Library UniMath.CategoryTheory.SimplicialSets
Homotopy theory of simplicial sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Export UniMath.Combinatorics.FiniteSets.
Require Export UniMath.CategoryTheory.Core.Categories.
Require Export UniMath.CategoryTheory.Core.Functors.
Require Export UniMath.CategoryTheory.FunctorCategory.
Require Export UniMath.CategoryTheory.categories.HSET.Core.
Require Export UniMath.CategoryTheory.categories.HSET.Univalence.
Require Export UniMath.CategoryTheory.opp_precat.
Local Open Scope stn.
Definition monfunstn ( n m : nat ) : UU := ∑ f : ⟦ n ⟧ → ⟦ m ⟧, ∏ (x y: ⟦n⟧), x ≤ y → f x ≤ f y.
Definition make_monfunstn { m n : nat } f is := (f,,is) : monfunstn m n.
Definition monfunstnpr1 {n m : nat} : monfunstn n m → ⟦ n ⟧ → ⟦ m ⟧ := pr1.
Lemma monfunstnpr1_isInjective {m n} (f g : monfunstn m n) : monfunstnpr1 f = monfunstnpr1 g → f = g.
Proof.
intros e.
apply subtypePath.
{ intros h. apply impred; intro i. apply impred; intro j. apply impred; intro l.
apply propproperty. }
exact e.
Defined.
Coercion monfunstnpr1 : monfunstn >-> Funclass .
Lemma isasetmonfunstn n m : isaset ( monfunstn n m ) .
Proof.
intros . apply ( isofhleveltotal2 2 ) .
{ apply impred. intro t. apply isasetstn. }
intro f. apply impred; intro i. apply impred; intro j. apply impred; intro l.
apply isasetaprop, propproperty.
Defined.
Definition monfunstnid n : monfunstn n n := make_monfunstn (idfun _) (λ x y is, is).
Definition monfunstncomp { n m k : nat } ( f : monfunstn n m ) ( g : monfunstn m k ) :
monfunstn n k .
Proof.
intros . ∃ ( g ∘ f ) . intros i j l. unfold funcomp.
apply ( pr2 g ). apply ( pr2 f ) . assumption.
Defined.
Definition precatDelta : precategory .
Proof.
use tpair.
{ use tpair.
{ ∃ nat. intros m n. exact (monfunstn (S m) (S n)). }
{ split.
{ intros m. apply monfunstnid. }
{ intros l m n f g. exact (monfunstncomp f g). } } }
apply is_precategory_one_assoc_to_two.
simpl. split.
{ simpl. split.
{ intros m n f. now apply monfunstnpr1_isInjective. }
{ intros m n f. now apply monfunstnpr1_isInjective. } }
{ simpl. intros m n o p f g h. now apply monfunstnpr1_isInjective. }
Defined.
Local Open Scope cat.
Definition has_homsets_precatDelta : has_homsets precatDelta.
Proof.
intros a b.
cbn.
apply isasetmonfunstn.
Qed.
Definition catDelta : category := make_category precatDelta has_homsets_precatDelta.
Definition sSet := functor_category catDelta^op category_HSET.