (Id_H) _ hsEndC _ (ℓ (U Z)) (Const_plus_H (U Z)) (ρ_Thm15 Z f)
(aux_iso_1 Z · θ'_Thm15 Z · aux_iso_2_inv Z) ).
set (T2 := TT Psi).
set (T3 := T2 (ℓ (U Z)) (KanExt Z)).
set (Psi' := ψ_from_comps _ (Id_H) _ hsEndC _ (ℓ (U Z)) (Ghat) (rhohat)
(iso1' Z · thetahat_0 Z f · iso2' Z) ).
set (T4 := T3 Psi').
set (Φ := (Phi_fusion Z T' β)).
set (T5 := T4 Φ).
intermediate_path (Φ _ (fbracket InitHSS f)).
+ apply idpath.
+ eapply pathscomp0.
2: { apply T5.
apply funextsec. intro t.
simpl.
unfold compose. simpl.
apply nat_trans_eq. assumption.
simpl.
intro c.
rewrite id_right.
rewrite id_right.
apply BinCoproductArrow_eq_cor.
×
clear TT T2 T3 T4 T5.
do 5 rewrite <- assoc.
apply BinCoproductIn1Commutes_left_in_ctx_dir.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
simpl.
rewrite id_left.
apply BinCoproductIn1Commutes_left_in_ctx_dir.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
simpl.
rewrite id_left.
apply BinCoproductIn1Commutes_left_in_ctx_dir.
simpl.
rewrite id_left.
apply BinCoproductIn1Commutes_left_in_ctx_dir.
rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
simpl.
rewrite id_left.
apply BinCoproductIn1Commutes_right_dir.
apply idpath.
×
clear TT T2 T3 T4 T5.
do 5 rewrite <- assoc.
apply BinCoproductIn2Commutes_left_in_ctx_dir.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
rewrite (@id_left EndC).
apply BinCoproductIn2Commutes_left_in_ctx_dir.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
unfold nat_trans_fix_snd_arg_data.
repeat rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_left_in_ctx_dir.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
assert (H_nat_inst := functor_comp H t β).
assert (H_nat_inst_c := nat_trans_eq_pointwise H_nat_inst c); clear H_nat_inst.
{
match goal with |[ H1 : _ = ?f |- _ = _· ?g · ?h ] ⇒
intermediate_path (f·g·h) end.
+ clear H_nat_inst_c.
simpl.
repeat rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_left_in_ctx_dir.
simpl.
unfold coproduct_nat_trans_in2_data, coproduct_nat_trans_data.
assert (Hyp := τ_part_of_alg_mor _ hs CP _ _ _ (InitialArrow IA (pr1 T'))).
assert (Hyp_c := nat_trans_eq_pointwise Hyp c); clear Hyp.
simpl in Hyp_c.
eapply pathscomp0. eapply pathsinv0. exact Hyp_c.
clear Hyp_c.
apply maponpaths.
apply pathsinv0.
apply BinCoproductIn2Commutes.
+ rewrite <- H_nat_inst_c.
apply idpath.
}
}
apply cancel_postcomposition.
apply idpath.
- apply pathsinv0.
apply path_to_ctr.
apply nat_trans_eq; try (exact hs).
intro c.
simpl.
rewrite id_right.
apply BinCoproductArrow_eq_cor.
+ repeat rewrite <- assoc.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
simpl.
unfold coproduct_nat_trans_in1_data,
coproduct_nat_trans_in2_data,
coproduct_nat_trans_data.
rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
simpl.
repeat rewrite <- assoc.
eapply pathscomp0.
2: { apply maponpaths. apply BinCoproductIn1Commutes_right_in_ctx_dir.
rewrite id_left. apply BinCoproductIn1Commutes_right_dir.
apply idpath. }
do 2 rewrite assoc.
eapply pathscomp0.
apply cancel_postcomposition.
assert (ptd_mor_commutes_inst := ptd_mor_commutes _ (ptd_from_alg_mor _ hs CP H β0) ((pr1 Z) c)).
apply ptd_mor_commutes_inst.
assert (fbracket_η_inst := fbracket_η T' (f· ptd_from_alg_mor _ hs CP H β0)).
assert (fbracket_η_inst_c := nat_trans_eq_pointwise fbracket_η_inst c); clear fbracket_η_inst.
apply (!fbracket_η_inst_c).
+
repeat rewrite <- assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data, coproduct_nat_trans_data.
rewrite id_left.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
unfold nat_trans_fix_snd_arg_data.
simpl.
unfold coproduct_nat_trans_in2_data.
repeat rewrite <- assoc.
eapply pathscomp0.
2: { apply maponpaths.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_dir.
apply idpath.
}
do 2 rewrite assoc.
eapply pathscomp0.
apply cancel_postcomposition.
eapply pathsinv0.
assert (τ_part_of_alg_mor_inst := τ_part_of_alg_mor _ hs CP H _ _ β0).
assert (τ_part_of_alg_mor_inst_Zc :=
nat_trans_eq_pointwise τ_part_of_alg_mor_inst ((pr1 Z) c));
clear τ_part_of_alg_mor_inst.
apply τ_part_of_alg_mor_inst_Zc.
simpl.
unfold coproduct_nat_trans_in2_data.
repeat rewrite <- assoc.
eapply pathscomp0.
apply maponpaths.
rewrite assoc.
eapply pathsinv0.
assert (fbracket_τ_inst := fbracket_τ T' (f· ptd_from_alg_mor _ hs CP H β0)).
assert (fbracket_τ_inst_c := nat_trans_eq_pointwise fbracket_τ_inst c); clear fbracket_τ_inst.
apply fbracket_τ_inst_c.
simpl.
unfold coproduct_nat_trans_in2_data.
repeat rewrite assoc.
apply cancel_postcomposition.
apply cancel_postcomposition.
assert (Hyp:
((# (pr1 (ℓ(U Z))) (# H β))·
(theta H) ((alg_carrier _ T') ⊗ Z)·
# H (fbracket T' (f· ptd_from_alg_mor C hs CP H β0))
=
θ (tpair (λ _ : functor C C, ptd_obj C) (alg_carrier _ (InitialObject IA)) Z) ·
# H (# (pr1 (ℓ(U Z))) β ·
fbracket T' (f· ptd_from_alg_mor C hs CP H β0)))).
2: { assert (Hyp_c := nat_trans_eq_pointwise Hyp c); clear Hyp.
exact Hyp_c. }
clear c. clear X. clear rhohat.
rewrite (functor_comp H).
rewrite assoc.
apply cancel_postcomposition.
fold θ.
apply nat_trans_eq; try (exact hs).
intro c.
assert (θ_nat_1_pointwise_inst := θ_nat_1_pointwise _ hs _ hs H θ _ _ β Z c).
eapply pathscomp0 ; [exact θ_nat_1_pointwise_inst | ].
clear θ_nat_1_pointwise_inst.
simpl.
apply maponpaths.
assert (Hyp: # H (β ∙∙ nat_trans_id (pr1 Z)) = # H (# (pr1 (ℓ(U Z))) β)).
{ apply maponpaths.
apply nat_trans_eq; try (exact hs).
intro c'.
simpl.
rewrite functor_id.
apply id_right. }
apply (nat_trans_eq_pointwise Hyp c).
Qed.
Definition hss_InitMor : ∏ T' : hss CP H, hssMor InitHSS T'.
Proof.
intro T'.
∃ (InitialArrow IA (pr1 T')).
apply ishssMor_InitAlg.
Defined.
Lemma hss_InitMor_unique (T' : hss_precategory CP H):
∏ t : hss_precategory CP H ⟦ InitHSS, T' ⟧, t = hss_InitMor T'.
Proof.
intro t.
apply (invmap (hssMor_eq1 _ _ _ _ _ _ _ _ )).
apply (@InitialArrowUnique _ IA (pr1 T') (pr1 t)).
Qed.
Lemma isInitial_InitHSS : isInitial (hss_precategory CP H) InitHSS.
Proof.
use mk_isInitial.
intro T.
∃ (hss_InitMor T).
apply hss_InitMor_unique.
Defined.
Lemma InitialHSS : Initial (hss_precategory CP H).
Proof.
use (mk_Initial InitHSS).
apply isInitial_InitHSS.
Defined.
End category_Algebra.