Library UniMath.Bicategories.Core.AdjointUnique

Right adjoints, units, counits are unique up to isomorphism. In addition, if the bicategory is locally univalent, then being an adjoint equivalence is a proposition.
Authors: Dan Frumin, Niels van der Weide
Ported from: https://github.com/nmvdw/groupoids

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.Core.TransportLaws.
Require Import UniMath.Bicategories.Core.EquivToAdjequiv.
Local Open Scope cat.
Local Open Scope bicategory_scope.

Definition adjoint_unique_map
           {C : bicat}
           {X Y : C}
           (l : CX,Y)
           (A₁ : left_adjoint l)
           (A₂ : left_adjoint l)
  : left_adjoint_right_adjoint A₁ ==> left_adjoint_right_adjoint A₂
  := (lunitor _) o _ left_adjoint_counit A₁
                 o lassociator _ _ _
                 o left_adjoint_unit A₂ _
                 o rinvunitor _.

Section AdjointUniqueMapCompose.
  Context {C : bicat}
          {X Y : C}.

  Definition help₁
             (f : CX,Y) (g g' : CY,X)
             (η : id₁ X ==> g f)
             (η' : id₁ X ==> g' f)
    : ((g f) (η' g o rinvunitor _))
        o η g
      = (η (g' f g) o rinvunitor _)
          o η' g.
  Proof.
    rewrite <- rwhisker_vcomp.
    rewrite !vassocr.
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite rinvunitor_natural.
    rewrite <- !vassocr.
    rewrite <- !interchange.
    rewrite !id2_left, !id2_right.
    rewrite <- (id2_left η).
    rewrite interchange.
    rewrite id2_left.
    apply (maponpaths (λ z, z _)).
    rewrite left_unit_inv_assoc₂.
    rewrite <- triangle_l_inv.
    rewrite lunitor_V_id_is_left_unit_V_id.
    rewrite !lwhisker_hcomp.
    reflexivity.
  Qed.

  Definition help₂
             (f : CX,Y) (g g' : CY,X)
             (η : id₁ X ==> g f)
             (η' : id₁ X ==> g' f)
    : g ((f η') g)
        o (g (linvunitor f g)
             o (lassociator _ _ _ o η g))
      = g (rassociator _ _ _)
          o lassociator _ _ _
          o η (g' f g)
          o rinvunitor _
          o η' g.
  Proof.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, _ o (_ o z)) (!(vassocr _ _ _))).
    rewrite <- help₁.
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite <- !rwhisker_vcomp.
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z_ o z) (!(vassocr _ _ _))).
    rewrite <- hcomp_identity.
    rewrite hcomp_lassoc.
    rewrite !vassocr.
    rewrite hcomp_lassoc.
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite <- !interchange.
    rewrite !id2_left.
    rewrite hcomp_rassoc.
    rewrite !vassocr.
    rewrite <- (id2_right (id₂ g)).
    rewrite !interchange.
    rewrite triangle_r_inv.
    rewrite id2_right.
    reflexivity.
  Qed.

  Variable (l : CX,Y)
           (A₁ : left_adjoint l)
           (A₂ : left_adjoint l).

  Local Notation r₁ := (left_adjoint_right_adjoint A₁).
  Local Notation r₂ := (left_adjoint_right_adjoint A₂).
  Local Notation η₁ := (left_adjoint_unit A₁).
  Local Notation η₂ := (left_adjoint_unit A₂).
  Local Notation ε₁ := (left_adjoint_counit A₁).
  Local Notation ε₂ := (left_adjoint_counit A₂).

  Local Notation r₁_to_r₂ := (adjoint_unique_map l A₁ A₂).

  Local Notation r₂_to_r₁ := (adjoint_unique_map l A₂ A₁).

  Local Definition composition_of_triangles : r₁ ==> r₁
    := (lunitor r₁)
         o r₁ ε₁
         o lassociator r₁ l r₁
         o (r₁ ((runitor l)
                    o ε₂ l
                    o rassociator l r₂ l
                    o l η₂
                    o linvunitor l) o η₁) r₁
         o rinvunitor r₁.

  Local Definition composition_of_triangles_is_identity
    : composition_of_triangles = id₂ r₁.
  Proof.
    unfold composition_of_triangles.
    rewrite !vassocr.
    rewrite (internal_triangle1 A₂).
    rewrite id2_rwhisker, id2_right.
    exact (internal_triangle2 A₁).
  Qed.

  Local Definition ε₁_natural
    : ε₁ o (runitor l o ε₂ ⋆⋆ id₂ l) ⋆⋆ id₂ r₁
      =
      ε₂ o l (lunitor r₂ o r₂ ε₁) o lassociator (l r₁) r₂ l o lassociator r₁ l (l r₂).
  Proof.
    rewrite <- rwhisker_vcomp.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z_ o (_ o z)) (!(vassocr _ _ _))).
    rewrite !rwhisker_hcomp.
    rewrite <- hcomp_lassoc.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z_ o z) (!(vassocr _ _ _))).
    rewrite <- !rwhisker_hcomp.
    rewrite lunitor_triangle.
    rewrite <- !vassocr.
    rewrite <- vcomp_lunitor.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z_ o z) (!(vassocr _ _ _))).
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite <- !interchange.
    rewrite !hcomp_identity, id2_right, id2_left.
    rewrite <- (id2_left ε₁).
    rewrite <- (id2_right ε₂).
    rewrite interchange.
    rewrite <- !vassocr, !id2_right, !id2_left.
    rewrite <- runitor_lunitor_identity.
    rewrite <- !rwhisker_hcomp.
    rewrite !vcomp_runitor.
    rewrite !vassocr.
    rewrite <- hcomp_identity.
    rewrite <- hcomp_lassoc.
    rewrite <- !lwhisker_hcomp.
    rewrite <- lwhisker_vcomp.
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite !vassocr.
    apply (maponpaths (λ z, z ε₁)).
    rewrite <- runitor_triangle.
    rewrite !vassocr.
    rewrite lassociator_rassociator, id2_left.
    reflexivity.
  Qed.

  Definition composition_of_maps : r₂_to_r₁ o r₁_to_r₂ = composition_of_triangles.
  Proof.
    unfold r₁_to_r₂, r₂_to_r₁, composition_of_triangles.
    rewrite !vassocr.
    apply (maponpaths (λ z, z lunitor r₁)).
    rewrite <- !vassocr.
    apply (maponpaths (λ z, rinvunitor r₁ z)).
    rewrite <- !lwhisker_vcomp, <- !rwhisker_vcomp.
    rewrite <- !lwhisker_vcomp.
    rewrite <- !vassocr.
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite !vassocr.
    rewrite !(maponpaths (fun zz _) (!(vassocr _ _ _))).
    rewrite hcomp_lassoc.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z(z _) _) (!(vassocr _ _ _))).
    rewrite hcomp_lassoc.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z((z _) _) _) (!(vassocr _ _ _))).
    rewrite hcomp_lassoc.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z(((z _) _) _) _) (!(vassocr _ _ _))).
    rewrite hcomp_lassoc.
    rewrite !vassocr.
    rewrite !(maponpaths (fun z((((z _) _) _) _) _) (!(vassocr _ _ _))).
    rewrite hcomp_lassoc.
    rewrite !vassocr.
    rewrite <- !lwhisker_hcomp, <- !rwhisker_hcomp.
    rewrite help₂.
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite <- !interchange.
    rewrite !vassocr.
    rewrite <- inverse_pentagon_3.
    rewrite <- !vassocr.
    do 3 rewrite interchange.
    rewrite !id2_left.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, ((z _) _) _) (!(vassocr _ _ _))).
    rewrite <- hcomp_lassoc.
    rewrite <- interchange.
    rewrite !hcomp_identity.
    rewrite !vassocr, id2_left.
    rewrite ε₁_natural.
    rewrite <- rwhisker_vcomp.
    repeat (rewrite <- (id2_right (id₂ r₁)) ; rewrite interchange).
    rewrite !id2_right.
    rewrite !vassocr.
    apply (maponpaths (λ z, z _)).
    rewrite !(maponpaths (λ z, ((z _) _) _) (!(vassocr _ _ _))).
    rewrite <- !rwhisker_hcomp.
    rewrite rwhisker_vcomp.
    rewrite rassociator_lassociator, id2_rwhisker, id2_right.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, (z _) _) (!(vassocr _ _ _))).
    rewrite rwhisker_vcomp.
    rewrite rassociator_lassociator, id2_rwhisker, id2_right.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, z _) (!(vassocr _ _ _))).
    rewrite !rwhisker_hcomp.
    rewrite <- hcomp_lassoc.
    rewrite <- !vassocr.
    rewrite <- hcomp_lassoc.
    rewrite !vassocr.
    apply (maponpaths (λ z, z _)).
    rewrite !hcomp_identity.
    rewrite <- !vassocr.
    rewrite <- !interchange.
    rewrite !vassocr, !id2_left, !id2_right.
    rewrite <- (id2_right (lunitor r₂)).
    rewrite !vassocr.
    rewrite <- (id2_left η₁).
    rewrite interchange.
    rewrite !vassocr.
    rewrite !id2_right, !id2_left.
    apply (maponpaths (λ z, z _)).
    rewrite rinvunitor_natural.
    reflexivity.
  Qed.
End AdjointUniqueMapCompose.

Section UniquenessAdjoint.
  Context {C : bicat}
          {X Y : C}.
  Variable (l : CX,Y)
           (A₁ : left_adjoint l)
           (A₂ : left_adjoint l).

  Local Notation r₁ := (left_adjoint_right_adjoint A₁).
  Local Notation r₂ := (left_adjoint_right_adjoint A₂).
  Local Notation η₁ := (left_adjoint_unit A₁).
  Local Notation η₂ := (left_adjoint_unit A₂).
  Local Notation ε₁ := (left_adjoint_counit A₁).
  Local Notation ε₂ := (left_adjoint_counit A₂).

  Local Notation r₁_to_r₂ := (adjoint_unique_map l A₁ A₂).

  Local Notation r₂_to_r₁ := (adjoint_unique_map l A₂ A₁).

  Definition adjoint_unique_map_iso
    : is_invertible_2cell r₁_to_r₂.
  Proof.
    use tpair.
    - exact r₂_to_r₁.
    - cbn.
      split.
      + rewrite (composition_of_maps l A₁ A₂).
        rewrite composition_of_triangles_is_identity.
        reflexivity.
      + rewrite (composition_of_maps l A₂ A₁).
        rewrite composition_of_triangles_is_identity.
        reflexivity.
  Defined.

  Definition remove_η₂
    : r₂ (runitor l o ε₁ l o rassociator l r₁ l o l η₁)
         o lassociator (id₁ X) l r₂
         o linvunitor (r₂ l)
         o η₂
      = η₂.
  Proof.
    refine (_ @ id2_right _).
    apply maponpaths.
    rewrite <- hcomp_identity.
    rewrite <- (internal_triangle1 A₁).
    rewrite <- rwhisker_hcomp.
    rewrite <- !rwhisker_vcomp.
    rewrite linvunitor_assoc.
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite !vassocr.
    rewrite rassociator_lassociator, id2_left.
    reflexivity.
  Qed.

  Definition help_triangle_η
    : (η₂ r₁) l o (rinvunitor r₁ l o η₁)
      =
      (rassociator l r₁ (r₂ l))
        o rassociator (r₁ l) l r₂
        o r₂ (l η₁)
        o lassociator (id₁ X) l r₂
        o linvunitor (r₂ l) o η₂.
  Proof.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, (z _) _) (!(vassocr _ _ _))).
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite <- hcomp_lassoc.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, z _) (!(vassocr _ _ _))).
    rewrite lassociator_rassociator, id2_right.
    rewrite !vassocr.
    use vcomp_move_L_Mp.
    { is_iso. }
    cbn.
    rewrite linvunitor_natural.
    rewrite <- !vassocr.
    rewrite <- interchange, id2_left, hcomp_identity, id2_right.
    rewrite hcomp_lassoc, hcomp_identity.
    rewrite lunitor_V_id_is_left_unit_V_id.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, z _) (!(vassocr _ _ _))).
    rewrite <- lwhisker_hcomp.
    rewrite <- left_unit_inv_assoc₂.
    rewrite rinvunitor_natural.
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite <- interchange.
    rewrite !id2_right, id2_left.
    reflexivity.
  Qed.

  Definition transport_unit
    : r₁_to_r₂ l o η₁ = η₂.
  Proof.
    rewrite <- remove_η₂.
    unfold r₁_to_r₂.
    rewrite <- !lwhisker_vcomp.
    rewrite !vassocr.
    rewrite help_triangle_η.
    rewrite linvunitor_assoc.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, ((((((z _) _) _) _) _) _)) (!(vassocr _ _ _))).
    rewrite rassociator_lassociator, id2_right.
    rewrite !(maponpaths (λ z, (((((z _) _) _) _) _)) (!(vassocr _ _ _))).
    rewrite rwhisker_vcomp.
    rewrite <- !vassocr.
    rewrite <- !rwhisker_vcomp.
    repeat (apply maponpaths).
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite !vassocr.
    rewrite rassociator_lassociator, id2_left.
    rewrite <- !vassocr.
    apply maponpaths.
    rewrite !vassocr.
    rewrite inverse_pentagon.
    rewrite <- !vassocr.
    rewrite !rwhisker_hcomp.
    apply maponpaths.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, (z _) _) (!(vassocr _ _ _))).
    rewrite <- !lwhisker_hcomp.
    rewrite !lwhisker_vcomp.
    rewrite rassociator_lassociator.
    rewrite lwhisker_id2, id2_right.
    rewrite !lwhisker_hcomp.
    rewrite <- hcomp_rassoc.
    rewrite <- !vassocr.
    apply maponpaths.
    apply triangle_l.
  Qed.

  Definition help_triangle_ε
    : ε₂ o l (lunitor r₂ o r₂ ε₁)
      = ε₁ o runitor (l r₁)
           o lassociator _ _ _
           o ε₂ l r₁
           o rassociator _ _ _
           o rassociator _ _ _.
  Proof.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, (z _) _) (!(vassocr _ _ _))).
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite hcomp_lassoc.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, ((z _) _) _) (!(vassocr _ _ _))).
    rewrite rassociator_lassociator, id2_right.
    rewrite <- !vassocr.
    use vcomp_move_L_pM.
    { is_iso. }
    cbn.
    rewrite <- runitor_natural.
    rewrite !vassocr.
    rewrite hcomp_identity.
    rewrite <- interchange.
    rewrite !id2_right, id2_left.
    rewrite <- !rwhisker_hcomp.
    rewrite <- rwhisker_vcomp.
    rewrite !vassocr.
    rewrite !rwhisker_hcomp.
    rewrite <- hcomp_lassoc.
    rewrite !(maponpaths (λ z, z _) (!(vassocr _ _ _))).
    rewrite <- !rwhisker_hcomp.
    rewrite lunitor_triangle.
    rewrite <- !vassocr.
    rewrite <- vcomp_lunitor.
    rewrite lunitor_runitor_identity.
    rewrite !vassocr.
    apply (maponpaths (λ z, z _)).
    rewrite lwhisker_hcomp, rwhisker_hcomp.
    rewrite hcomp_identity.
    rewrite <- interchange.
    rewrite !id2_right, !id2_left.
    reflexivity.
  Qed.

  Definition remove_ε₁
    : ε₁ o runitor (l r₁)
         o lassociator r₁ l (id₁ Y)
         o (ε₂ l o rassociator l r₂ l o l η₂ o linvunitor l) r₁
      = ε₁.
  Proof.
    rewrite !vassocr.
    rewrite !(maponpaths (λ z, z _) (!(vassocr _ _ _))).
    rewrite <- runitor_triangle.
    rewrite !vassocr.
    refine (_ @ id2_left _).
    apply (maponpaths (λ z, z _)).
    rewrite <- !vassocr.
    rewrite <- lwhisker_id2.
    rewrite <- (internal_triangle1 A₂).
    rewrite <- !lwhisker_vcomp.
    rewrite <- !vassocr.
    repeat (apply maponpaths).
    rewrite !vassocr.
    rewrite lassociator_rassociator.
    apply id2_left.
  Qed.

  Definition transport_counit
    : ε₂ o l r₁_to_r₂ = ε₁.
  Proof.
    rewrite <- remove_ε₁.
    unfold r₁_to_r₂.
    do 3 rewrite <- rwhisker_vcomp.
    rewrite <- !vassocr.
    rewrite help_triangle_ε.
    rewrite !vassocr.
    rewrite <- !lwhisker_vcomp.
    repeat (apply (maponpaths (λ z, z _))).
    use vcomp_move_L_Mp.
    { is_iso. }
    cbn.
    rewrite (maponpaths (λ z, z _) (!(vassocr _ _ _))).
    rewrite inverse_pentagon.
    rewrite !vassocr.
    rewrite !lwhisker_vcomp.
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite <- !vassocr.
    rewrite (maponpaths (λ z, _ (_ z)) (vassocr _ _ _)).
    rewrite <- interchange.
    rewrite lassociator_rassociator, !id2_right, hcomp_identity.
    rewrite id2_left.
    rewrite <- interchange.
    rewrite rassociator_lassociator, !id2_right, hcomp_identity.
    rewrite id2_right.
    rewrite <- !lwhisker_hcomp, <- !rwhisker_hcomp.
    rewrite <- lwhisker_vcomp.
    rewrite !lwhisker_hcomp, !rwhisker_hcomp.
    rewrite triangle_r_inv.
    rewrite <- !vassocr.
    apply maponpaths.
    apply hcomp_rassoc.
  Qed.
End UniquenessAdjoint.

Definition unique_internal_adjoint_equivalence
           {C : bicat}
           {X Y : C}
           (l : CX,Y)
           (HC : is_univalent_2_1 C)
           (A₁ : left_adjoint_equivalence l)
           (A₂ : left_adjoint_equivalence l)
  : A₁ = A₂.
Proof.
  use subtypePath.
  - intro x.
    apply isapropdirprod.
    + apply isapropdirprod ; apply C.
    + apply isapropdirprod ; apply isaprop_is_invertible_2cell.
  - cbn.
    use total2_paths_f.
    + apply (isotoid_2_1 HC).
      refine (adjoint_unique_map l A₁ A₂ ,, _).
      exact (adjoint_unique_map_iso l A₁ A₂).
    + rewrite transportf_dirprod.
      apply dirprod_paths.
      × rewrite transport_two_cell_FlFr.
        rewrite !maponpaths_for_constant_function ; cbn.
        rewrite id2_left.
        rewrite <- idtoiso_2_1_lwhisker.
        unfold isotoid_2_1.
        pose (homotweqinvweq (idtoiso_2_1 _ _,,
                                          HC Y X (left_adjoint_right_adjoint A₁)
                                          (left_adjoint_right_adjoint A₂))) as p.
        cbn in p.
        rewrite p ; clear p.
        cbn.
        exact (transport_unit l A₁ A₂).
      × cbn.
        rewrite transport_two_cell_FlFr.
        rewrite !maponpaths_for_constant_function ; cbn.
        rewrite id2_right.
        use vcomp_move_R_pM.
        { is_iso. }
        cbn.
        rewrite <- idtoiso_2_1_rwhisker.
        unfold isotoid_2_1.
        pose (homotweqinvweq (idtoiso_2_1 _ _,, HC Y X (left_adjoint_right_adjoint A₁)
                                          (left_adjoint_right_adjoint A₂))) as p.
        cbn in p.
        rewrite p ; clear p.
        cbn.
        symmetry.
        exact (transport_counit l A₁ A₂).
Defined.

Definition path_internal_adjoint_equivalence
           {C : bicat}
           {X Y : C}
           (HC : is_univalent_2_1 C)
           (A₁ A₂ : adjoint_equivalence X Y)
           (H : arrow_of_adjunction A₁ = A₂)
  : A₁ = A₂.
Proof.
  use total2_paths_f.
  - exact H.
  - apply unique_internal_adjoint_equivalence.
    apply HC.
Defined.

Lemma isaprop_left_adjoint_equivalence
      {C : bicat}
      {X Y : C}
      (f : X --> Y)
  : is_univalent_2_1 C isaprop (left_adjoint_equivalence f).
Proof.
  intros HU.
  apply invproofirrelevance.
  intros A1 A2.
  apply unique_internal_adjoint_equivalence.
  assumption.
Defined.

As a corollary, in a univalent bicategory 0-cells are 2-types.
Lemma univalent_bicategory_0_cell_hlevel_4
      (C : bicat) (HC : is_univalent_2 C) : isofhlevel 4 C.
Proof.
  change (isofhlevel 4 C) with
        ( a b : C, isofhlevel 3 (a = b)).
  intros a b.
  apply (isofhlevelweqb _ (idtoiso_2_0 a b,, pr1 HC a b)).
  apply (isofhleveltotal2 3).
  - apply univalent_bicategory_1_cell_hlevel_3, HC.
  - intros f. do 2 apply hlevelntosn.
    apply isaprop_left_adjoint_equivalence, HC.
Qed.

Section AdjointEquivUniqueCompInv.
  Context {B : bicat}
          (HB : is_univalent_2 B).

  Definition unique_adjoint_equivalence_inv
             {a b : B}
    : (f : adjoint_equivalence a b), inv_adjequiv f = inv_adjoint_equivalence (pr1 HB) a b f.
  Proof.
    use (J_2_0 (pr1 HB) (λ a b f, _)).
    intro x; simpl.
    unfold inv_adjoint_equivalence.
    rewrite J_2_0_comp.
    use subtypePath.
    {
      intro.
      exact (isaprop_left_adjoint_equivalence _ (pr2 HB)).
    }
    apply idpath.
  Defined.

  Definition unique_adjoint_equivalence_comp
             {a b c : B}
    : (f : adjoint_equivalence a b) (g : adjoint_equivalence b c),
      comp_adjequiv f g = comp_adjoint_equivalence (pr1 HB) a b c f g.
  Proof.
    use (J_2_0 (pr1 HB) (λ a b f, _)).
    intros x g; simpl.
    unfold comp_adjoint_equivalence.
    rewrite J_2_0_comp.
    use subtypePath.
    {
      intro.
      exact (isaprop_left_adjoint_equivalence _ (pr2 HB)).
    }
    cbn.
    apply (isotoid_2_1 (pr2 HB)).
    use make_invertible_2cell.
    - exact (lunitor (pr1 g)).
    - is_iso.
  Defined.
End AdjointEquivUniqueCompInv.