Library UniMath.Bicategories.Core.AdjointUnique
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.TransportLaws.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Local Open Scope cat.
Local Open Scope bicategory_scope.
Definition adjoint_unique_map
{C : bicat}
{X Y : C}
(l : C⟦X,Y⟧)
(A₁ : left_adjoint l)
(A₂ : left_adjoint l)
: left_adjoint_right_adjoint A₁ ==> left_adjoint_right_adjoint A₂
:= (lunitor _) o _ ◅ left_adjoint_counit A₁
o lassociator _ _ _
o left_adjoint_unit A₂ ▻ _
o rinvunitor _.
Section AdjointUniqueMapCompose.
Context {C : bicat}
{X Y : C}.
Definition help₁
(f : C⟦X,Y⟧) (g g' : C⟦Y,X⟧)
(η : id₁ X ==> g ∘ f)
(η' : id₁ X ==> g' ∘ f)
: ((g ∘ f) ◅ (η' ▻ g o rinvunitor _))
o η ▻ g
= (η ▻ (g' ∘ f ∘ g) o rinvunitor _)
o η' ▻ g.
Proof.
rewrite <- rwhisker_vcomp.
rewrite !vassocr.
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite rinvunitor_natural.
rewrite <- !vassocr.
rewrite <- !interchange.
rewrite !id2_left, !id2_right.
rewrite <- (id2_left η).
rewrite interchange.
rewrite id2_left.
apply (maponpaths (λ z, z • _)).
rewrite left_unit_inv_assoc₂.
rewrite <- triangle_l_inv.
rewrite lunitor_V_id_is_left_unit_V_id.
rewrite !lwhisker_hcomp.
reflexivity.
Qed.
Definition help₂
(f : C⟦X,Y⟧) (g g' : C⟦Y,X⟧)
(η : id₁ X ==> g ∘ f)
(η' : id₁ X ==> g' ∘ f)
: g ◅ ((f ◅ η') ▻ g)
o (g ◅ (linvunitor f ▻ g)
o (lassociator _ _ _ o η ▻ g))
= g ◅ (rassociator _ _ _)
o lassociator _ _ _
o η ▻ (g' ∘ f ∘ g)
o rinvunitor _
o η' ▻ g.
Proof.
rewrite !vassocr.
rewrite !(maponpaths (λ z, _ o (_ o z)) (!(vassocr _ _ _))).
rewrite <- help₁.
rewrite <- !vassocr.
apply maponpaths.
rewrite <- !rwhisker_vcomp.
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ _ o z) (!(vassocr _ _ _))).
rewrite <- hcomp_identity.
rewrite hcomp_lassoc.
rewrite !vassocr.
rewrite hcomp_lassoc.
rewrite <- !vassocr.
apply maponpaths.
rewrite <- !interchange.
rewrite !id2_left.
rewrite hcomp_rassoc.
rewrite !vassocr.
rewrite <- (id2_right (id₂ g)).
rewrite !interchange.
rewrite triangle_r_inv.
rewrite id2_right.
reflexivity.
Qed.
Variable (l : C⟦X,Y⟧)
(A₁ : left_adjoint l)
(A₂ : left_adjoint l).
Local Notation r₁ := (left_adjoint_right_adjoint A₁).
Local Notation r₂ := (left_adjoint_right_adjoint A₂).
Local Notation η₁ := (left_adjoint_unit A₁).
Local Notation η₂ := (left_adjoint_unit A₂).
Local Notation ε₁ := (left_adjoint_counit A₁).
Local Notation ε₂ := (left_adjoint_counit A₂).
Local Notation r₁_to_r₂ := (adjoint_unique_map l A₁ A₂).
Local Notation r₂_to_r₁ := (adjoint_unique_map l A₂ A₁).
Local Definition composition_of_triangles : r₁ ==> r₁
:= (lunitor r₁)
o r₁ ◅ ε₁
o lassociator r₁ l r₁
o (r₁ ◅ ((runitor l)
o ε₂ ▻ l
o rassociator l r₂ l
o l ◅ η₂
o linvunitor l) o η₁) ▻ r₁
o rinvunitor r₁.
Local Definition composition_of_triangles_is_identity
: composition_of_triangles = id₂ r₁.
Proof.
unfold composition_of_triangles.
rewrite !vassocr.
rewrite (internal_triangle1 A₂).
rewrite id2_rwhisker, id2_right.
exact (internal_triangle2 A₁).
Qed.
Local Definition ε₁_natural
: ε₁ o (runitor l o ε₂ ⋆⋆ id₂ l) ⋆⋆ id₂ r₁
=
ε₂ o l ◅ (lunitor r₂ o r₂ ◅ ε₁) o lassociator (l ∘ r₁) r₂ l o lassociator r₁ l (l ∘ r₂).
Proof.
rewrite <- rwhisker_vcomp.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ _ o (_ o z)) (!(vassocr _ _ _))).
rewrite !rwhisker_hcomp.
rewrite <- hcomp_lassoc.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ _ o z) (!(vassocr _ _ _))).
rewrite <- !rwhisker_hcomp.
rewrite lunitor_triangle.
rewrite <- !vassocr.
rewrite <- vcomp_lunitor.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ _ o z) (!(vassocr _ _ _))).
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite <- !interchange.
rewrite !hcomp_identity, id2_right, id2_left.
rewrite <- (id2_left ε₁).
rewrite <- (id2_right ε₂).
rewrite interchange.
rewrite <- !vassocr, !id2_right, !id2_left.
rewrite <- runitor_lunitor_identity.
rewrite <- !rwhisker_hcomp.
rewrite !vcomp_runitor.
rewrite !vassocr.
rewrite <- hcomp_identity.
rewrite <- hcomp_lassoc.
rewrite <- !lwhisker_hcomp.
rewrite <- lwhisker_vcomp.
rewrite <- !vassocr.
apply maponpaths.
rewrite !vassocr.
apply (maponpaths (λ z, z • ε₁)).
rewrite <- runitor_triangle.
rewrite !vassocr.
rewrite lassociator_rassociator, id2_left.
reflexivity.
Qed.
Definition composition_of_maps : r₂_to_r₁ o r₁_to_r₂ = composition_of_triangles.
Proof.
unfold r₁_to_r₂, r₂_to_r₁, composition_of_triangles.
rewrite !vassocr.
apply (maponpaths (λ z, z • lunitor r₁)).
rewrite <- !vassocr.
apply (maponpaths (λ z, rinvunitor r₁ • z)).
rewrite <- !lwhisker_vcomp, <- !rwhisker_vcomp.
rewrite <- !lwhisker_vcomp.
rewrite <- !vassocr.
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ z • _) (!(vassocr _ _ _))).
rewrite hcomp_lassoc.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ (z • _) • _) (!(vassocr _ _ _))).
rewrite hcomp_lassoc.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ ((z • _) • _) • _) (!(vassocr _ _ _))).
rewrite hcomp_lassoc.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ (((z • _) • _) • _) • _) (!(vassocr _ _ _))).
rewrite hcomp_lassoc.
rewrite !vassocr.
rewrite !(maponpaths (fun z ⇒ ((((z • _) • _) • _) • _) • _) (!(vassocr _ _ _))).
rewrite hcomp_lassoc.
rewrite !vassocr.
rewrite <- !lwhisker_hcomp, <- !rwhisker_hcomp.
rewrite help₂.
rewrite <- !vassocr.
apply maponpaths.
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite <- !interchange.
rewrite !vassocr.
rewrite <- inverse_pentagon_3.
rewrite <- !vassocr.
do 3 rewrite interchange.
rewrite !id2_left.
rewrite !vassocr.
rewrite !(maponpaths (λ z, ((z • _) • _) • _) (!(vassocr _ _ _))).
rewrite <- hcomp_lassoc.
rewrite <- interchange.
rewrite !hcomp_identity.
rewrite !vassocr, id2_left.
rewrite ε₁_natural.
rewrite <- rwhisker_vcomp.
repeat (rewrite <- (id2_right (id₂ r₁)) ; rewrite interchange).
rewrite !id2_right.
rewrite !vassocr.
apply (maponpaths (λ z, z • _)).
rewrite !(maponpaths (λ z, ((z • _) • _) • _) (!(vassocr _ _ _))).
rewrite <- !rwhisker_hcomp.
rewrite rwhisker_vcomp.
rewrite rassociator_lassociator, id2_rwhisker, id2_right.
rewrite !vassocr.
rewrite !(maponpaths (λ z, (z • _) • _) (!(vassocr _ _ _))).
rewrite rwhisker_vcomp.
rewrite rassociator_lassociator, id2_rwhisker, id2_right.
rewrite !vassocr.
rewrite !(maponpaths (λ z, z • _) (!(vassocr _ _ _))).
rewrite !rwhisker_hcomp.
rewrite <- hcomp_lassoc.
rewrite <- !vassocr.
rewrite <- hcomp_lassoc.
rewrite !vassocr.
apply (maponpaths (λ z, z • _)).
rewrite !hcomp_identity.
rewrite <- !vassocr.
rewrite <- !interchange.
rewrite !vassocr, !id2_left, !id2_right.
rewrite <- (id2_right (lunitor r₂)).
rewrite !vassocr.
rewrite <- (id2_left η₁).
rewrite interchange.
rewrite !vassocr.
rewrite !id2_right, !id2_left.
apply (maponpaths (λ z, z • _)).
rewrite rinvunitor_natural.
reflexivity.
Qed.
End AdjointUniqueMapCompose.
Section UniquenessAdjoint.
Context {C : bicat}
{X Y : C}.
Variable (l : C⟦X,Y⟧)
(A₁ : left_adjoint l)
(A₂ : left_adjoint l).
Local Notation r₁ := (left_adjoint_right_adjoint A₁).
Local Notation r₂ := (left_adjoint_right_adjoint A₂).
Local Notation η₁ := (left_adjoint_unit A₁).
Local Notation η₂ := (left_adjoint_unit A₂).
Local Notation ε₁ := (left_adjoint_counit A₁).
Local Notation ε₂ := (left_adjoint_counit A₂).
Local Notation r₁_to_r₂ := (adjoint_unique_map l A₁ A₂).
Local Notation r₂_to_r₁ := (adjoint_unique_map l A₂ A₁).
Definition adjoint_unique_map_iso
: is_invertible_2cell r₁_to_r₂.
Proof.
use tpair.
- exact r₂_to_r₁.
- cbn.
split.
+ rewrite (composition_of_maps l A₁ A₂).
rewrite composition_of_triangles_is_identity.
reflexivity.
+ rewrite (composition_of_maps l A₂ A₁).
rewrite composition_of_triangles_is_identity.
reflexivity.
Defined.
Definition remove_η₂
: r₂ ◅ (runitor l o ε₁ ▻ l o rassociator l r₁ l o l ◅ η₁)
o lassociator (id₁ X) l r₂
o linvunitor (r₂ ∘ l)
o η₂
= η₂.
Proof.
refine (_ @ id2_right _).
apply maponpaths.
rewrite <- hcomp_identity.
rewrite <- (internal_triangle1 A₁).
rewrite <- rwhisker_hcomp.
rewrite <- !rwhisker_vcomp.
rewrite linvunitor_assoc.
rewrite <- !vassocr.
apply maponpaths.
rewrite !vassocr.
rewrite rassociator_lassociator, id2_left.
reflexivity.
Qed.
Definition help_triangle_η
: (η₂ ▻ r₁) ▻ l o (rinvunitor r₁ ▻ l o η₁)
=
(rassociator l r₁ (r₂ ∘ l))
o rassociator (r₁ ∘ l) l r₂
o r₂ ◅ (l ◅ η₁)
o lassociator (id₁ X) l r₂
o linvunitor (r₂ ∘ l) o η₂.
Proof.
rewrite !vassocr.
rewrite !(maponpaths (λ z, (z • _) • _) (!(vassocr _ _ _))).
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite <- hcomp_lassoc.
rewrite !vassocr.
rewrite !(maponpaths (λ z, z • _) (!(vassocr _ _ _))).
rewrite lassociator_rassociator, id2_right.
rewrite !vassocr.
use vcomp_move_L_Mp.
{ is_iso. }
cbn.
rewrite linvunitor_natural.
rewrite <- !vassocr.
rewrite <- interchange, id2_left, hcomp_identity, id2_right.
rewrite hcomp_lassoc, hcomp_identity.
rewrite lunitor_V_id_is_left_unit_V_id.
rewrite !vassocr.
rewrite !(maponpaths (λ z, z • _) (!(vassocr _ _ _))).
rewrite <- lwhisker_hcomp.
rewrite <- left_unit_inv_assoc₂.
rewrite rinvunitor_natural.
rewrite <- !vassocr.
apply maponpaths.
rewrite <- interchange.
rewrite !id2_right, id2_left.
reflexivity.
Qed.
Definition transport_unit
: r₁_to_r₂ ▻ l o η₁ = η₂.
Proof.
rewrite <- remove_η₂.
unfold r₁_to_r₂.
rewrite <- !lwhisker_vcomp.
rewrite !vassocr.
rewrite help_triangle_η.
rewrite linvunitor_assoc.
rewrite !vassocr.
rewrite !(maponpaths (λ z, ((((((z • _) • _) • _) • _) • _) • _)) (!(vassocr _ _ _))).
rewrite rassociator_lassociator, id2_right.
rewrite !(maponpaths (λ z, (((((z • _) • _) • _) • _) • _)) (!(vassocr _ _ _))).
rewrite rwhisker_vcomp.
rewrite <- !vassocr.
rewrite <- !rwhisker_vcomp.
repeat (apply maponpaths).
rewrite <- !vassocr.
apply maponpaths.
rewrite !vassocr.
rewrite rassociator_lassociator, id2_left.
rewrite <- !vassocr.
apply maponpaths.
rewrite !vassocr.
rewrite inverse_pentagon.
rewrite <- !vassocr.
rewrite !rwhisker_hcomp.
apply maponpaths.
rewrite !vassocr.
rewrite !(maponpaths (λ z, (z • _) • _) (!(vassocr _ _ _))).
rewrite <- !lwhisker_hcomp.
rewrite !lwhisker_vcomp.
rewrite rassociator_lassociator.
rewrite lwhisker_id2, id2_right.
rewrite !lwhisker_hcomp.
rewrite <- hcomp_rassoc.
rewrite <- !vassocr.
apply maponpaths.
apply triangle_l.
Qed.
Definition help_triangle_ε
: ε₂ o l ◅ (lunitor r₂ o r₂ ◅ ε₁)
= ε₁ o runitor (l ∘ r₁)
o lassociator _ _ _
o ε₂ ▻ l ▻ r₁
o rassociator _ _ _
o rassociator _ _ _.
Proof.
rewrite !vassocr.
rewrite !(maponpaths (λ z, (z • _) • _) (!(vassocr _ _ _))).
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite hcomp_lassoc.
rewrite !vassocr.
rewrite !(maponpaths (λ z, ((z • _) • _) • _) (!(vassocr _ _ _))).
rewrite rassociator_lassociator, id2_right.
rewrite <- !vassocr.
use vcomp_move_L_pM.
{ is_iso. }
cbn.
rewrite <- runitor_natural.
rewrite !vassocr.
rewrite hcomp_identity.
rewrite <- interchange.
rewrite !id2_right, id2_left.
rewrite <- !rwhisker_hcomp.
rewrite <- rwhisker_vcomp.
rewrite !vassocr.
rewrite !rwhisker_hcomp.
rewrite <- hcomp_lassoc.
rewrite !(maponpaths (λ z, z • _) (!(vassocr _ _ _))).
rewrite <- !rwhisker_hcomp.
rewrite lunitor_triangle.
rewrite <- !vassocr.
rewrite <- vcomp_lunitor.
rewrite lunitor_runitor_identity.
rewrite !vassocr.
apply (maponpaths (λ z, z • _)).
rewrite lwhisker_hcomp, rwhisker_hcomp.
rewrite hcomp_identity.
rewrite <- interchange.
rewrite !id2_right, !id2_left.
reflexivity.
Qed.
Definition remove_ε₁
: ε₁ o runitor (l ∘ r₁)
o lassociator r₁ l (id₁ Y)
o (ε₂ ▻ l o rassociator l r₂ l o l ◅ η₂ o linvunitor l) ▻ r₁
= ε₁.
Proof.
rewrite !vassocr.
rewrite !(maponpaths (λ z, z • _) (!(vassocr _ _ _))).
rewrite <- runitor_triangle.
rewrite !vassocr.
refine (_ @ id2_left _).
apply (maponpaths (λ z, z • _)).
rewrite <- !vassocr.
rewrite <- lwhisker_id2.
rewrite <- (internal_triangle1 A₂).
rewrite <- !lwhisker_vcomp.
rewrite <- !vassocr.
repeat (apply maponpaths).
rewrite !vassocr.
rewrite lassociator_rassociator.
apply id2_left.
Qed.
Definition transport_counit
: ε₂ o l ◅ r₁_to_r₂ = ε₁.
Proof.
rewrite <- remove_ε₁.
unfold r₁_to_r₂.
do 3 rewrite <- rwhisker_vcomp.
rewrite <- !vassocr.
rewrite help_triangle_ε.
rewrite !vassocr.
rewrite <- !lwhisker_vcomp.
repeat (apply (maponpaths (λ z, z • _))).
use vcomp_move_L_Mp.
{ is_iso. }
cbn.
rewrite (maponpaths (λ z, z • _) (!(vassocr _ _ _))).
rewrite inverse_pentagon.
rewrite !vassocr.
rewrite !lwhisker_vcomp.
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite <- !vassocr.
rewrite (maponpaths (λ z, _ • (_ • z)) (vassocr _ _ _)).
rewrite <- interchange.
rewrite lassociator_rassociator, !id2_right, hcomp_identity.
rewrite id2_left.
rewrite <- interchange.
rewrite rassociator_lassociator, !id2_right, hcomp_identity.
rewrite id2_right.
rewrite <- !lwhisker_hcomp, <- !rwhisker_hcomp.
rewrite <- lwhisker_vcomp.
rewrite !lwhisker_hcomp, !rwhisker_hcomp.
rewrite triangle_r_inv.
rewrite <- !vassocr.
apply maponpaths.
apply hcomp_rassoc.
Qed.
End UniquenessAdjoint.
Definition unique_internal_adjoint_equivalence
{C : bicat}
{X Y : C}
(l : C⟦X,Y⟧)
(HC : is_univalent_2_1 C)
(A₁ : left_adjoint_equivalence l)
(A₂ : left_adjoint_equivalence l)
: A₁ = A₂.
Proof.
use subtypePath.
- intro x.
apply isapropdirprod.
+ apply isapropdirprod ; apply C.
+ apply isapropdirprod ; apply isaprop_is_invertible_2cell.
- cbn.
use total2_paths_f.
+ apply (isotoid_2_1 HC).
refine (adjoint_unique_map l A₁ A₂ ,, _).
exact (adjoint_unique_map_iso l A₁ A₂).
+ rewrite transportf_dirprod.
apply dirprod_paths.
× rewrite transport_two_cell_FlFr.
rewrite !maponpaths_for_constant_function ; cbn.
rewrite id2_left.
rewrite <- idtoiso_2_1_lwhisker.
unfold isotoid_2_1.
pose (homotweqinvweq (idtoiso_2_1 _ _,,
HC Y X (left_adjoint_right_adjoint A₁)
(left_adjoint_right_adjoint A₂))) as p.
cbn in p.
rewrite p ; clear p.
cbn.
exact (transport_unit l A₁ A₂).
× cbn.
rewrite transport_two_cell_FlFr.
rewrite !maponpaths_for_constant_function ; cbn.
rewrite id2_right.
use vcomp_move_R_pM.
{ is_iso. }
cbn.
rewrite <- idtoiso_2_1_rwhisker.
unfold isotoid_2_1.
pose (homotweqinvweq (idtoiso_2_1 _ _,, HC Y X (left_adjoint_right_adjoint A₁)
(left_adjoint_right_adjoint A₂))) as p.
cbn in p.
rewrite p ; clear p.
cbn.
symmetry.
exact (transport_counit l A₁ A₂).
Defined.
Definition path_internal_adjoint_equivalence
{C : bicat}
{X Y : C}
(HC : is_univalent_2_1 C)
(A₁ A₂ : adjoint_equivalence X Y)
(H : arrow_of_adjunction A₁ = A₂)
: A₁ = A₂.
Proof.
use total2_paths_f.
- exact H.
- apply unique_internal_adjoint_equivalence.
apply HC.
Defined.
Lemma isaprop_left_adjoint_equivalence
{C : bicat}
{X Y : C}
(f : X --> Y)
: is_univalent_2_1 C → isaprop (left_adjoint_equivalence f).
Proof.
intros HU.
apply invproofirrelevance.
intros A1 A2.
apply unique_internal_adjoint_equivalence.
assumption.
Defined.
As a corollary, in a univalent bicategory 0-cells are 2-types.
Lemma univalent_bicategory_0_cell_hlevel_4
(C : bicat) (HC : is_univalent_2 C) : isofhlevel 4 C.
Proof.
change (isofhlevel 4 C) with
(∏ a b : C, isofhlevel 3 (a = b)).
intros a b.
apply (isofhlevelweqb _ (idtoiso_2_0 a b,, pr1 HC a b)).
apply (isofhleveltotal2 3).
- apply univalent_bicategory_1_cell_hlevel_3, HC.
- intros f. do 2 apply hlevelntosn.
apply isaprop_left_adjoint_equivalence, HC.
Qed.
Section AdjointEquivUniqueCompInv.
Context {B : bicat}
(HB : is_univalent_2 B).
Definition unique_adjoint_equivalence_inv
{a b : B}
: ∏ (f : adjoint_equivalence a b), inv_adjequiv f = inv_adjoint_equivalence (pr1 HB) a b f.
Proof.
use (J_2_0 (pr1 HB) (λ a b f, _)).
intro x; simpl.
unfold inv_adjoint_equivalence.
rewrite J_2_0_comp.
use subtypePath.
{
intro.
exact (isaprop_left_adjoint_equivalence _ (pr2 HB)).
}
apply idpath.
Defined.
Definition unique_adjoint_equivalence_comp
{a b c : B}
: ∏ (f : adjoint_equivalence a b) (g : adjoint_equivalence b c),
comp_adjequiv f g = comp_adjoint_equivalence (pr1 HB) a b c f g.
Proof.
use (J_2_0 (pr1 HB) (λ a b f, _)).
intros x g; simpl.
unfold comp_adjoint_equivalence.
rewrite J_2_0_comp.
use subtypePath.
{
intro.
exact (isaprop_left_adjoint_equivalence _ (pr2 HB)).
}
cbn.
apply (isotoid_2_1 (pr2 HB)).
use make_invertible_2cell.
- exact (lunitor (pr1 g)).
- is_iso.
Defined.
End AdjointEquivUniqueCompInv.
(C : bicat) (HC : is_univalent_2 C) : isofhlevel 4 C.
Proof.
change (isofhlevel 4 C) with
(∏ a b : C, isofhlevel 3 (a = b)).
intros a b.
apply (isofhlevelweqb _ (idtoiso_2_0 a b,, pr1 HC a b)).
apply (isofhleveltotal2 3).
- apply univalent_bicategory_1_cell_hlevel_3, HC.
- intros f. do 2 apply hlevelntosn.
apply isaprop_left_adjoint_equivalence, HC.
Qed.
Section AdjointEquivUniqueCompInv.
Context {B : bicat}
(HB : is_univalent_2 B).
Definition unique_adjoint_equivalence_inv
{a b : B}
: ∏ (f : adjoint_equivalence a b), inv_adjequiv f = inv_adjoint_equivalence (pr1 HB) a b f.
Proof.
use (J_2_0 (pr1 HB) (λ a b f, _)).
intro x; simpl.
unfold inv_adjoint_equivalence.
rewrite J_2_0_comp.
use subtypePath.
{
intro.
exact (isaprop_left_adjoint_equivalence _ (pr2 HB)).
}
apply idpath.
Defined.
Definition unique_adjoint_equivalence_comp
{a b c : B}
: ∏ (f : adjoint_equivalence a b) (g : adjoint_equivalence b c),
comp_adjequiv f g = comp_adjoint_equivalence (pr1 HB) a b c f g.
Proof.
use (J_2_0 (pr1 HB) (λ a b f, _)).
intros x g; simpl.
unfold comp_adjoint_equivalence.
rewrite J_2_0_comp.
use subtypePath.
{
intro.
exact (isaprop_left_adjoint_equivalence _ (pr2 HB)).
}
cbn.
apply (isotoid_2_1 (pr2 HB)).
use make_invertible_2cell.
- exact (lunitor (pr1 g)).
- is_iso.
Defined.
End AdjointEquivUniqueCompInv.