Library UniMath.CategoryTheory.opp_precat
**********************************************************
Benedikt Ahrens, Chris Kapulkin, Mike Shulman
january 2013
**********************************************************
Contents : Definition of opposite category and functor
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Local Open Scope cat.
Definition opp_precat_ob_mor (C : precategory_ob_mor) : precategory_ob_mor :=
tpair (λ ob : UU, ob → ob → UU) C (λ a b : C, C⟦b, a⟧ ).
Definition opp_precat_data (C : precategory_data) : precategory_data :=
tpair _ _ (tpair _ (λ c : opp_precat_ob_mor C, identity c)
(λ (a b c : opp_precat_ob_mor C) f g, g · f)).
Definition is_precat_opp_precat_data (C : precategory) : is_precategory (opp_precat_data C)
:= ((λ a b, pr212 C b a),,(λ a b, pr112 C b a)),,
((λ a b c d f g h, pr222 C d c b a h g f),,(λ a b c d f g h, pr122 C d c b a h g f)).
Definition opp_precat (C : precategory) : precategory :=
tpair _ (opp_precat_data C) (is_precat_opp_precat_data C).
Notation "C '^op'" := (opp_precat C) (at level 3, format "C ^op") : cat.
Goal ∏ C:precategory, C^op^op = C. reflexivity. Qed.
Definition opp_ob {C : precategory} (c : ob C) : ob C^op := c.
Definition rm_opp_ob {C : precategory} (cop : ob C^op) : ob C := cop.
Definition opp_mor {C : precategory} {b c : C} (f : C⟦b, c⟧) : C^op⟦c, b⟧ := f.
Definition rm_opp_mor {C : precategory} {b c : C} (f : C^op⟦c, b⟧) : C⟦b, c⟧ := f.
Definition oppositeCategory : category → category
:= λ M, @tpair precategory has_homsets (opp_precat M) (λ A B, homset_property M (rm_opp_ob B) (rm_opp_ob A)).
Definition opp_mor_eq {C : precategory} {a b : C} {f g : a --> b} (e : opp_mor f = opp_mor g) :
f = g := e.
Lemma opp_opp_precat_ob_mor (C : precategory_ob_mor) : C = opp_precat_ob_mor (opp_precat_ob_mor C).
Proof.
reflexivity.
Defined.
Lemma opp_opp_precat_ob_mor_compute (C : precategory_ob_mor) :
idpath _ = maponpaths precategory_id_comp (opp_opp_precat_ob_mor C).
Proof.
reflexivity.
Defined.
Lemma opp_opp_precat_data (C : precategory_data) : C = opp_precat_data (opp_precat_data C).
Proof.
reflexivity.
Defined.
Lemma opp_opp_precat (C : precategory) (hs : has_homsets C) : C = C^op^op.
Proof.
use total2_paths_f.
- apply opp_opp_precat_data.
- apply (isaprop_is_precategory _ hs).
Qed.
Definition opp_is_iso {C : precategory} {a b : C} (f : a --> b) :
@is_iso C a b f → @is_iso C^op b a f.
Proof.
intros H.
set (T := is_z_iso_from_is_iso _ H).
apply (is_iso_qinv (C:=C^op) _ (pr1 T)).
split; [ apply (pr2 (pr2 T)) | apply (pr1 (pr2 T)) ].
Qed.
Definition iso_from_opp {C : precategory} {a b : C} (f : a --> b) :
@is_iso C^op b a f → @is_iso C a b f.
Proof.
intros H.
set (T := is_z_iso_from_is_iso _ H).
apply (is_iso_qinv (C:=C) _ (pr1 T)).
split; [ apply (pr2 (pr2 T)) | apply (pr1 (pr2 T)) ].
Qed.
Definition opp_iso {C : precategory} {a b : C} : @iso C a b → @iso C^op b a.
intro f.
∃ (pr1 f).
set (T := is_z_iso_from_is_iso _ (pr2 f)).
apply (is_iso_qinv (C:=C^op) _ (pr1 T)).
split; [ apply (pr2 (pr2 T)) | apply (pr1 (pr2 T)) ].
Defined.
Lemma opp_is_inverse_in_precat {C : precategory} {a b : C} {f : a --> b} {g : b --> a} :
@is_inverse_in_precat C a b f g → @is_inverse_in_precat (opp_precat C) a b g f.
Proof.
intros H.
use make_is_inverse_in_precat.
- exact (is_inverse_in_precat1 H).
- exact (is_inverse_in_precat2 H).
Defined.
Definition opp_is_z_isomorphism {C : precategory} {a b : C} (f : a --> b) :
@is_z_isomorphism C a b f → @is_z_isomorphism C^op b a f.
Proof.
intros H.
use make_is_z_isomorphism.
- exact (is_z_isomorphism_mor H).
- exact (opp_is_inverse_in_precat (is_inverse_in_precat_inv H)).
Defined.
Definition opp_z_iso {C : precategory} {a b : C} : @z_iso C a b → @z_iso C^op b a.
Proof.
intros H.
use make_z_iso.
- exact (z_iso_mor H).
- exact (z_iso_inv_mor H).
- exact (opp_is_inverse_in_precat (is_inverse_in_precat_inv H)).
Defined.
Lemma has_homsets_opp {C : precategory} (hsC : has_homsets C) : has_homsets C^op.
Proof. intros a b; apply hsC. Qed.
Definition op_cat (c : category) : category := (opp_precat c,, has_homsets_opp (homset_property c) ).
Definition functor_opp_data {C D : precategory} (F : functor C D) :
functor_data C^op D^op :=
tpair (fun F : C^op → D^op ⇒ ∏ a b, C^op ⟦a, b⟧ → D^op ⟦F a, F b⟧) F
(fun (a b : C) (f : C⟦b, a⟧) ⇒ functor_on_morphisms F f).
Lemma is_functor_functor_opp {C D : precategory} (F : functor C D) :
is_functor (functor_opp_data F).
Proof. split; intros.
- unfold functor_idax; simpl.
apply (functor_id F).
- unfold functor_compax; simpl.
intros.
apply (functor_comp F).
Qed.
Definition functor_opp {C D : precategory} (F : functor C D) : functor C^op D^op :=
tpair _ _ (is_functor_functor_opp F).
Properties of the opp functor
Section opp_functor_properties.
Variables C D : precategory.
Variable F : functor C D.
Lemma opp_functor_fully_faithful : fully_faithful F → fully_faithful (functor_opp F).
Proof.
intros HF a b.
apply HF.
Defined.
Lemma opp_functor_essentially_surjective :
essentially_surjective F → essentially_surjective (functor_opp F).
Proof.
intros HF d.
set (TH := HF d).
set (X:=@hinhuniv (∑ a : C, iso (F a) d)).
use (X _ _ TH).
intro H. clear TH. clear X.
apply hinhpr.
destruct H as [a X].
∃ a. simpl in ×.
apply opp_iso.
apply (iso_inv_from_iso X).
Qed.
End opp_functor_properties.
Notation "C '^op'" := (opp_precat C) (at level 3, format "C ^op") : cat.
Lemma functor_opp_identity {C : precategory} (hsC : has_homsets C) :
functor_opp (functor_identity C) = functor_identity C^op.
Proof. apply (functor_eq _ _ (has_homsets_opp hsC)); trivial. Qed.
Lemma functor_opp_composite {C D E : precategory} (F : functor C D) (G : functor D E)
(hsE : has_homsets E) : functor_opp (functor_composite F G) =
functor_composite (functor_opp F) (functor_opp G).
Proof. apply (functor_eq _ _ (has_homsets_opp hsE)); trivial. Qed.
Definition from_opp_to_opp_opp (A C : precategory) (hsC : has_homsets C) :
functor_data [A, C, hsC]^op [A^op, C^op, has_homsets_opp hsC].
Proof.
apply (tpair _ functor_opp).
simpl; intros F G α.
use tpair.
+ simpl; intro a; apply α.
+ abstract (intros a b f; simpl in *;
apply pathsinv0, (nat_trans_ax α)).
Defined.
Lemma is_functor_from_opp_to_opp_opp (A C : precategory) (hsC : has_homsets C) :
is_functor (from_opp_to_opp_opp A C hsC).
Proof.
split.
- now intro F; simpl; apply (nat_trans_eq (has_homsets_opp hsC)); simpl; intro a.
- now intros F G H α β; simpl; apply (nat_trans_eq (has_homsets_opp hsC)); simpl; intro a.
Qed.
Definition functor_from_opp_to_opp_opp (A C : precategory) (hsC : has_homsets C) :
functor [A, C, hsC]^op [A^op, C^op, has_homsets_opp hsC] :=
tpair _ _ (is_functor_from_opp_to_opp_opp A C hsC).
Definition from_opp_opp_to_opp (A C : precategory) (hsC : has_homsets C) :
functor_data [A^op, C^op, has_homsets_opp hsC] [A, C, hsC]^op.
Proof.
use tpair; simpl.
- intro F.
use tpair.
+ ∃ F.
apply (λ a b f, # F f).
+ abstract (split; [ intro a; apply (functor_id F)
| intros a b c f g; apply (functor_comp F)]).
- intros F G α; ∃ α.
abstract (intros a b f; apply pathsinv0, (nat_trans_ax α)).
Defined.
Lemma is_functor_from_opp_opp_to_opp (A C : precategory) (hsC : has_homsets C) :
is_functor (from_opp_opp_to_opp A C hsC).
Proof.
split.
- now intro F; simpl; apply (nat_trans_eq hsC); intro a.
- now intros F G H α β; simpl; apply (nat_trans_eq hsC); intro a.
Qed.
Definition functor_from_opp_opp_to_opp (A C : precategory) (hsC : has_homsets C) :
functor [A^op, C^op, has_homsets_opp hsC] [A, C, hsC]^op :=
tpair _ _ (is_functor_from_opp_opp_to_opp A C hsC).
Definition op_nt {c d : category} {f g : functor c d} (a : nat_trans f g)
: nat_trans (functor_opp g) (functor_opp f).
Proof.
use tpair.
- exact (λ c, a c).
- abstract
(intros x y h;
apply (! (nat_trans_ax a _ _ _ ))).
Defined.
It's univalent
Definition op_iso_is_cat_iso
{C : category}
(X Y : C^op)
: @iso C Y X ≃ iso X Y.
Proof.
use weqfibtototal.
intro f.
use weqimplimpl.
- apply opp_is_iso.
- apply iso_from_opp.
- apply isaprop_is_iso.
- apply isaprop_is_iso.
Defined.
Definition op_is_univalent (C : univalent_category)
: is_univalent (C^op).
Proof.
split.
- intros X Y.
use weqhomot.
+ exact ((op_iso_is_cat_iso X Y)
∘ make_weq (@idtoiso C Y X) (pr1(pr2 C) Y X)
∘ weqpathsinv0 _ _)%weq.
+ intros p.
induction p ; cbn.
apply subtypePath.
× intro ; apply isaprop_is_iso.
× reflexivity.
- intros X Y ; cbn.
apply C.
Defined.
Definition op_unicat (C : univalent_category)
: univalent_category
:= (C^op ,, op_is_univalent C).