Library UniMath.Induction.M.Chains
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.NaturalNumbers.
Require Import UniMath.MoreFoundations.Notations.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.MoreFoundations.Univalence.
Require Import UniMath.MoreFoundations.WeakEquivalences.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.categories.Type.Core.
Require Import UniMath.CategoryTheory.categories.Type.Limits.
Require Import UniMath.CategoryTheory.Chains.Chains.
Require Import UniMath.CategoryTheory.Chains.Cochains.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.FunctorCoalgebras.
Require Import UniMath.Induction.PolynomialFunctors.
Require Import UniMath.Induction.M.Limits.
Require Import UniMath.Induction.M.Core.
The shifted chain (X', π') from (X, π) is one where Xₙ' = Xₙ₊₁ and πₙ' = πₙ₊₁.
Definition shift_chain (cha : chain type_precat) : chain type_precat.
Proof.
use tpair.
- exact (dob cha ∘ S).
- exact (λ _ _ path, dmor cha (maponpaths S path)).
Defined.
Proof.
use tpair.
- exact (dob cha ∘ S).
- exact (λ _ _ path, dmor cha (maponpaths S path)).
Defined.
The shifted cochain (X', π') from (X, π) is one where Xₙ' = Xₙ₊₁ and πₙ' = πₙ₊₁.
Definition shift_cochain {C : precategory} (cochn : cochain C) : cochain C.
Proof.
use cochain_weq; use tpair.
- exact (dob cochn ∘ S).
- intros n; cbn.
apply (dmor cochn).
exact (idpath _).
Defined.
Proof.
use cochain_weq; use tpair.
- exact (dob cochn ∘ S).
- intros n; cbn.
apply (dmor cochn).
exact (idpath _).
Defined.
Interaction between transporting over (maponpaths S ed) and shifting the cochain
Definition transport_shift_cochain :
∏ cochn ver1 ver2 (ed : ver1 = ver2)
(stdlim_shift : standard_limit (shift_cochain cochn)),
transportf (dob cochn) (maponpaths S ed) (pr1 stdlim_shift ver1) =
transportf (dob (shift_cochain cochn)) ed (pr1 stdlim_shift ver1).
Proof.
intros cochn ver1 ver2 ed stdlim_shift.
induction ed.
reflexivity.
Defined.
∏ cochn ver1 ver2 (ed : ver1 = ver2)
(stdlim_shift : standard_limit (shift_cochain cochn)),
transportf (dob cochn) (maponpaths S ed) (pr1 stdlim_shift ver1) =
transportf (dob (shift_cochain cochn)) ed (pr1 stdlim_shift ver1).
Proof.
intros cochn ver1 ver2 ed stdlim_shift.
induction ed.
reflexivity.
Defined.
Ways to prove that dmors are equal on cochains
Lemma cochain_dmor_paths {C : precategory} {ver1 ver2 : vertex conat_graph}
(cochn : cochain C) (p1 p2 : edge ver1 ver2) : dmor cochn p1 = dmor cochn p2.
Proof.
apply maponpaths, proofirrelevance, isasetnat.
Defined.
(cochn : cochain C) (p1 p2 : edge ver1 ver2) : dmor cochn p1 = dmor cochn p2.
Proof.
apply maponpaths, proofirrelevance, isasetnat.
Defined.
More ways to prove that dmors are equal on cochains
Lemma cochain_dmor_paths_type {ver1 ver2 ver3 : vertex conat_graph}
(cochn : cochain type_precat) (p1 : edge ver1 ver3) (p2 : edge ver2 ver3)
(q1 : ver1 = ver2) :
∏ v1 : dob cochn ver1, dmor cochn p1 v1 = dmor cochn p2 (transportf _ q1 v1).
Proof.
intro v1; cbn in ×.
induction q1.
cbn.
exact (toforallpaths _ _ _ (cochain_dmor_paths cochn p1 p2) v1).
Defined.
(cochn : cochain type_precat) (p1 : edge ver1 ver3) (p2 : edge ver2 ver3)
(q1 : ver1 = ver2) :
∏ v1 : dob cochn ver1, dmor cochn p1 v1 = dmor cochn p2 (transportf _ q1 v1).
Proof.
intro v1; cbn in ×.
induction q1.
cbn.
exact (toforallpaths _ _ _ (cochain_dmor_paths cochn p1 p2) v1).
Defined.
We use the following tactic notations to mirror the "equational style" of
reasoning used in Ahrens, Capriotti, and Spadotti.
Local Tactic Notation "≃" constr(H) "by" tactic(t) := intermediate_weq H; [t|].
Local Tactic Notation "≃'" constr(H) "by" tactic(t) := intermediate_weq H; [|t].
Local Tactic Notation "≃" constr(H) := intermediate_weq H.
Local Tactic Notation "≃'" constr(H) := apply invweq; intermediate_weq H.
Local Lemma combine_over_nat_basic {X Y Z : nat → UU} :
X 0 ≃ Z 0 → (∏ n : nat, Y (S n) ≃ Z (S n)) →
(X 0 × ∏ n : nat, Y (S n)) ≃ ∏ n : nat, Z n.
Proof.
intros x0z0 yszs.
≃ (Z 0 × (∏ n : nat, Z (S n))).
- apply weqdirprodf; [apply x0z0|].
apply weqonsecfibers, yszs.
- use weq_iso.
+ intros z0zs.
intros n; induction n.
× exact (dirprod_pr1 z0zs).
× apply (dirprod_pr2 z0zs).
+ intros xs; use make_dirprod.
× apply xs.
× exact (xs ∘ S).
+ reflexivity.
+ intros xs.
apply funextsec; intros n.
induction n; reflexivity.
Defined.
Local Lemma combine_over_nat {X : nat → UU} {P : (X 0 × (∏ n : nat, X (S n))) → UU} :
(∑ x0 : X 0, ∑ xs : ∏ n : nat, X (S n), P (make_dirprod x0 xs)) ≃
(∑ xs : ∏ n : nat, X n, P (make_dirprod (xs 0) (xs ∘ S))).
Proof.
≃ (∑ pair : (X 0 × ∏ n : nat, X (S n)), P pair) by apply weqtotal2asstol.
use weqbandf.
- apply (@combine_over_nat_basic X X X); intros; apply idweq.
- intros x0xs; cbn.
apply idweq.
Defined.
Local Lemma combine_over_nat' {X : nat → UU} {P : X 0 → (∏ n : nat, X (S n)) → UU} :
(∑ x0 : X 0, ∑ xs : ∏ n : nat, X (S n), P x0 xs) ≃
(∑ xs : ∏ n : nat, X n, P (xs 0) (xs ∘ S)).
Proof.
≃ (∑ (x0 : X 0) (xs : ∏ n : nat, X (S n)), (uncurry (Z := λ _, UU) P)
(make_dirprod x0 xs)) by apply idweq.
≃' (∑ xs : ∏ n : nat, X n, uncurry P (Z := λ _, UU)
(make_dirprod (xs 0) (xs ∘ S))) by apply idweq.
apply combine_over_nat.
Defined.
Local Tactic Notation "≃'" constr(H) "by" tactic(t) := intermediate_weq H; [|t].
Local Tactic Notation "≃" constr(H) := intermediate_weq H.
Local Tactic Notation "≃'" constr(H) := apply invweq; intermediate_weq H.
Local Lemma combine_over_nat_basic {X Y Z : nat → UU} :
X 0 ≃ Z 0 → (∏ n : nat, Y (S n) ≃ Z (S n)) →
(X 0 × ∏ n : nat, Y (S n)) ≃ ∏ n : nat, Z n.
Proof.
intros x0z0 yszs.
≃ (Z 0 × (∏ n : nat, Z (S n))).
- apply weqdirprodf; [apply x0z0|].
apply weqonsecfibers, yszs.
- use weq_iso.
+ intros z0zs.
intros n; induction n.
× exact (dirprod_pr1 z0zs).
× apply (dirprod_pr2 z0zs).
+ intros xs; use make_dirprod.
× apply xs.
× exact (xs ∘ S).
+ reflexivity.
+ intros xs.
apply funextsec; intros n.
induction n; reflexivity.
Defined.
Local Lemma combine_over_nat {X : nat → UU} {P : (X 0 × (∏ n : nat, X (S n))) → UU} :
(∑ x0 : X 0, ∑ xs : ∏ n : nat, X (S n), P (make_dirprod x0 xs)) ≃
(∑ xs : ∏ n : nat, X n, P (make_dirprod (xs 0) (xs ∘ S))).
Proof.
≃ (∑ pair : (X 0 × ∏ n : nat, X (S n)), P pair) by apply weqtotal2asstol.
use weqbandf.
- apply (@combine_over_nat_basic X X X); intros; apply idweq.
- intros x0xs; cbn.
apply idweq.
Defined.
Local Lemma combine_over_nat' {X : nat → UU} {P : X 0 → (∏ n : nat, X (S n)) → UU} :
(∑ x0 : X 0, ∑ xs : ∏ n : nat, X (S n), P x0 xs) ≃
(∑ xs : ∏ n : nat, X n, P (xs 0) (xs ∘ S)).
Proof.
≃ (∑ (x0 : X 0) (xs : ∏ n : nat, X (S n)), (uncurry (Z := λ _, UU) P)
(make_dirprod x0 xs)) by apply idweq.
≃' (∑ xs : ∏ n : nat, X n, uncurry P (Z := λ _, UU)
(make_dirprod (xs 0) (xs ∘ S))) by apply idweq.
apply combine_over_nat.
Defined.
If the base type is contractible, so is the type of sections over it.
Definition weqsecovercontr_uncurried {X : UU} {Y : X → UU}
(P : ∏ x : X, Y x → UU) (isc : iscontr (∑ x : X, Y x)) :
(∏ (x : X) (y : Y x), P x y) ≃ (P (pr1 (iscontrpr1 isc)) (pr2 (iscontrpr1 isc))).
Proof.
≃ (∏ pair : (∑ x : X, Y x), uncurry (Z := λ _, UU) P pair) by
apply invweq, weqsecovertotal2.
≃' (uncurry (Z := λ _, UU) P (iscontrpr1 isc)) by (apply idweq).
apply weqsecovercontr.
Defined.
(P : ∏ x : X, Y x → UU) (isc : iscontr (∑ x : X, Y x)) :
(∏ (x : X) (y : Y x), P x y) ≃ (P (pr1 (iscontrpr1 isc)) (pr2 (iscontrpr1 isc))).
Proof.
≃ (∏ pair : (∑ x : X, Y x), uncurry (Z := λ _, UU) P pair) by
apply invweq, weqsecovertotal2.
≃' (uncurry (Z := λ _, UU) P (iscontrpr1 isc)) by (apply idweq).
apply weqsecovercontr.
Defined.
Shifted cochains have equivalent limits.
(Lemma 12 in Ahrens, Capriotti, and Spadotti)
Definition shifted_limit (cocha : cochain type_precat) :
standard_limit (shift_cochain cocha) ≃ standard_limit cocha.
Proof.
pose (X := dob cocha); cbn in X.
pose (π n := (@dmor _ _ cocha (S n) n (idpath _))).
unfold standard_limit, shift_cochain; cbn.
assert (isc : ∏ x : ∏ v : nat, dob cocha (S v),
iscontr (∑ x0 : X 0, (π 0 (x 0)) = x0)).
{
intros x.
apply iscontr_paths_from.
}
Step (2) This is the direct product with the type proven contractible above
≃ (∑ xs : ∏ v : nat, X (S v),
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)
× (∑ x0 : X 0, (π 0 (xs 0)) = x0)) by
(apply weqfibtototal; intro; apply dirprod_with_contr_r; apply isc).
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)
× (∑ x0 : X 0, (π 0 (xs 0)) = x0)) by
(apply weqfibtototal; intro; apply dirprod_with_contr_r; apply isc).
Now, we swap the components in the direct product.
≃ (∑ xs : ∏ v : nat, X (S v),
(∑ x0 : X 0, π 0 (xs 0) = x0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)) by
(apply weqfibtototal; intro; apply weqdirprodcomm).
(∑ x0 : X 0, π 0 (xs 0) = x0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)) by
(apply weqfibtototal; intro; apply weqdirprodcomm).
Using associativity of Σ-types,
≃ (∑ xs : ∏ v : nat, X (S v),
∑ x0 : X 0,
(π 0 (xs 0) = x0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)) by
(apply weqfibtototal; intro; apply weqtotal2asstor).
∑ x0 : X 0,
(π 0 (xs 0) = x0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)) by
(apply weqfibtototal; intro; apply weqtotal2asstor).
And again by commutativity of ×, we swap the first components
≃ (∑ x0 : X 0,
∑ xs : ∏ n : nat, X (S n),
(π 0 (xs 0) = x0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)) by (apply weqtotal2comm).
∑ xs : ∏ n : nat, X (S n),
(π 0 (xs 0) = x0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e
(idfun (X (S (S v))))) (xs u) = xs v)) by (apply weqtotal2comm).
Step 3: combine the first bits
≃ (∑ xs : ∏ n : nat, X n,
(π 0 (xs 1) = xs 0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, dob cocha (S o) → dob cocha (S (S v))) e
(idfun (dob cocha (S (S v))))) (xs (S u)) = xs (S v))).
apply (@combine_over_nat' X
(λ x0 xs,
π 0 (xs 0) = x0
× (∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e (idfun (X (S (S v)))))
(xs u) = xs v))).
(π 0 (xs 1) = xs 0) ×
(∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, dob cocha (S o) → dob cocha (S (S v))) e
(idfun (dob cocha (S (S v))))) (xs (S u)) = xs (S v))).
apply (@combine_over_nat' X
(λ x0 xs,
π 0 (xs 0) = x0
× (∏ (u v : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, X (S o) → X (S (S v))) e (idfun (X (S (S v)))))
(xs u) = xs v))).
Now the first component is the same.
apply weqfibtototal; intros xs.
≃ (π 0 (xs 1) = xs 0
× (∏ (v u : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, dob cocha (S o) → dob cocha (S (S v))) e
(idfun (dob cocha (S (S v))))) (xs (S u)) = xs (S v))) by
apply weqdirprodf; [apply idweq|apply flipsec_weq].
≃' (∏ (v u : nat) (e : S v = u), dmor cocha e (xs u) = xs v) by
apply flipsec_weq.
≃ (π 0 (xs 1) = xs 0
× (∏ (v u : nat) (e : S v = u),
(dmor cocha (idpath (S (S v)))
∘ transportf (λ o : nat, dob cocha (S o) → dob cocha (S (S v))) e
(idfun (dob cocha (S (S v))))) (xs (S u)) = xs (S v))) by
apply weqdirprodf; [apply idweq|apply flipsec_weq].
≃' (∏ (v u : nat) (e : S v = u), dmor cocha e (xs u) = xs v) by
apply flipsec_weq.
Split into cases on n = 0 or n > 0. Coq is bad about coming up with these implicit arguments, so we have to be
very excplicit.
apply (@combine_over_nat_basic
(λ n, π n (xs (S n)) = xs n)
(λ v, ∏ (u : nat) (e : v = u),
(dmor cocha (idpath (S v))
∘ _ (idfun (dob cocha (S v)))) (xs (S u)) = xs v)
(λ v, ∏ (u : nat) (e : S v = u), dmor cocha e (xs u) = xs v)).
(λ n, π n (xs (S n)) = xs n)
(λ v, ∏ (u : nat) (e : v = u),
(dmor cocha (idpath (S v))
∘ _ (idfun (dob cocha (S v)))) (xs (S u)) = xs v)
(λ v, ∏ (u : nat) (e : S v = u), dmor cocha e (xs u) = xs v)).
We use the following fact over and over to simplify the remaining types:
for any x : X, the type ∑ y : X, x = y is contractible.
- apply invweq.
apply (@weqsecovercontr_uncurried
nat (λ n, 1 = n) (λ _ _, _ = xs 0) (iscontr_paths_from 1)).
- intros u.
≃ ((dmor cocha (idpath (S (S u)))
∘ transportf (λ o : nat, dob cocha (S o) → dob cocha (S (S u)))
(idpath (S u)) (idfun (dob cocha (S (S u))))) (xs (S (S u))) =
xs (S u)).
+ apply (@weqsecovercontr_uncurried
nat (λ n, (S u) = n) (λ _ _, _ _ = xs (S u)) (iscontr_paths_from _)).
+ cbn.
apply invweq.
apply (@weqsecovercontr_uncurried
nat (λ n, (S (S u)) = n) (λ _ _, _ = xs (S u)) (iscontr_paths_from _)).
Defined.
apply (@weqsecovercontr_uncurried
nat (λ n, 1 = n) (λ _ _, _ = xs 0) (iscontr_paths_from 1)).
- intros u.
≃ ((dmor cocha (idpath (S (S u)))
∘ transportf (λ o : nat, dob cocha (S o) → dob cocha (S (S u)))
(idpath (S u)) (idfun (dob cocha (S (S u))))) (xs (S (S u))) =
xs (S u)).
+ apply (@weqsecovercontr_uncurried
nat (λ n, (S u) = n) (λ _ _, _ _ = xs (S u)) (iscontr_paths_from _)).
+ cbn.
apply invweq.
apply (@weqsecovercontr_uncurried
nat (λ n, (S (S u)) = n) (λ _ _, _ = xs (S u)) (iscontr_paths_from _)).
Defined.
Lemma 11 in Ahrens, Capriotti, and Spadotti
Local Definition Z X l :=
∑ (x : ∏ n, X n), ∏ n, x (S n) = l n (x n).
Local Lemma lemma_11 (X : nat → UU) (l : ∏ n, X n → X (S n)) : Z X l ≃ X 0.
Proof.
set (f (xp : Z X l) := pr1 xp 0).
transparent assert (g : (X 0 → Z X l)). {
intros x.
∃ (nat_rect _ x l).
exact (λ n, idpath _).
}
apply (make_weq f).
apply (isweq_iso f g).
- cbn.
intros xp; induction xp as [x p].
transparent assert ( q : (nat_rect X (x 0) l ¬ x )). {
intros n; induction n; cbn.
× reflexivity.
× exact (maponpaths (l n) IHn @ !p n).
}
set (q' := funextsec _ _ _ q).
use total2_paths_f; cbn.
+ exact q'.
+ rewrite transportf_sec_constant. apply funextsec; intros n.
intermediate_path (!maponpaths (λ x, x (S n)) q' @
maponpaths (λ x, l n (x n)) q'). {
use transportf_paths_FlFr.
}
intermediate_path (!maponpaths (λ x, x (S n)) q' @
maponpaths (l n) (maponpaths (λ x, x n) q')). {
apply maponpaths. symmetry. use maponpathscomp.
}
intermediate_path (! q (S n) @ maponpaths (l n) (q n)). {
unfold q'.
repeat rewrite maponpaths_funextsec.
reflexivity.
}
intermediate_path (! (maponpaths (l n) (q n) @ ! p n) @
maponpaths (l n) (q n)). {
reflexivity.
}
rewrite pathscomp_inv.
rewrite <- path_assoc.
rewrite pathsinv0l.
rewrite pathsinv0inv0.
rewrite pathscomp0rid.
reflexivity.
- cbn.
reflexivity.
Defined.
Local Definition lemma_11_unfolded (X : nat → UU) (l : ∏ n, X n → X (S n)) :
(∑ (x : ∏ n, X n), ∏ n, x (S n) = l n (x n)) ≃ X 0 := lemma_11 X l.
Lemma cochain_limit_standard_limit_weq (cha cha' : cochain type_precat) :
cochain_limit cha ≃ cochain_limit cha' → standard_limit cha ≃ standard_limit cha'.
Proof.
intro f.
apply (weqcomp (invweq (lim_equiv _))).
apply (weqcomp f).
apply (lim_equiv _).
Defined.
Local Open Scope cat.
Section CochainCone.
Context (A C : UU) (B : A → UU).
Definition terminal_cochain : cochain type_precat :=
termCochain (TerminalType) (polynomial_functor A B).
Definition m_type := standard_limit terminal_cochain.
Definition apply_on_chain (cha : cochain type_precat) : cochain type_precat :=
mapcochain (polynomial_functor A B) cha.
Definition terminal_cochain_shifted_lim :
standard_limit (shift_cochain terminal_cochain) ≃
standard_limit (apply_on_chain terminal_cochain).
Proof.
apply cochain_limit_standard_limit_weq.
unfold shift_cochain, apply_on_chain, cochain_limit.
apply weqfibtototal;intros.
apply weqonsecfibers; intro n.
apply idweq.
Defined.
Let W n := iter_functor (polynomial_functor A B) n unit.
Let Cone0' := λ n : nat, C → W n.
Let Cone0 := ∏ n : nat, Cone0' n.
Let π := λ n : nat, dmor terminal_cochain (idpath (S n)).
Definition simplified_cone : UU :=
(∑ (u : Cone0), ∏ n : nat, (π n ∘ u (S n))%functions = u n).
Lemma simplify_cochain_cone :
cone terminal_cochain C ≃ simplified_cone.
Proof.
unfold cone, Cone0.
apply weqfibtototal; intro f.
intermediate_weq (
(∏ (u v : vertex conat_graph) (e0 : edge u v),
f _ · dmor terminal_cochain e0 ¬ f v)
). {
do 3 (apply weqonsecfibers; intro).
apply invweq.
apply weqfunextsec.
}
apply invweq.
intermediate_weq (∏ u, (π u ∘ f (S u))%functions ¬ f u). {
apply invweq.
apply weqonsecfibers; intro.
apply weqfunextsec.
}
unfold homotsec.
apply invweq.
intermediate_weq (
(∏ (u v : vertex conat_graph) (c : C) (e0 : edge u v),
(f u · dmor terminal_cochain e0) c = f v c)). {
do 2 (apply weqonsecfibers; intro).
apply flipsec_weq.
}
intermediate_weq (
(∏ (c : C) (u v : vertex conat_graph) (e0 : edge u v),
(f u · dmor terminal_cochain e0) c = f v c)). {
intermediate_weq (
(∏ (u : vertex conat_graph) (c : C) (v : vertex conat_graph) (e0 : edge u v),
(f u · dmor terminal_cochain e0) c = f v c)). {
apply weqonsecfibers; intro.
apply flipsec_weq.
}
apply flipsec_weq.
}
apply invweq.
intermediate_weq ((∏ (x : C) (u : nat), (π u ∘ f (S u))%functions x = f u x));
[apply flipsec_weq|].
apply weqonsecfibers; intro c.
apply invweq.
use weq_iso.
- intros eq; intro; apply eq.
- intros eq.
intros ? ? e.
induction e; apply eq.
- abstract ( intro;
do 2 (apply funextsec; intro);
apply funextsec; intro e;
induction e;
reflexivity ).
- abstract ( intro; apply funextsec; intro; reflexivity ).
Defined.
End CochainCone.
∑ (x : ∏ n, X n), ∏ n, x (S n) = l n (x n).
Local Lemma lemma_11 (X : nat → UU) (l : ∏ n, X n → X (S n)) : Z X l ≃ X 0.
Proof.
set (f (xp : Z X l) := pr1 xp 0).
transparent assert (g : (X 0 → Z X l)). {
intros x.
∃ (nat_rect _ x l).
exact (λ n, idpath _).
}
apply (make_weq f).
apply (isweq_iso f g).
- cbn.
intros xp; induction xp as [x p].
transparent assert ( q : (nat_rect X (x 0) l ¬ x )). {
intros n; induction n; cbn.
× reflexivity.
× exact (maponpaths (l n) IHn @ !p n).
}
set (q' := funextsec _ _ _ q).
use total2_paths_f; cbn.
+ exact q'.
+ rewrite transportf_sec_constant. apply funextsec; intros n.
intermediate_path (!maponpaths (λ x, x (S n)) q' @
maponpaths (λ x, l n (x n)) q'). {
use transportf_paths_FlFr.
}
intermediate_path (!maponpaths (λ x, x (S n)) q' @
maponpaths (l n) (maponpaths (λ x, x n) q')). {
apply maponpaths. symmetry. use maponpathscomp.
}
intermediate_path (! q (S n) @ maponpaths (l n) (q n)). {
unfold q'.
repeat rewrite maponpaths_funextsec.
reflexivity.
}
intermediate_path (! (maponpaths (l n) (q n) @ ! p n) @
maponpaths (l n) (q n)). {
reflexivity.
}
rewrite pathscomp_inv.
rewrite <- path_assoc.
rewrite pathsinv0l.
rewrite pathsinv0inv0.
rewrite pathscomp0rid.
reflexivity.
- cbn.
reflexivity.
Defined.
Local Definition lemma_11_unfolded (X : nat → UU) (l : ∏ n, X n → X (S n)) :
(∑ (x : ∏ n, X n), ∏ n, x (S n) = l n (x n)) ≃ X 0 := lemma_11 X l.
Lemma cochain_limit_standard_limit_weq (cha cha' : cochain type_precat) :
cochain_limit cha ≃ cochain_limit cha' → standard_limit cha ≃ standard_limit cha'.
Proof.
intro f.
apply (weqcomp (invweq (lim_equiv _))).
apply (weqcomp f).
apply (lim_equiv _).
Defined.
Local Open Scope cat.
Section CochainCone.
Context (A C : UU) (B : A → UU).
Definition terminal_cochain : cochain type_precat :=
termCochain (TerminalType) (polynomial_functor A B).
Definition m_type := standard_limit terminal_cochain.
Definition apply_on_chain (cha : cochain type_precat) : cochain type_precat :=
mapcochain (polynomial_functor A B) cha.
Definition terminal_cochain_shifted_lim :
standard_limit (shift_cochain terminal_cochain) ≃
standard_limit (apply_on_chain terminal_cochain).
Proof.
apply cochain_limit_standard_limit_weq.
unfold shift_cochain, apply_on_chain, cochain_limit.
apply weqfibtototal;intros.
apply weqonsecfibers; intro n.
apply idweq.
Defined.
Let W n := iter_functor (polynomial_functor A B) n unit.
Let Cone0' := λ n : nat, C → W n.
Let Cone0 := ∏ n : nat, Cone0' n.
Let π := λ n : nat, dmor terminal_cochain (idpath (S n)).
Definition simplified_cone : UU :=
(∑ (u : Cone0), ∏ n : nat, (π n ∘ u (S n))%functions = u n).
Lemma simplify_cochain_cone :
cone terminal_cochain C ≃ simplified_cone.
Proof.
unfold cone, Cone0.
apply weqfibtototal; intro f.
intermediate_weq (
(∏ (u v : vertex conat_graph) (e0 : edge u v),
f _ · dmor terminal_cochain e0 ¬ f v)
). {
do 3 (apply weqonsecfibers; intro).
apply invweq.
apply weqfunextsec.
}
apply invweq.
intermediate_weq (∏ u, (π u ∘ f (S u))%functions ¬ f u). {
apply invweq.
apply weqonsecfibers; intro.
apply weqfunextsec.
}
unfold homotsec.
apply invweq.
intermediate_weq (
(∏ (u v : vertex conat_graph) (c : C) (e0 : edge u v),
(f u · dmor terminal_cochain e0) c = f v c)). {
do 2 (apply weqonsecfibers; intro).
apply flipsec_weq.
}
intermediate_weq (
(∏ (c : C) (u v : vertex conat_graph) (e0 : edge u v),
(f u · dmor terminal_cochain e0) c = f v c)). {
intermediate_weq (
(∏ (u : vertex conat_graph) (c : C) (v : vertex conat_graph) (e0 : edge u v),
(f u · dmor terminal_cochain e0) c = f v c)). {
apply weqonsecfibers; intro.
apply flipsec_weq.
}
apply flipsec_weq.
}
apply invweq.
intermediate_weq ((∏ (x : C) (u : nat), (π u ∘ f (S u))%functions x = f u x));
[apply flipsec_weq|].
apply weqonsecfibers; intro c.
apply invweq.
use weq_iso.
- intros eq; intro; apply eq.
- intros eq.
intros ? ? e.
induction e; apply eq.
- abstract ( intro;
do 2 (apply funextsec; intro);
apply funextsec; intro e;
induction e;
reflexivity ).
- abstract ( intro; apply funextsec; intro; reflexivity ).
Defined.
End CochainCone.