Library UniMath.Bicategories.DisplayedBicats.Examples.ContravariantFunctor
Bicategories
Benedikt Ahrens, Marco Maggesi February 2018Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.AdjointUnique.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispInvertibles.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Local Open Scope cat.
Local Open Scope bicategory_scope.
Section fix_a_category.
Local Notation "∁" := bicat_of_cats.
Variable (K : univalent_category).
Definition disp_presheaf_cat_ob_mor : disp_cat_ob_mor ∁.
Proof.
use tpair.
+ exact (λ c : univalent_category, functor (op_unicat c) K).
+ cbn. intros c d ty ty' f.
exact (nat_trans ty (functor_composite (functor_opp f) ty')).
Defined.
Definition disp_presheaf_cat_data : disp_cat_data ∁.
Proof.
∃ disp_presheaf_cat_ob_mor.
use tpair.
+ intros c f.
set (T:= nat_trans_id (pr1 f) ).
exact T.
+ intros c d e f g ty ty' ty''.
intros x y.
set (T1 := x).
set (T2 := @pre_whisker
(op_unicat c) (op_unicat d) K
(functor_opp f) _ _ (y : nat_trans (ty': functor _ _ ) _ )).
exact (@nat_trans_comp (op_unicat c) K _ _ _ T1 T2 ).
Defined.
Definition disp_presheaf_prebicat_1_id_comp_cells : disp_prebicat_1_id_comp_cells bicat_of_cats.
Proof.
∃ disp_presheaf_cat_data.
intros c d f g a.
intros p p'.
intros x y.
exact (x = @nat_trans_comp (op_unicat c) K _ _ _ y (post_whisker (op_nt a) p')).
Defined.
Definition disp_presheaf_prebicat_ops : disp_prebicat_ops disp_presheaf_prebicat_1_id_comp_cells.
Proof.
repeat split; cbn.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
intro. rewrite (functor_id y). apply pathsinv0, id_right.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
intro. rewrite (functor_id y). rewrite id_left, id_right. apply idpath.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
intro. rewrite (functor_id y). apply idpath.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
intro. rewrite (functor_id y). rewrite id_left, id_right. apply idpath.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
intro. rewrite (functor_id y). repeat rewrite id_right. apply idpath.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
intro. rewrite (functor_id z). rewrite id_right. apply pathsinv0, assoc.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
intro. rewrite (functor_id z). rewrite id_right. apply assoc.
- intros. apply nat_trans_eq; try apply (homset_property K).
intro.
rewrite X. rewrite X0.
cbn.
pose (T:= @functor_comp (op_cat b) _ y).
rewrite <- assoc.
rewrite <- T.
apply idpath.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
rewrite X.
intro. apply assoc.
- intros. apply nat_trans_eq; try apply (homset_property K); cbn.
rewrite X.
intros. cbn.
pose (T:= nat_trans_ax gg).
cbn in T.
rewrite <- assoc.
rewrite T.
apply assoc.
Qed.
Definition disp_presheaf_prebicat_data : disp_prebicat_data ∁
:= _ ,, disp_presheaf_prebicat_ops.
Lemma disp_presheaf_prebicat_laws : disp_prebicat_laws disp_presheaf_prebicat_data.
Proof.
repeat split; intro;
intros;
apply isaset_nat_trans; apply K.
Qed.
Definition disp_presheaf_prebicat : disp_prebicat ∁ :=
(disp_presheaf_prebicat_data,, disp_presheaf_prebicat_laws).
Lemma has_disp_cellset_disp_presheaf_prebicat
: has_disp_cellset disp_presheaf_prebicat.
Proof.
red. intros.
unfold disp_2cells.
cbn.
apply isasetaprop.
cbn in ×.
apply isaset_nat_trans.
apply K.
Qed.
Definition disp_presheaf_bicat : disp_bicat ∁
:= (disp_presheaf_prebicat,, has_disp_cellset_disp_presheaf_prebicat).
Definition disp_presheaves_all_invertible
{C D : ∁}
{F G : ∁⟦C, D⟧}
(α : invertible_2cell F G)
{CD : disp_presheaf_bicat C}
{FC : disp_presheaf_bicat D}
{γF : CD -->[ F] FC}
{γG : CD -->[ G ] FC}
(p : disp_2cells α γF γG)
: is_disp_invertible_2cell α p.
Proof.
use tpair.
- apply nat_trans_eq.
{ apply K. }
intro x.
refine (!_).
refine (maponpaths (λ z, z · _) (nat_trans_eq_pointwise p x) @ _).
refine (!(assoc _ _ _) @ _).
refine (maponpaths (λ z, _ · z) (!(functor_comp FC _ _)) @ _).
etrans.
{
do 2 apply maponpaths.
exact (nat_trans_eq_pointwise (pr222 α) x).
}
etrans.
{
apply maponpaths.
apply (functor_id FC).
}
apply id_right.
- split ; apply isaset_nat_trans ; apply K.
Qed.
Definition disp_presheaves_is_univalent_2_1
: disp_univalent_2_1 disp_presheaf_bicat.
Proof.
apply fiberwise_local_univalent_is_univalent_2_1.
intros C D F CD FC α β.
use isweqimplimpl.
- intro p ; cbn in × ; unfold idfun in ×.
apply nat_trans_eq.
{ apply K. }
intro x.
pose (nat_trans_eq_pointwise (pr1 p) x) as q.
cbn in q.
rewrite q.
rewrite (functor_id FC), id_right.
reflexivity.
- apply isaset_nat_trans.
apply K.
- apply isofhleveltotal2.
+ apply isaset_nat_trans.
apply K.
+ intro.
apply isaprop_is_disp_invertible_2cell.
Qed.
Definition disp_presheaves_adjequiv
{C : ∁}
(FC FC' : disp_presheaf_bicat C)
: @invertible_2cell bicat_of_cats _ _ FC FC'
→ disp_adjoint_equivalence (internal_adjoint_equivalence_identity C) FC FC'.
Proof.
intros α.
use tpair.
- apply α.
- use tpair.
+ use tpair.
× apply α.
× split ; apply nat_trans_eq ; try (apply K) ; intro x ; cbn.
** rewrite (functor_id FC), id_right.
exact (!(nat_trans_eq_pointwise (pr122 α) x)).
** rewrite (functor_id FC'), id_left.
exact (nat_trans_eq_pointwise (pr222 α) x).
+ split ; split.
× apply isaset_nat_trans.
apply K.
× apply isaset_nat_trans.
apply K.
× apply disp_presheaves_all_invertible.
× apply disp_presheaves_all_invertible.
Defined.
Definition disp_presheaves_adjequiv_inv
{C : ∁}
(FC FC' : disp_presheaf_bicat C)
: disp_adjoint_equivalence (internal_adjoint_equivalence_identity C) FC FC'
→ @invertible_2cell bicat_of_cats _ _ FC FC'.
Proof.
intros α.
use tpair.
- apply α.
- use tpair.
+ apply α.
+ split.
× apply nat_trans_eq.
{ apply K. }
intro x ; cbn.
pose (nat_trans_eq_pointwise (pr1(pr212 α)) x) as p.
cbn in p.
rewrite (functor_id FC), id_right in p.
exact (!p).
× apply nat_trans_eq.
{ apply K. }
intro x ; cbn.
pose (nat_trans_eq_pointwise (pr2(pr212 α)) x) as p.
cbn in p.
rewrite (functor_id FC'), id_right in p.
exact p.
Defined.
Definition disp_presheaves_adjequiv_weq
{C : ∁}
(FC FC' : disp_presheaf_bicat C)
: @invertible_2cell bicat_of_cats _ _ FC FC'
≃ disp_adjoint_equivalence (internal_adjoint_equivalence_identity C) FC FC'.
Proof.
∃ (disp_presheaves_adjequiv FC FC').
use isweq_iso.
- exact (disp_presheaves_adjequiv_inv FC FC').
- intro x.
apply subtypePath.
{ intro ; apply isaprop_is_invertible_2cell. }
reflexivity.
- intro x.
apply subtypePath.
{
intro.
apply isaprop_disp_left_adjoint_equivalence.
+ apply univalent_cat_is_univalent_2_1.
+ apply disp_presheaves_is_univalent_2_1.
}
reflexivity.
Defined.
Definition disp_presheaves_idtoiso_2_0
{C : ∁}
(FC FC' : disp_presheaf_bicat C)
: FC = FC' ≃ disp_adjoint_equivalence (internal_adjoint_equivalence_identity C) FC FC'
:= ((disp_presheaves_adjequiv_weq FC FC')
∘ (make_weq (@idtoiso_2_1 bicat_of_cats _ _ FC FC')
(univalent_cat_is_univalent_2_1 _ _ _ _)))%weq.
Definition disp_presheaves_is_univalent_2_0
: disp_univalent_2_0 disp_presheaf_bicat.
Proof.
apply fiberwise_univalent_2_0_to_disp_univalent_2_0.
intros C FC FC'.
use weqhomot.
- exact (disp_presheaves_idtoiso_2_0 FC FC').
- intro p.
apply subtypePath.
{
intro.
apply isaprop_disp_left_adjoint_equivalence.
+ apply univalent_cat_is_univalent_2_1.
+ apply disp_presheaves_is_univalent_2_1.
}
induction p ; cbn.
reflexivity.
Defined.
Definition disp_presheaves_is_univalent_2
: disp_univalent_2 disp_presheaf_bicat.
Proof.
split.
- exact disp_presheaves_is_univalent_2_0.
- exact disp_presheaves_is_univalent_2_1.
Defined.
Definition disp_2cells_isaprop_presheaf
: disp_2cells_isaprop disp_presheaf_bicat.
Proof.
intro; intros.
apply isaset_nat_trans.
apply K.
Qed.
Definition disp_locally_groupoid_presheaf
: disp_locally_groupoid disp_presheaf_bicat.
Proof.
intro; intros.
apply disp_presheaves_all_invertible.
Qed.
End fix_a_category.