Library UniMath.CategoryTheory.PointedFunctors
**********************************************************
Benedikt Ahrens, Ralph Matthes
SubstitutionSystems
2015
**********************************************************
Contents :
- Definition of category of pointed endofunctors
- Forgetful functor to category of endofunctors
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.FunctorCategory.
Local Open Scope cat.
Section def_ptd.
Context (C : category).
Definition ptd_obj : UU := ∑ F : functor C C, functor_identity C ⟹ F.
Coercion functor_from_ptd_obj (F : ptd_obj) : functor C C := pr1 F.
Definition ptd_pt (F : ptd_obj) : functor_identity C ⟹ F := pr2 F.
Definition is_ptd_mor {F G : ptd_obj}(α: F ⟹ G) : UU := ∏ c : C, ptd_pt F c · α c = ptd_pt G c.
Definition ptd_mor (F G : ptd_obj) : UU :=
∑ α : F ⟹ G, is_ptd_mor α.
Coercion nat_trans_from_ptd_mor {F G : ptd_obj} (a : ptd_mor F G) : nat_trans F G := pr1 a.
Lemma eq_ptd_mor {F G : ptd_obj} (a b : ptd_mor F G)
: a = b ≃ (a : F ⟹ G) = b.
Proof.
apply subtypeInjectivity.
intro x.
apply impred; intros ?.
apply homset_property.
Defined.
Definition ptd_mor_commutes {F G : ptd_obj} (α : ptd_mor F G)
: ∏ c : C, ptd_pt F c · α c = ptd_pt G c.
Proof.
exact (pr2 α).
Qed.
Definition ptd_id (F : ptd_obj) : ptd_mor F F.
Proof.
∃ (nat_trans_id _ ).
abstract (
intro c;
apply id_right) .
Defined.
Definition ptd_comp {F F' F'' : ptd_obj} (α : ptd_mor F F') (α' : ptd_mor F' F'')
: ptd_mor F F''.
Proof.
∃ (nat_trans_comp _ _ _ α α').
abstract (
intro c; simpl;
rewrite assoc ;
set (H:=ptd_mor_commutes α c); simpl in H; rewrite H; clear H ;
set (H:=ptd_mor_commutes α' c); simpl in H; rewrite H; clear H ;
apply idpath ).
Defined.
Definition ptd_ob_mor : precategory_ob_mor.
Proof.
∃ ptd_obj.
exact ptd_mor.
Defined.
Definition ptd_precategory_data : precategory_data.
Proof.
∃ ptd_ob_mor.
∃ ptd_id.
exact @ptd_comp.
Defined.
Lemma is_precategory_ptd : is_precategory ptd_precategory_data.
Proof.
repeat split; simpl; intros.
- apply (invmap (eq_ptd_mor _ _ )).
apply (@id_left (functor_category C C)).
- apply (invmap (eq_ptd_mor _ _ )).
apply (@id_right (functor_category _ _)).
- apply (invmap (eq_ptd_mor _ _ )).
apply (@assoc (functor_category _ _)).
- apply (invmap (eq_ptd_mor _ _ )).
apply (@assoc' (functor_category _ _)).
Qed.
Definition precategory_Ptd : precategory := tpair _ _ is_precategory_ptd.
Lemma has_homsets_precategory_Ptd: has_homsets precategory_Ptd.
Proof.
red.
intros F G.
red.
intros a b.
apply (isofhlevelweqb 1 (eq_ptd_mor a b)).
apply (homset_property (functor_category C C)).
Qed.
Definition category_Ptd : category := precategory_Ptd ,, has_homsets_precategory_Ptd.
Definition id_Ptd : category_Ptd.
Proof.
∃ (functor_identity _).
exact (nat_trans_id _ ).
Defined.
Lemma eq_ptd_mor_cat {F G : category_Ptd} (a b : F --> G)
: a = b ≃ (a : ptd_mor F G) = b.
Proof.
use tpair.
intro H.
exact H.
apply idisweq.
Defined.
Forgetful functor to functor category
Definition ptd_forget_data : functor_data category_Ptd [C, C].
Proof.
∃ (λ a, pr1 a).
exact (λ a b f, pr1 f).
Defined.
Lemma is_functor_ptd_forget : is_functor ptd_forget_data.
Proof.
split; intros; red; intros; apply idpath.
Qed.
Definition functor_ptd_forget : functor category_Ptd [C, C] := tpair _ _ is_functor_ptd_forget.
End def_ptd.
Arguments eq_ptd_mor { _ } _ { _ _ } .