Library UniMath.Induction.M.Chains

Limits of chains and cochains in the precategory of types

The shifted chain (X', π') from (X, π) is one where Xₙ' = Xₙ₊₁ and πₙ' = πₙ₊₁.
Definition shift_chain (cha : chain type_precat) : chain type_precat.
Proof.
  use tpair.
  - exact (dob cha S).
  - exact (λ _ _ path, dmor cha (maponpaths S path)).
Defined.

The shifted cochain (X', π') from (X, π) is one where Xₙ' = Xₙ₊₁ and πₙ' = πₙ₊₁.
Definition shift_cochain {C : precategory} (cochn : cochain C) : cochain C.
Proof.
  use cochain_weq; use tpair.
  - exact (dob cochn S).
  - intros n; cbn.
    apply (dmor cochn).
    exact (idpath _).
Defined.

Interaction between transporting over (maponpaths S ed) and shifting the cochain
Definition transport_shift_cochain :
   cochn ver1 ver2 (ed : ver1 = ver2)
    (stdlim_shift : standard_limit (shift_cochain cochn)),
  transportf (dob cochn) (maponpaths S ed) (pr1 stdlim_shift ver1) =
  transportf (dob (shift_cochain cochn)) ed (pr1 stdlim_shift ver1).
Proof.
  intros cochn ver1 ver2 ed stdlim_shift.
  induction ed.
  reflexivity.
Defined.

Ways to prove that dmors are equal on cochains
More ways to prove that dmors are equal on cochains
Lemma cochain_dmor_paths_type {ver1 ver2 ver3 : vertex conat_graph}
  (cochn : cochain type_precat) (p1 : edge ver1 ver3) (p2 : edge ver2 ver3)
  (q1 : ver1 = ver2) :
   v1 : dob cochn ver1, dmor cochn p1 v1 = dmor cochn p2 (transportf _ q1 v1).
Proof.
  intro v1; cbn in ×.
  induction q1.
  cbn.
  exact (toforallpaths _ _ _ (cochain_dmor_paths cochn p1 p2) v1).
Defined.

We use the following tactic notations to mirror the "equational style" of reasoning used in Ahrens, Capriotti, and Spadotti.
Local Tactic Notation "≃" constr(H) "by" tactic(t) := intermediate_weq H; [t|].
Local Tactic Notation "≃'" constr(H) "by" tactic(t) := intermediate_weq H; [|t].
Local Tactic Notation "≃" constr(H) := intermediate_weq H.
Local Tactic Notation "≃'" constr(H) := apply invweq; intermediate_weq H.

Local Lemma combine_over_nat_basic {X Y Z : nat UU} :
  X 0 Z 0 ( n : nat, Y (S n) Z (S n))
  (X 0 × n : nat, Y (S n)) n : nat, Z n.
Proof.
  intros x0z0 yszs.
  ≃ (Z 0 × ( n : nat, Z (S n))).
  - apply weqdirprodf; [apply x0z0|].
    apply weqonsecfibers, yszs.
  - use weq_iso.
    + intros z0zs.
      intros n; induction n.
      × exact (dirprod_pr1 z0zs).
      × apply (dirprod_pr2 z0zs).
    + intros xs; use make_dirprod.
      × apply xs.
      × exact (xs S).
    + reflexivity.
    + intros xs.
      apply funextsec; intros n.
      induction n; reflexivity.
Defined.

Local Lemma combine_over_nat {X : nat UU} {P : (X 0 × ( n : nat, X (S n))) UU} :
  ( x0 : X 0, xs : n : nat, X (S n), P (make_dirprod x0 xs))
  ( xs : n : nat, X n, P (make_dirprod (xs 0) (xs S))).
Proof.
  ≃ ( pair : (X 0 × n : nat, X (S n)), P pair) by apply weqtotal2asstol.
  use weqbandf.
  - apply (@combine_over_nat_basic X X X); intros; apply idweq.
  - intros x0xs; cbn.
    apply idweq.
Defined.

Local Lemma combine_over_nat' {X : nat UU} {P : X 0 ( n : nat, X (S n)) UU} :
  ( x0 : X 0, xs : n : nat, X (S n), P x0 xs)
  ( xs : n : nat, X n, P (xs 0) (xs S)).
Proof.
  ≃ ( (x0 : X 0) (xs : n : nat, X (S n)), (uncurry (Z := λ _, UU) P)
                                             (make_dirprod x0 xs)) by apply idweq.
  ≃' ( xs : n : nat, X n, uncurry P (Z := λ _, UU)
                                     (make_dirprod (xs 0) (xs S))) by apply idweq.
  apply combine_over_nat.
Defined.

If the base type is contractible, so is the type of sections over it.
Definition weqsecovercontr_uncurried {X : UU} {Y : X UU}
           (P : x : X, Y x UU) (isc : iscontr ( x : X, Y x)) :
  ( (x : X) (y : Y x), P x y) (P (pr1 (iscontrpr1 isc)) (pr2 (iscontrpr1 isc))).
Proof.
  ≃ ( pair : ( x : X, Y x), uncurry (Z := λ _, UU) P pair) by
    apply invweq, weqsecovertotal2.
  ≃' (uncurry (Z := λ _, UU) P (iscontrpr1 isc)) by (apply idweq).
  apply weqsecovercontr.
Defined.

Shifted cochains have equivalent limits. (Lemma 12 in Ahrens, Capriotti, and Spadotti)

Definition shifted_limit (cocha : cochain type_precat) :
  standard_limit (shift_cochain cocha) standard_limit cocha.
Proof.
  pose (X := dob cocha); cbn in X.
  posen := (@dmor _ _ cocha (S n) n (idpath _))).
  unfold standard_limit, shift_cochain; cbn.

  assert (isc : x : v : nat, dob cocha (S v),
                iscontr ( x0 : X 0, (π 0 (x 0)) = x0)).
  {
    intros x.
    apply iscontr_paths_from.
  }

  
Step (2) This is the direct product with the type proven contractible above
  ≃ ( xs : v : nat, X (S v),
    ( (u v : nat) (e : S v = u),
    (dmor cocha (idpath (S (S v)))
       transportf (λ o : nat, X (S o) X (S (S v))) e
      (idfun (X (S (S v))))) (xs u) = xs v)
    × ( x0 : X 0, (π 0 (xs 0)) = x0)) by
    (apply weqfibtototal; intro; apply dirprod_with_contr_r; apply isc).

Now, we swap the components in the direct product.
  ≃ ( xs : v : nat, X (S v),
    ( x0 : X 0, π 0 (xs 0) = x0) ×
    ( (u v : nat) (e : S v = u),
      (dmor cocha (idpath (S (S v)))
       transportf (λ o : nat, X (S o) X (S (S v))) e
      (idfun (X (S (S v))))) (xs u) = xs v)) by
    (apply weqfibtototal; intro; apply weqdirprodcomm).

Using associativity of Σ-types,
  ≃ ( xs : v : nat, X (S v),
      x0 : X 0,
     (π 0 (xs 0) = x0) ×
     ( (u v : nat) (e : S v = u),
       (dmor cocha (idpath (S (S v)))
        transportf (λ o : nat, X (S o) X (S (S v))) e
       (idfun (X (S (S v))))) (xs u) = xs v)) by
    (apply weqfibtototal; intro; apply weqtotal2asstor).

And again by commutativity of ×, we swap the first components
  ≃ ( x0 : X 0,
      xs : n : nat, X (S n),
     (π 0 (xs 0) = x0) ×
     ( (u v : nat) (e : S v = u),
       (dmor cocha (idpath (S (S v)))
        transportf (λ o : nat, X (S o) X (S (S v))) e
       (idfun (X (S (S v))))) (xs u) = xs v)) by (apply weqtotal2comm).

Step 3: combine the first bits
  ≃ ( xs : n : nat, X n,
      (π 0 (xs 1) = xs 0) ×
      ( (u v : nat) (e : S v = u),
        (dmor cocha (idpath (S (S v)))
         transportf (λ o : nat, dob cocha (S o) dob cocha (S (S v))) e
        (idfun (dob cocha (S (S v))))) (xs (S u)) = xs (S v))).
  apply (@combine_over_nat' X
        (λ x0 xs,
        π 0 (xs 0) = x0
        × ( (u v : nat) (e : S v = u),
            (dmor cocha (idpath (S (S v)))
             transportf (λ o : nat, X (S o) X (S (S v))) e (idfun (X (S (S v)))))
              (xs u) = xs v))).

Now the first component is the same.
  apply weqfibtototal; intros xs.

  ≃ (π 0 (xs 1) = xs 0
    × ( (v u : nat) (e : S v = u),
      (dmor cocha (idpath (S (S v)))
         transportf (λ o : nat, dob cocha (S o) dob cocha (S (S v))) e
            (idfun (dob cocha (S (S v))))) (xs (S u)) = xs (S v))) by
    apply weqdirprodf; [apply idweq|apply flipsec_weq].

  ≃' ( (v u : nat) (e : S v = u), dmor cocha e (xs u) = xs v) by
    apply flipsec_weq.

Split into cases on n = 0 or n > 0. Coq is bad about coming up with these implicit arguments, so we have to be very excplicit.
  apply (@combine_over_nat_basic
           (λ n, π n (xs (S n)) = xs n)
           (λ v, (u : nat) (e : v = u),
             (dmor cocha (idpath (S v))
                _ (idfun (dob cocha (S v)))) (xs (S u)) = xs v)
           (λ v, (u : nat) (e : S v = u), dmor cocha e (xs u) = xs v)).

We use the following fact over and over to simplify the remaining types: for any x : X, the type ∑ y : X, x = y is contractible.
  - apply invweq.
    apply (@weqsecovercontr_uncurried
             nat (λ n, 1 = n) (λ _ _, _ = xs 0) (iscontr_paths_from 1)).
  - intros u.
    ≃ ((dmor cocha (idpath (S (S u)))
             transportf (λ o : nat, dob cocha (S o) dob cocha (S (S u)))
                (idpath (S u)) (idfun (dob cocha (S (S u))))) (xs (S (S u))) =
          xs (S u)).
    + apply (@weqsecovercontr_uncurried
               nat (λ n, (S u) = n) (λ _ _, _ _ = xs (S u)) (iscontr_paths_from _)).
    + cbn.
      apply invweq.
      apply (@weqsecovercontr_uncurried
               nat (λ n, (S (S u)) = n) (λ _ _, _ = xs (S u)) (iscontr_paths_from _)).
Defined.

Lemma 11 in Ahrens, Capriotti, and Spadotti
Local Definition Z X l :=
  (x : n, X n), n, x (S n) = l n (x n).
Local Lemma lemma_11 (X : nat UU) (l : n, X n X (S n)) : Z X l X 0.
Proof.
 set (f (xp : Z X l) := pr1 xp 0).
 transparent assert (g : (X 0 Z X l)). {
   intros x.
    (nat_rect _ x l).
   exact (λ n, idpath _).
 }
 apply (make_weq f).
 apply (isweq_iso f g).
 - cbn.
   intros xp; induction xp as [x p].
   transparent assert ( q : (nat_rect X (x 0) l ¬ x )). {
     intros n; induction n; cbn.
     × reflexivity.
     × exact (maponpaths (l n) IHn @ !p n).
   }
   set (q' := funextsec _ _ _ q).
   use total2_paths_f; cbn.
   + exact q'.
   + rewrite transportf_sec_constant. apply funextsec; intros n.
     intermediate_path (!maponpaths (λ x, x (S n)) q' @
                         maponpaths (λ x, l n (x n)) q'). {
       use transportf_paths_FlFr.
     }
     intermediate_path (!maponpaths (λ x, x (S n)) q' @
                         maponpaths (l n) (maponpaths (λ x, x n) q')). {
       apply maponpaths. symmetry. use maponpathscomp.
     }
     intermediate_path (! q (S n) @ maponpaths (l n) (q n)). {
       unfold q'.
       repeat rewrite maponpaths_funextsec.
       reflexivity.
     }
     intermediate_path (! (maponpaths (l n) (q n) @ ! p n) @
                          maponpaths (l n) (q n)). {
       reflexivity.
     }
     rewrite pathscomp_inv.
     rewrite <- path_assoc.
     rewrite pathsinv0l.
     rewrite pathsinv0inv0.
     rewrite pathscomp0rid.
     reflexivity.
 - cbn.
   reflexivity.
Defined.

Local Definition lemma_11_unfolded (X : nat UU) (l : n, X n X (S n)) :
  ( (x : n, X n), n, x (S n) = l n (x n)) X 0 := lemma_11 X l.

Lemma cochain_limit_standard_limit_weq (cha cha' : cochain type_precat) :
  cochain_limit cha cochain_limit cha' standard_limit cha standard_limit cha'.
Proof.
  intro f.
  apply (weqcomp (invweq (lim_equiv _))).
  apply (weqcomp f).
  apply (lim_equiv _).
Defined.

Local Open Scope cat.
Section CochainCone.

  Context (A C : UU) (B : A UU).

  Definition terminal_cochain : cochain type_precat :=
    termCochain (TerminalType) (polynomial_functor A B).

  Definition m_type := standard_limit terminal_cochain.

  Definition apply_on_chain (cha : cochain type_precat) : cochain type_precat :=
    mapcochain (polynomial_functor A B) cha.

  Definition terminal_cochain_shifted_lim :
    standard_limit (shift_cochain terminal_cochain)
                  standard_limit (apply_on_chain terminal_cochain).
  Proof.
    apply cochain_limit_standard_limit_weq.
    unfold shift_cochain, apply_on_chain, cochain_limit.
    apply weqfibtototal;intros.
    apply weqonsecfibers; intro n.
    apply idweq.
  Defined.

  Let W n := iter_functor (polynomial_functor A B) n unit.
  Let Cone0' := λ n : nat, C W n.
  Let Cone0 := n : nat, Cone0' n.
  Let π := λ n : nat, dmor terminal_cochain (idpath (S n)).

  Definition simplified_cone : UU :=
    ( (u : Cone0), n : nat, (π n u (S n))%functions = u n).

  Lemma simplify_cochain_cone :
    cone terminal_cochain C simplified_cone.
  Proof.
    unfold cone, Cone0.
    apply weqfibtototal; intro f.
    intermediate_weq (
      ( (u v : vertex conat_graph) (e0 : edge u v),
      f _ · dmor terminal_cochain e0 ¬ f v)
      ). {
      do 3 (apply weqonsecfibers; intro).
      apply invweq.
      apply weqfunextsec.
    }
    apply invweq.
    intermediate_weq ( u, (π u f (S u))%functions ¬ f u). {
      apply invweq.
      apply weqonsecfibers; intro.
      apply weqfunextsec.
    }
    unfold homotsec.
    apply invweq.
    intermediate_weq (
      ( (u v : vertex conat_graph) (c : C) (e0 : edge u v),
       (f u · dmor terminal_cochain e0) c = f v c)). {
      do 2 (apply weqonsecfibers; intro).
      apply flipsec_weq.
    }
    intermediate_weq (
      ( (c : C) (u v : vertex conat_graph) (e0 : edge u v),
       (f u · dmor terminal_cochain e0) c = f v c)). {
      intermediate_weq (
        ( (u : vertex conat_graph) (c : C) (v : vertex conat_graph) (e0 : edge u v),
        (f u · dmor terminal_cochain e0) c = f v c)). {
        apply weqonsecfibers; intro.
        apply flipsec_weq.
      }
      apply flipsec_weq.
    }
    apply invweq.
    intermediate_weq (( (x : C) (u : nat), (π u f (S u))%functions x = f u x));
      [apply flipsec_weq|].
    apply weqonsecfibers; intro c.
    apply invweq.
    use weq_iso.
    - intros eq; intro; apply eq.
    - intros eq.
      intros ? ? e.
      induction e; apply eq.
    - abstract ( intro;
      do 2 (apply funextsec; intro);
      apply funextsec; intro e;
      induction e;
      reflexivity ).
    - abstract ( intro; apply funextsec; intro; reflexivity ).
  Defined.

End CochainCone.