Library UniMath.CategoryTheory.Chains.Chains

Chains

Chains are diagrams of the form X₀ → X₁ → ⋯.
Authors: Anders Mörtberg and Benedikt Ahrens, 2015-2016
Define the chain:
     0 --> 1 --> 2 --> 3 --> ...
with exactly one arrow from n to S n.

Definition nat_graph : graph := make_graph nat (λ m n, 1 + m = n).

Notation "'chain'" := (diagram nat_graph).

Definition mapchain {C D : precategory} (F : functor C D)
           (c : chain C) : chain D := mapdiagram F c.

Any i < j gives a morphism in the chain via composition
Definition chain_mor {C : precategory} (c : chain C) {i j} :
  i < j Cdob c i, dob c j.
Proof.
induction j as [|j IHj].
- intros Hi0; destruct (negnatlthn0 0 Hi0).
- intros Hij.
  destruct (natlehchoice4 _ _ Hij) as [|H].
  + apply (IHj h · dmor c (idpath (S j))).
  + apply dmor, (maponpaths S H).
Defined.

For any cocone `cc` under the chain, the following diagram commutes:
c i --> c j | | | V +----> cc
Lemma chain_mor_coconeIn {C : precategory} (c : chain C) (x : C)
  (cc : cocone c x) i : j (Hij : i < j),
  chain_mor c Hij · coconeIn cc j = coconeIn cc i.
Proof.
induction j as [|j IHj].
- intros Hi0; destruct (negnatlthn0 _ Hi0).
- intros Hij; simpl.
  destruct (natlehchoice4 _ _ Hij).
  + rewrite <- (IHj h), <- assoc.
    apply maponpaths, coconeInCommutes.
  + destruct p.
    apply coconeInCommutes.
Qed.

One of the hypotheses of this lemma is redundant, however when stated this way the lemma can be used for any two proofs making it easier to apply.
Lemma chain_mor_right {C : precategory} {c : chain C} {i j} (Hij : i < j) (HSij : S i < j) :
  dmor c (idpath (S i)) · chain_mor c HSij = chain_mor c Hij.
Proof.
induction j as [|j IHj].
- destruct (negnatlthn0 _ Hij).
- simpl.
  destruct (natlehchoice4 _ _ Hij).
  + destruct (natlehchoice4 _ _ HSij).
    × now rewrite <- (IHj h h0), assoc.
    × destruct p; simpl.
      destruct (natlehchoice4 _ _ h); [destruct (isirreflnatlth _ h0)|].
      apply cancel_postcomposition, maponpaths, isasetnat.
  + destruct p, (isirreflnatlth _ HSij).
Qed.

See comment for chain_mor_right about the redundant hypothesis
Lemma chain_mor_left {C : precategory} {c : chain C} {i j} (Hij : i < j) (HiSj : i < S j) :
  chain_mor c Hij · dmor c (idpath (S j)) = chain_mor c HiSj.
Proof.
destruct j.
- destruct (negnatlthn0 _ Hij).
- simpl; destruct (natlehchoice4 i (S j) HiSj).
  + destruct (natlehchoice4 _ _ h).
    × destruct (natlehchoice4 _ _ Hij); [|destruct p, (isirreflnatlth _ h0)].
      apply cancel_postcomposition, cancel_postcomposition, maponpaths, isasetbool.
    × destruct p; simpl.
      destruct (natlehchoice4 _ _ Hij); [destruct (isirreflnatlth _ h0)|].
      apply cancel_postcomposition, maponpaths, isasetnat.
  + generalize Hij; rewrite p; intros H.
    destruct (isirreflnatlth _ H).
Qed.

Construct the chain:
         !          F!            F^2 !
     0 -----> F 0 ------> F^2 0 --------> F^3 0 ---> ...
Definition initChain {C : precategory} (InitC : Initial C) (F : functor C C) : chain C.
Proof.
(λ n, iter_functor F n InitC).
intros m n Hmn. destruct Hmn. simpl.
induction m as [|m IHm]; simpl.
- exact (InitialArrow InitC _).
- exact (# F IHm).
Defined.

Definition of (ω-)(co)continuous functors


Section cocont.

Context {C D : precategory} (F : functor C D).

Definition is_cocont : UU :=
   (g : graph) (d : diagram g C) (L : C) (cc : cocone d L),
    preserves_colimit F d L cc.

Definition is_cont : UU :=
   (g : graph) (d : diagram g C) (L : C) (cc : cone d L),
    preserves_limit F d L cc.

Definition is_omega_cocont : UU :=
   (c : chain C) (L : C) (cc : cocone c L),
  preserves_colimit F c L cc.

Definition is_omega_cont {C D : precategory} (F : functor C D) : UU :=
   (c : chain C) (L : C) (cc : cone c L),
  preserves_limit F c L cc.

End cocont.

Definition omega_cocont_functor (C D : precategory) : UU :=
   (F : functor C D), is_omega_cocont F.

Definition omega_cont_functor (C D : precategory) : UU :=
   (F : functor C D), is_omega_cont F.