Library UniMath.Combinatorics.StandardFiniteSets

Standard finite sets . Vladimir Voevodsky . Apr. - Sep. 2011 .

This file contains main constructions related to the standard finite sets defined as the initial intervals of nat and their properties .

Preamble

Imports.

Standard finite sets stn .


Definition stn ( n : nat ) := m, m < n.
Definition make_stn n m (l:m<n) := (m,,l) : stn n.
Definition stntonat ( n : nat ) : stn n nat := @pr1 _ _ .
Coercion stntonat : stn >-> nat.
Lemma stnlt {n : nat} (i:stn n) : i < n.
Proof.
  intros.
  exact (pr2 i).
Defined.

Notation " 'stnpr' j " := (j,,idpath _) ( at level 70 ).
Notation " 'stnel' ( i , j ) " := ( (j,,idpath _) : stn i ) ( at level 70 ).

Declare Scope stn.
Delimit Scope stn with stn.

Notation "⟦ n ⟧" := (stn n) : stn.

Notation "● i" := (i ,, (idpath _ : natgtb _ _ = _)) (at level 35) : stn.

Lemma isinclstntonat ( n : nat ) : isincl ( stntonat n ).
Proof.
  intro.
  use isinclpr1.
  intro x.
  apply ( pr2 ( natlth x n ) ).
Defined.

Definition stntonat_incl n := make_incl (stntonat n) (isinclstntonat n).

Lemma isdecinclstntonat ( n : nat ) : isdecincl ( stntonat n ).
Proof.
  intro.
  use isdecinclpr1.
  intro x.
  apply isdecpropif.
  use pr2.
  apply isdecrelnatgth.
Defined.

Lemma neghfiberstntonat ( n m : nat ) ( is : natgeh m n ) : ¬ ( hfiber ( stntonat n ) m ).
Proof.
  intros.
  intro h.
  destruct h as [ j e ].
  destruct j as [ j is' ].
  simpl in e.
  rewrite e in is'.
  apply ( natgehtonegnatlth _ _ is is' ).
Defined.

Lemma iscontrhfiberstntonat ( n m : nat ) ( is : natlth m n ) :
  iscontr ( hfiber ( stntonat n ) m ).
Proof.
  intros.
  apply ( iscontrhfiberofincl ( stntonat n ) ( isinclstntonat n ) ( make_stn n m is ) ).
Defined.

Local Open Scope stn.

Lemma stn_ne_iff_neq {n : nat} (i j: n ) : ¬ (i = j) stntonat _ i stntonat _ j.
Proof.
  intros. split.
  - intro ne. apply nat_nopath_to_neq. Set Printing Coercions. idtac.
    intro e; apply ne; clear ne. apply subtypePath_prop. assumption.
  - simpl. intros neq e. apply (nat_neq_to_nopath neq), maponpaths. assumption.
  Unset Printing Coercions.
Defined.

Lemma stnneq {n : nat} : neqReln (n).
Proof.   intros i j. (i j)%nat. split.
  - apply propproperty.
  - apply stn_ne_iff_neq.
Defined.

Notation " x ≠ y " := ( stnneq x y ) (at level 70, no associativity) : stn.
Delimit Scope stn with stn.
Local Open Scope stn.

Lemma isisolatedinstn { n : nat } ( x : n ) : isisolated _ x.
Proof.
  intros.
  apply ( isisolatedinclb ( stntonat n ) ( isinclstntonat n ) x ( isisolatedn x ) ).
Defined.

Lemma stnneq_iff_nopath {n : nat} (i j: n ) : ¬ (i = j) i j.
Proof.
  intros.
  apply negProp_to_iff.
Defined.

Definition stnneq_to_nopath {n : nat} (i j: n ) : ¬ (i = j) <- i j
  := pr2 (stn_ne_iff_neq i j).

Corollary isdeceqstn ( n : nat ) : isdeceq (n).
Proof.
  unfold isdeceq.
  intros x x'.
  apply (isisolatedinstn x x' ).
Defined.

Lemma stn_eq_or_neq {n : nat} (i j: n ) : (i=j) ⨿ (ij).
Proof.
  intros. induction (nat_eq_or_neq i j) as [eq|ne].
  - apply ii1, subtypePath_prop. assumption.
  - apply ii2. assumption.
Defined.

Definition weqisolatedstntostn ( n : nat ) : ( isolated (n) ) n.
Proof.
  apply weqpr1.
  intro x.
  apply iscontraprop1.
  apply isapropisisolated.
  set ( int := isdeceqstn n x ).
  assumption.
Defined.

Corollary isasetstn ( n : nat ) : isaset (n).
Proof.
  intro.
  apply ( isasetifdeceq _ ( isdeceqstn n ) ).
Defined.

Definition stnset n := make_hSet (n) (isasetstn n).

Definition stn_to_nat n : stnset n natset := pr1.

Definition stnposet ( n : nat ) : Poset.
Proof.
  unfold Poset.
   (_,,isasetstn n).
  unfold PartialOrder.
   (λ i j: n, i j)%dnat.
  unfold isPartialOrder.
  split.
  - unfold ispreorder.
    split.
    × intros i j k. apply istransnatleh.
    × intros i. apply isreflnatleh.
  - intros i j r s. apply (invmaponpathsincl _ ( isinclstntonat _ )).
    apply isantisymmnatleh; assumption.
Defined.

Definition lastelement {n : nat} : S n.
Proof.
  split with n.
  apply ( natgthsnn n ).
Defined.

Lemma lastelement_ge {n : nat} : i : S n, @lastelement n i.
Proof.
  intros.
  apply natlthsntoleh.
  unfold lastelement.
  apply stnlt.
Defined.

Definition firstelement {n : nat} : S n.
Proof.
   0.
  apply natgthsn0.
Defined.

Lemma firstelement_le {n : nat} : i : S n, @firstelement n i.
Proof.
  intros.
  apply idpath.
Defined.

Definition firstValue {X:UU} {n:nat} : (S n X) X
  := λ x, x firstelement.

Definition lastValue {X:UU} {n:nat} : (S n X) X
  := λ x, x lastelement.

Dual of i in stn n, is n - 1 - i
Local Lemma dualelement_0_empty {n : nat} (i : n ) (e : 0 = n) : empty.
Proof.
  induction e.
  apply (negnatlthn0 _ (stnlt i)).
Qed.

Local Lemma dualelement_lt (i n : nat) (H : n > 0) : n - 1 - i < n.
Proof.
  rewrite natminusminus.
  apply (natminuslthn _ _ H).
  apply idpath.
Qed.

Definition dualelement {n : nat} (i : n ) : n.
Proof.
  induction (natchoice0 n) as [H | H].
  - exact (make_stn n (n - 1 - i) (fromempty (dualelement_0_empty i H))).
  - exact (make_stn n (n - 1 - i) (dualelement_lt i n H)).
Defined.

Definition stnmtostnn ( m n : nat ) (isnatleh: natleh m n ) : m n :=
  λ x : m, match x with tpair _ i is
                 ⇒ make_stn _ i ( natlthlehtrans i m n is isnatleh ) end.

Definition stn_left (m n : nat) : m m+n.
Proof.
  intros i.
   (pr1 i).
  apply (natlthlehtrans (pr1 i) m (m+n) (pr2 i)).
  apply natlehnplusnm.
Defined.

Definition stn_right (m n : nat) : n m+n.
Proof.
  intros i.
   (m+pr1 i).
  apply natlthandplusl.
  exact (pr2 i).
Defined.

Definition stn_left_compute (m n : nat) (i: m ) : pr1 (stn_left m n i) = i.
Proof.
  intros.
  apply idpath.
Defined.

Definition stn_right_compute (m n : nat) (i: n ) : pr1 (stn_right m n i) = m+i.
Proof.
  intros.
  apply idpath.
Defined.

Lemma stn_left_0 {m:nat} {i:m} (e: m=m+0) : stn_left m 0 i = transportf stn e i.
Proof.
  intros.
  apply subtypePath_prop.
  induction e.
  apply idpath.
Defined.

Definition stn_left' (m n : nat) : m n m n.
Proof.
  intros le i.
  exact (make_stn _ _ (natlthlehtrans _ _ _ (stnlt i) le)).
Defined.

Definition stn_left'' {m n : nat} : m < n m n.
Proof.
  intros le i.
  exact (make_stn _ _ (istransnatlth _ _ _ (stnlt i) le)).
Defined.

Lemma stn_left_compare (m n : nat) (r : m m+n) : stn_left' m (m+n) r = stn_left m n.
Proof.
  intros.
  apply funextfun; intro i.
  apply subtypePath_prop.
  apply idpath.
Defined.

"Boundary" maps dni : stn n stn ( S n ) and their properties.


Definition dni {n : nat} ( i : S n ) : n S n.
Proof. intros x. (di i x). unfold di.
       induction (natlthorgeh x i) as [lt|ge].
       - apply natgthtogths. exact (pr2 x).
       - exact (pr2 x).
Defined.

Definition compute_pr1_dni_last (n : nat) (i: n ) : pr1 (dni lastelement i) = pr1 i.
Proof.
  intros. unfold dni,di; simpl. induction (natlthorgeh i n) as [q|q].
  - apply idpath.
  - contradicts (pr2 i) (natlehneggth q).
Defined.

Definition compute_pr1_dni_first (n : nat) (i: n ) : pr1 (dni firstelement i) = S (pr1 i).
Proof.
  intros.
  apply idpath.
Defined.

Lemma dni_last {n : nat} (i: n ) : pr1 (dni lastelement i) = i.
Proof.
  intros.
  induction i as [i I].
  unfold dni,di. simpl.
  induction (natlthorgeh i n) as [g|g].
  { apply idpath. }
  simpl.
  contradicts (natlehtonegnatgth _ _ g) I.
Defined.

Lemma dni_first {n : nat} (i: n ) : pr1 (dni firstelement i) = S i.
Proof.
  intros.
  apply idpath.
Defined.

Definition dni_firstelement {n : nat} : n S n.
Proof.
  intros h.
  exact (S (pr1 h),, pr2 h).
Defined.

Definition replace_dni_first (n : nat) : dni (@firstelement n) = dni_firstelement.
Proof.
  intros.
  apply funextfun; intros i.
  apply subtypePath_prop.
  exact (compute_pr1_dni_first n i).
Defined.

Definition dni_lastelement {n : nat} : n S n.
Proof.
  intros h.
   (pr1 h).
  exact (natlthtolths _ _ (pr2 h)).
Defined.

Definition replace_dni_last (n : nat) : dni (@lastelement n) = dni_lastelement.
Proof.
  intros.
  apply funextfun; intros i.
  apply subtypePath_prop.
  exact (compute_pr1_dni_last n i).
Defined.

Lemma dni_lastelement_ord {n : nat} : i j: n, ij dni_lastelement i dni_lastelement j.
Proof.
  intros ? ? e.
  exact e.
Defined.

Definition pr1_dni_lastelement {n : nat} {i: n } : pr1 (dni_lastelement i) = pr1 i.
Proof.
  intros.
  apply idpath.
Defined.

Lemma dni_last_lt {n : nat} (j : n ) : dni lastelement j < @lastelement n.
Proof.
  intros.
  induction j as [j J].
  simpl. unfold di.
  induction (natlthorgeh j n) as [L|M].
  - exact J.
  - apply fromempty.
    exact (natlthtonegnatgeh _ _ J M).
Defined.

Lemma dnicommsq ( n : nat ) ( i : S n ) :
  commsqstr( dni i ) ( stntonat ( S n ) ) ( stntonat n ) ( di i ).
Proof.
  intros.
  intro x.
  unfold dni. unfold di.
  destruct ( natlthorgeh x i ).
  - simpl.
    apply idpath.
  - simpl.
    apply idpath.
Defined.

Theorem dnihfsq ( n : nat ) ( i : S n ) :
  hfsqstr ( di i ) ( stntonat ( S n ) ) ( stntonat n ) ( dni i ).
Proof.
  intros.
  apply ( ishfsqweqhfibersgtof' ( di i ) ( stntonat ( S n ) ) ( stntonat n ) ( dni i ) ( dnicommsq _ _ ) ).
  intro x.
  destruct ( natlthorgeh x n ) as [ g | l ].
  - assert ( is1 : iscontr ( hfiber ( stntonat n ) x ) ).
    { apply iscontrhfiberstntonat. assumption. }
    assert ( is2 : iscontr ( hfiber ( stntonat ( S n ) ) ( di i x ) ) ).
    { apply iscontrhfiberstntonat.
      apply ( natlehlthtrans _ ( S x ) ( S n ) ( natlehdinsn i x ) g ). }
    apply isweqcontrcontr.
    + assumption.
    + assumption.
  - assert ( is1 : ¬ ( hfiber ( stntonat ( S n ) ) ( di i x ) ) ).
    { apply neghfiberstntonat.
      unfold di.
      destruct ( natlthorgeh x i ) as [ l'' | g' ].
      + destruct ( natgehchoice2 _ _ l ) as [ g' | e ].
        × apply g'.
        × rewrite e in l''.
          assert ( int := natlthtolehsn _ _ l'' ).
          contradicts (natgthnegleh (pr2 i)) int.
      + apply l.
    }
    apply ( isweqtoempty2 _ is1 ).
Defined.

Lemma dni_neq_i {n : nat} (i : S n) (j : n ) : i @dni n i j.
Proof.
  intros.
  simpl.
  apply di_neq_i.
Defined.

Lemma weqhfiberdnihfiberdi ( n : nat ) ( i j : S n ) :
  ( hfiber ( dni i ) j ) ( hfiber ( di i ) j ).
Proof.
  intros.
  apply ( weqhfibersg'tof _ _ _ _ ( dnihfsq n i ) j ).
Defined.

Lemma neghfiberdni ( n : nat ) ( i : S n ) : ¬ ( hfiber ( dni i ) i ).
Proof.
  intros.
  apply ( negf ( weqhfiberdnihfiberdi n i i ) ( neghfiberdi i ) ).
Defined.

Lemma iscontrhfiberdni ( n : nat ) ( i j : S n ) : i j iscontr ( hfiber ( dni i ) j ).
Proof.
  intros ne.
  exact ( iscontrweqb ( weqhfiberdnihfiberdi n i j ) ( iscontrhfiberdi i j ne ) ).
Defined.

Lemma isdecincldni ( n : nat ) ( i : S n ) : isdecincl ( dni i ).
Proof. intros. intro j. induction ( stn_eq_or_neq i j ) as [eq|ne].
        - induction eq. apply ( isdecpropfromneg ( neghfiberdni n i ) ).
        - exact ( isdecpropfromiscontr (iscontrhfiberdni _ _ _ ne) ).
Defined.

Lemma isincldni ( n : nat ) ( i : S n ) : isincl ( dni i ).
Proof.
  intros.
  exact ( isdecincltoisincl _ ( isdecincldni n i ) ).
Defined.

The order-preserving functions sni n i : stn (S n) stn n that take the value i twice.


Definition sni {n : nat} ( i : n ) : n <- S n.
Proof.
  intros j. (si i j). unfold si. induction (natlthorgeh i j) as [lt|ge].
  - induction j as [j J]. induction i as [i I]. simpl.
    induction j as [|j _].
    + contradicts (negnatlthn0 i) lt.
    + change (S j - 1 < n).
      change (S j) with (1 + j).
      rewrite natpluscomm.
      rewrite plusminusnmm.
      exact J.
  - induction i as [i I].
    exact (natlehlthtrans _ _ _ ge I).
Defined.

Weak equivalences between standard finite sets and constructions on these sets

The weak equivalence from stn n to the complement of a point j in stn ( S n ) defined by dni j


Definition stn_compl {n : nat} (i: n ) := compl_ne _ i (stnneq i).

Definition dnitocompl ( n : nat ) ( i : S n ) : n stn_compl i.
Proof.
  intros j.
   ( dni i j ).
  apply dni_neq_i.
Defined.

Lemma isweqdnitocompl ( n : nat ) ( i : S n ) : isweq ( dnitocompl n i ).
Proof.
  intros jni.
  assert ( w := samehfibers ( dnitocompl n i ) _ ( isinclpr1compl_ne _ i _ ) jni ) ;
    simpl in w.
  apply (iscontrweqb w).
  apply iscontrhfiberdni.
  exact (pr2 jni).
Defined.

Definition weqdnicompl {n : nat} (i: S n ): n stn_compl i.
Proof.
  intros.
  set (w := weqdicompl (stntonat _ i)).
  assert (eq : j, j < n pr1 (w j) < S n).
  { simpl in w. intros j. unfold w.
    change (pr1 ((weqdicompl i) j)) with (di (stntonat _ i) j).
    unfold di.
    induction (natlthorgeh j i) as [lt|ge].
    - split.
      + apply natlthtolths.
      + intros _. exact (natlehlthtrans (S j) i (S n) lt (pr2 i)).
    - split; exact (idfun _). }
  refine (_ (weq_subtypes w (λ j, j < n) (λ j, pr1 j < S n) eq))%weq.
  use weqtotal2comm12.
Defined.

Definition weqdnicompl_compute {n : nat} (j: S n ) (i: n ) :
  pr1 (weqdnicompl j i) = dni j i.
Proof.
  intros.
  apply subtypePath_prop.
  apply idpath.
Defined.

Weak equivalence from coprod ( stn n ) unit to stn ( S n ) defined by dni i


Definition weqdnicoprod_provisional (n : nat) (j : S n) : n ⨿ unit S n.
Proof.
  intros.
  apply (weqcomp (weqcoprodf (weqdnicompl j) (idweq unit))
                 (weqrecompl_ne (S n) j (isdeceqstn (S n) j) (stnneq j))).
Defined.

Opaque weqdnicoprod_provisional.

Definition weqdnicoprod_map {n : nat} (j : S n ) : n ⨿ unit S n.
Proof.
  intros x. induction x as [i|t].
  - exact (dni j i).
  - exact j.
Defined.

Definition weqdnicoprod_compute {n : nat} (j : S n ) :
  weqdnicoprod_provisional n j ¬ weqdnicoprod_map j.
Proof.
  intros.
  intros i.
  induction i as [i|i].
  - apply subtypePath_prop. induction i as [i I]. apply idpath.
  - apply idpath.
Defined.

Definition weqdnicoprod (n : nat) (j : S n ) : n ⨿ unit S n.
Proof.
  intros.
  apply (make_weq (weqdnicoprod_map j)).
  apply (isweqhomot _ _ (weqdnicoprod_compute _)).
  apply weqproperty.
Defined.

Definition weqoverdnicoprod {n : nat} (P: S n UU) :
  ( i, P i) ( j, P(dni lastelement j)) ⨿ P lastelement.
Proof.
  intros.
  use (weqcomp (weqtotal2overcoprod' P (weqdnicoprod n lastelement))).
  apply weqcoprodf.
  - apply idweq.
  - apply weqtotal2overunit.
Defined.

Lemma weqoverdnicoprod_eq1 {n : nat} (P: S n UU) j p :
  invmap (weqoverdnicoprod P) (ii1 (j,,p)) = ( dni lastelement j ,, p ).
Proof.
  intros.
  simpl in p.
  apply idpath.
Defined.

Lemma weqoverdnicoprod_eq1' {n : nat} (P: S n UU) jp :
  invmap (weqoverdnicoprod P) (ii1 jp) = (total2_base_map (dni lastelement) jp).
Proof.
  intros.
  induction jp.
  apply idpath.
Defined.

Lemma weqoverdnicoprod_eq2 {n : nat} (P: S nUU) p :
  invmap (weqoverdnicoprod P) (ii2 p) = (lastelement ,, p ).
Proof.
  intros.
  apply idpath.
Defined.

Definition weqdnicoprod_invmap {n : nat} (j : S n ) : n ⨿ unit <- S n.
Proof.
  intros i.
  induction (isdeceqstn (S n) i j) as [eq|ne].
  - exact (ii2 tt).
  - apply ii1. induction i as [i I]. induction j as [j J].
    choose (i < j)%dnat a a.
    + i. exact (natltltSlt _ _ _ a J).
    + (i - 1).
      induction (natlehchoice _ _ (negnatgthtoleh a)) as [b|b].
      × induction (natlehchoice4 _ _ I) as [c|c].
        -- apply (natlehlthtrans (i - 1) i n).
           ++ apply natminuslehn.
           ++ exact c.
        -- induction c. apply natminuslthn.
           ++ apply (natlehlthtrans _ j _).
              ** apply natleh0n.
              ** exact b.
           ++ apply natlthnsn.
      × induction b.
        induction (ne (@subtypePath_prop _ _ (make_stn _ j I) (make_stn _ j J) (idpath j))).
Defined.

Weak equivalences from stn n for n = 0 , 1 , 2 to empty , unit and bool ( see also the section on nelstruct in finitesets.v ).


Definition negstn0 : ¬ (0).
Proof.
  intro x.
  destruct x as [ a b ].
  apply ( negnatlthn0 _ b ).
Defined.

Definition weqstn0toempty : 0 empty.
Proof.
  apply weqtoempty.
  apply negstn0.
Defined.

Definition weqstn1tounit : 1 unit.
Proof.
  set ( f := λ x : 1, tt ).
  apply weqcontrcontr.
  - split with lastelement.
    intro t.
    destruct t as [ t l ].
    set ( e := natlth1tois0 _ l ).
    apply ( invmaponpathsincl _ ( isinclstntonat 1 ) ( make_stn _ t l ) lastelement e ).
  - apply iscontrunit.
Defined.

Corollary iscontrstn1 : iscontr (1).
Proof.
  apply iscontrifweqtounit.
  apply weqstn1tounit.
Defined.

Corollary isconnectedstn1 : i1 i2 : 1, i1 = i2.
Proof.
  intros i1 i2.
  apply (invmaponpathsweq weqstn1tounit).
  apply isProofIrrelevantUnit.
Defined.

Lemma isinclfromstn1 { X : UU } ( f : 1 X ) ( is : isaset X ) : isincl f.
Proof.
  intros.
  apply ( isinclbetweensets f ( isasetstn 1 ) is ).
  intros x x' e.
  apply ( invmaponpathsweq weqstn1tounit x x' ( idpath tt ) ).
Defined.

Definition weqstn2tobool : 2 bool.
Proof.
  set ( f := λ j : 2, match ( isdeceqnat j 0 ) with
                            ii1 _false
                          | ii2 _true
                          end ).
  set ( g := λ b : bool, match b with
                        falsemake_stn 2 0 ( idpath true )
                      | truemake_stn 2 1 ( idpath true )
                      end ).
  split with f.
  assert ( egf : j : _ , paths ( g ( f j ) ) j ).
  { intro j.
    unfold f.
    destruct ( isdeceqnat j 0 ) as [ e | ne ].
    - apply ( invmaponpathsincl _ ( isinclstntonat 2 ) ).
      rewrite e.
      apply idpath.
    - apply ( invmaponpathsincl _ ( isinclstntonat 2 ) ).
      destruct j as [ j l ].
      simpl.
      set ( l' := natlthtolehsn _ _ l ).
      destruct ( natlehchoice _ _ l' ) as [ l'' | e ].
      + simpl in ne.
        destruct ( ne ( natlth1tois0 _ l'' ) ).
      + apply ( pathsinv0 ( invmaponpathsS _ _ e ) ).
  }
  assert ( efg : b : _ , paths ( f ( g b ) ) b ).
  { intro b.
    unfold g.
    destruct b.
    - apply idpath.
    - apply idpath.
  }
  apply ( isweq_iso _ _ egf efg ).
Defined.

Lemma isinjstntonat (n : nat) : isInjectiveFunction (pr1 : stnset n natset).
Proof.
  intros i j.
  apply subtypePath_prop.
Defined.

Weak equivalence between the coproduct of stn n and stn m and stn ( n + m )


Definition weqfromcoprodofstn_invmap (n m : nat) : n + m (n ⨿ m).
Proof.
  intros i.
  induction (natlthorgeh i n) as [i1 | i2].
  - exact (ii1 (make_stn n i i1)).
  - exact (ii2 (make_stn m (i - n) (nat_split (pr2 i) i2))).
Defined.

Lemma weqfromcoprodofstn_invmap_r0 (n : nat) (i : n+0 ) :
  weqfromcoprodofstn_invmap n 0 i = ii1 (transportf stn (natplusr0 n) i).
Proof.
  intros.
  unfold weqfromcoprodofstn_invmap.
  simpl.
  induction (natlthorgeh i n) as [I|J].
  - simpl. apply maponpaths. apply subtypePath_prop. simpl.
    induction (natplusr0 n). apply idpath.
  - simpl. apply fromempty. induction (! natplusr0 n).
    exact (natgehtonegnatlth _ _ J (stnlt i)).
Defined.

Definition weqfromcoprodofstn_map (n m : nat) : (n ⨿ m) n+m.
Proof.
  intros i.
  induction i as [i | i].
  - apply stn_left. assumption.
  - apply stn_right. assumption.
Defined.

Lemma weqfromcoprodofstn_eq1 (n m : nat) :
   x : n ⨿ m, weqfromcoprodofstn_invmap n m (weqfromcoprodofstn_map n m x) = x.
Proof.
  intros x.
  unfold weqfromcoprodofstn_map, weqfromcoprodofstn_invmap. unfold coprod_rect.
  induction x as [x | x].
  - induction (natlthorgeh (stn_left n m x) n) as [H | H].
    + apply maponpaths. apply isinjstntonat. apply idpath.
    + apply fromempty. apply (natlthtonegnatgeh x n (stnlt x) H).
  - induction (natlthorgeh (stn_right n m x) n) as [H | H].
    + apply fromempty.
      set (tmp := natlehlthtrans n (n + x) n (natlehnplusnm n x) H).
      use (isirrefl_natneq n (natlthtoneq _ _ tmp)).
    + apply maponpaths. apply isinjstntonat. cbn.
      rewrite natpluscomm. apply plusminusnmm.
Qed.

Lemma weqfromcoprodofstn_eq2 (n m : nat) :
   y : n+m, weqfromcoprodofstn_map n m (weqfromcoprodofstn_invmap n m y) = y.
Proof.
  intros x.
  unfold weqfromcoprodofstn_map, weqfromcoprodofstn_invmap. unfold coprod_rect.
  induction (natlthorgeh x n) as [H | H].
  - apply isinjstntonat. apply idpath.
  - induction (natchoice0 m) as [H1 | H1].
    + apply fromempty. induction H1. induction (! (natplusr0 n)).
      use (natlthtonegnatgeh x n (stnlt x) H).
    + apply isinjstntonat. cbn. rewrite natpluscomm. apply minusplusnmm. apply H.
Qed.

A proof of weqfromcoprodofstn using isweq_iso
Theorem weqfromcoprodofstn (n m : nat) : (n ⨿ m) n+m.
Proof.
  use (tpair _ (weqfromcoprodofstn_map n m)).
  use (isweq_iso _ (weqfromcoprodofstn_invmap n m)).
  - exact (weqfromcoprodofstn_eq1 n m).
  - exact (weqfromcoprodofstn_eq2 n m).
Defined.

Associativity of weqfromcoprodofstn

Definition pr1_eqweqmap_stn (m n : nat) (e: m=n) (i: m ) :
  pr1 (pr1weq (eqweqmap (maponpaths stn e)) i) = pr1 i.
Proof.
  intros.
  induction e.
  apply idpath.
Defined.

Definition coprod_stn_assoc (l m n : nat) : (
  eqweqmap (maponpaths stn (natplusassoc l m n))
            weqfromcoprodofstn (l+m) n
            weqcoprodf (weqfromcoprodofstn l m) (idweq _)
  ¬
  weqfromcoprodofstn l (m+n)
            weqcoprodf (idweq _) (weqfromcoprodofstn m n)
            weqcoprodasstor _ _ _
  ) %weq.
Proof.
  intros.
  intros abc.
  simpl.
  apply (invmaponpathsincl pr1). apply isinclstntonat.
  rewrite pr1_eqweqmap_stn.
  induction abc as [[a|b]|c].
  - simpl. apply idpath.
  - simpl. apply idpath.
  - simpl. apply natplusassoc.
Defined.

Weak equivalence from the total space of a family stn ( f x ) over stn n to stn ( stnsum n f )


Definition stnsum {n : nat} (f : n nat) : nat.
Proof.
  revert f.
  induction n as [ | n IHn].
  - intro. exact 0.
  - intro f. exact (IHn (λ i, f (dni lastelement i)) + f lastelement).
Defined.

Lemma stnsum_step {n : nat} (f: S n nat) :
  stnsum f = stnsum (f (dni lastelement)) + f lastelement.
Proof.
  intros.
  apply idpath.
Defined.

Lemma stnsum_eq {n : nat} (f g: n nat) : f ¬ g stnsum f = stnsum g.
Proof.
  intros h.
  induction n as [|n IH].
  - apply idpath.
  - rewrite 2? stnsum_step.
    induction (h lastelement).
    apply (maponpaths (λ i, i + f lastelement)).
    apply IH.
    intro x.
    apply h.
Defined.

Lemma transport_stnsum {m n : nat} (e: m=n) (g: n nat) :
  stnsum g = stnsum (λ i, g(transportf stn e i)).
Proof.
  intros.
  induction e.
  apply idpath.
Defined.

Lemma stnsum_le {n : nat} (f g: n nat) : ( i, f i g i) stnsum f stnsum g.
Proof.
  intros le.
  induction n as [|n IH].
  - simpl. apply idpath.
  - apply natlehandplus.
    + apply IH. intro i. apply le.
    + apply le.
Defined.

Lemma transport_stn {m n : nat} (e: m=n) (i: m ) :
  transportf stn e i = make_stn n (pr1 i) (transportf (λ k, pr1 i < k) e (pr2 i)).
Proof.
  intros.
  induction e.
  apply subtypePath_prop.
  apply idpath.
Defined.

Lemma stnsum_left_right (m n : nat) (f: m+n nat) :
  stnsum f = stnsum (f stn_left m n) + stnsum (f stn_right m n).
Proof.
  intros. induction n as [|n IHn].
  { change (stnsum _) with 0 at 3. rewrite natplusr0.
    assert (e := ! natplusr0 m).
    rewrite (transport_stnsum e). apply stnsum_eq; intro i. simpl.
    apply maponpaths. apply pathsinv0. apply stn_left_0. }
  rewrite stnsum_step. assert (e : S (m+n) = m + S n).
  { apply pathsinv0. apply natplusnsm. }
  rewrite (transport_stnsum e).
  rewrite stnsum_step. rewrite <- natplusassoc. apply map_on_two_paths.
  { rewrite IHn; clear IHn. apply map_on_two_paths.
    { apply stnsum_eq; intro i. simpl.
      apply maponpaths. apply subtypePath_prop.
      rewrite stn_left_compute. induction e.
      rewrite idpath_transportf. rewrite dni_last.
      apply idpath. }
    { apply stnsum_eq; intro i. simpl.
      apply maponpaths. apply subtypePath_prop.
      rewrite stn_right_compute. unfold stntonat. induction e.
      rewrite idpath_transportf. rewrite 2? dni_last. apply idpath. } }
  simpl. apply maponpaths. apply subtypePath_prop.
  induction e. apply idpath.
Defined.

Corollary stnsum_left_le (m n : nat) (f: m+n nat) :
  stnsum (f stn_left m n) stnsum f.
Proof.
  intros.
  rewrite stnsum_left_right.
  apply natlehnplusnm.
Defined.

Corollary stnsum_left_le' {m n : nat} (f: n nat) (r:mn) :
  stnsum (f stn_left' m n r) stnsum f.
Proof.
  intros.
  assert (s := minusplusnmm n m r). rewrite (natpluscomm (n-m) m) in s.
  generalize r f; clear r f.
  rewrite <- s; clear s.
  set (k := n-m).
  generalize k; clear k; intros k r f.
  induction (natpluscomm m k).
  rewrite stn_left_compare.
  rewrite stnsum_left_right.
  apply natlehnplusnm.
Defined.

Lemma stnsum_dni {n : nat} (f: S n nat) (j: S n ) :
  stnsum f = stnsum (f dni j) + f j.
Proof.
  intros.
  induction j as [j J].
  assert (e2 : j + (n - j) = n).
  { rewrite natpluscomm. apply minusplusnmm. apply natlthsntoleh. exact J. }
  assert (e : (S j) + (n - j) = S n).
  { change (S j + (n - j)) with (S (j + (n - j))). apply maponpaths. exact e2. }
  intermediate_path (stnsum (λ i, f (transportf stn e i))).
  - apply (transport_stnsum e).
  - rewrite (stnsum_left_right (S j) (n - j)); unfold funcomp.
    apply pathsinv0. rewrite (transport_stnsum e2).
    rewrite (stnsum_left_right j (n-j)); unfold funcomp.
    rewrite (stnsum_step (λ x, f (transportf stn e _))); unfold funcomp.
    apply pathsinv0.
    rewrite natplusassoc. rewrite (natpluscomm (f _)). rewrite <- natplusassoc.
    apply map_on_two_paths.
    + apply map_on_two_paths.
      × apply stnsum_eq; intro i. induction i as [i I].
        apply maponpaths. apply subtypePath_prop.
        induction e. rewrite idpath_transportf. rewrite stn_left_compute.
        unfold dni,di, stntonat; simpl.
        induction (natlthorgeh i j) as [R|R].
        -- unfold stntonat; simpl; rewrite transport_stn; simpl.
           induction (natlthorgeh i j) as [a|b].
           ++ apply idpath.
           ++ contradicts R (natlehneggth b).
        -- unfold stntonat; simpl; rewrite transport_stn; simpl.
           induction (natlthorgeh i j) as [V|V].
           ++ contradicts I (natlehneggth R).
           ++ apply idpath.
      × apply stnsum_eq; intro i. induction i as [i I]. apply maponpaths.
        unfold dni,di, stn_right, stntonat; repeat rewrite transport_stn; simpl.
        induction (natlthorgeh (j+i) j) as [X|X].
        -- contradicts (negnatlthplusnmn j i) X.
        -- apply subtypePath_prop. simpl. apply idpath.
    + apply maponpaths.
      rewrite transport_stn; simpl.
      apply subtypePath_prop.
      apply idpath.
Defined.

Lemma stnsum_pos {n : nat} (f: n nat) (j: n ) : f j stnsum f.
Proof.
  assert (m : 0 < n).
  { apply (natlehlthtrans _ j).
    - apply natleh0n.
    - exact (pr2 j). }
  assert (l : 1 n). { apply natlthtolehsn. assumption. }
  assert (e : n = S (n - 1)).
  { change (S (n - 1)) with (1 + (n - 1)). rewrite natpluscomm.
    apply pathsinv0. apply minusplusnmm. assumption. }
  rewrite (transport_stnsum (!e) f).
  rewrite (stnsum_dni _ (transportf stn e j)).
  unfold funcomp.
  generalize (stnsum (λ x, f (transportf stn (! e) (dni (transportf stn e j) x)))); intro s.
  induction e. apply natlehmplusnm.
Defined.

Corollary stnsum_pos_0 {n : nat} (f: S n nat) : f firstelement stnsum f.
Proof.
  intros.
  exact (stnsum_pos f firstelement).
Defined.

Lemma stnsum_1 (n : nat) : stnsum(λ i: n, 1) = n.
Proof.
  intros.
  induction n as [|n IH].
  { apply idpath. }
  simpl.
  use (natpluscomm _ _ @ _).
  apply maponpaths.
  exact IH.
Defined.

Lemma stnsum_const {m c : nat} : stnsum (λ i: m, c) = m×c.
Proof.
  intros.
  induction m as [|m I].
  - apply idpath.
  - exact (maponpaths (λ i, i+c) I).
Defined.

Lemma stnsum_last_le {n : nat} (f: S n nat) : f lastelement stnsum f.
Proof.
  intros. rewrite stnsum_step. apply natlehmplusnm.
Defined.

Lemma stnsum_first_le {n : nat} (f: S n nat) : f firstelement stnsum f.
Proof.
  intros. induction n as [|n IH].
  - apply isreflnatleh.
  - rewrite stnsum_step. assert (W := IH (f dni lastelement)).
    change ((f dni lastelement) firstelement) with (f firstelement) in W.
    apply (istransnatleh W); clear W. apply natlehnplusnm.
Defined.

Lemma _c_ {n : nat} {m: n nat} (ij : i : n , m i ) :
  stnsum (m stn_left'' (stnlt (pr1 ij))) + pr2 ij < stnsum m.
Proof.
  intros.
  set (m1 := m stn_left'' (stnlt (pr1 ij))).
  induction ij as [i j].
  induction i as [i I].
  induction j as [j J].
  simpl in m1.
  change (stnsum m1 + j < stnsum m).
  assert (s := stnsum_left_le' m (I : S i n)).
  use (natlthlehtrans _ _ _ _ s).
  clear s.
  induction n as [|n _].
  - induction (negnatlthn0 _ I).
  - assert (t : stnsum m1 + j < stnsum m1 + m (i,,I)).
    { apply natlthandplusl. exact J. }
    apply (natlthlehtrans _ _ _ t).
    assert (K : m n, m = n m n).
    { intros a b e. induction e. apply isreflnatleh. }
    apply K; clear K.
    rewrite stnsum_step.
    clear j J t.
    unfold m1 ; clear m1.
    apply two_arg_paths.
    + apply stnsum_eq. intro l.
      simpl. apply maponpaths.
      apply subtypePath_prop; simpl.
      apply pathsinv0, di_eq1, stnlt.
    + simpl. apply maponpaths. apply subtypePath_prop.
      simpl. apply idpath.
Defined.

Local Definition weqstnsum_map { n : nat } (m : n nat) :
  ( i, m i) stnsum m.
Proof.
  intros ij.
  exact (make_stn _ (stnsum (m stn_left'' (stnlt (pr1 ij))) + pr2 ij) (_c_ ij)).
Defined.

Local Definition weqstnsum_invmap {n : nat} (m : n nat) :
  stnsum m ( i, m i).
Proof.
  revert m.
  induction n as [|n IH].
  { intros ? l. apply fromempty, negstn0. assumption. }
  intros ? l.
  change ( stnsum (m dni lastelement) + m lastelement ) in l.
  assert (ls := weqfromcoprodofstn_invmap _ _ l).
  induction ls as [j|k].
  - exact (total2_base_map (dni lastelement) (IH _ j)).
  - exact (lastelement,,k).
Defined.

Definition weqstnsum_invmap_step1 {n : nat} (f : S n nat)
  (j : stn (stnsum (λ x, f (dni lastelement x)))) :
  weqstnsum_invmap f
    (weqfromcoprodofstn_map (stnsum (λ x, f (dni lastelement x)))
                            (f lastelement) (ii1 j))
  = total2_base_map (dni lastelement) (weqstnsum_invmap (f dni lastelement) j).
Proof.
  intros. unfold weqstnsum_invmap at 1. unfold nat_rect at 1.
  rewrite weqfromcoprodofstn_eq1. apply idpath.
Defined.

Definition weqstnsum_invmap_step2 {n : nat} (f : S n nat)
  (k : f lastelement) :
  weqstnsum_invmap f
    (weqfromcoprodofstn_map (stnsum (λ x, f (dni lastelement x)))
                            (f lastelement) (ii2 k))
  = (lastelement,,k).
Proof.
  intros. unfold weqstnsum_invmap at 1. unfold nat_rect at 1.
  rewrite weqfromcoprodofstn_eq1. apply idpath.
Defined.

Lemma partial_sum_prop_aux {n : nat} {m : n nat} :
   (i i' : n ) (j : m i ) (j' : m i' ),
  i < i' stnsum (m stn_left'' (stnlt i)) + j <
           stnsum (m stn_left'' (stnlt i')) + j'.
Proof.
  intros ? ? ? ? lt.
  apply natlthtolehsn in lt.
  pose (ltS := (natlehlthtrans _ _ _ lt (stnlt i'))).
  refine (natlthlehtrans _ _ _ _ (natlehnplusnm _ _)).
  apply natlthlehtrans with (stnsum (m stn_left'' ltS)).
  - rewrite stnsum_step.
    assert (stnsum (m stn_left'' (stnlt i)) =
            stnsum (m stn_left'' ltS dni lastelement)) as e. {
      apply stnsum_eq.
      intros k.
      simpl. apply maponpaths.
      apply subtypePath_prop. simpl.
      apply pathsinv0, di_eq1.
      apply (stnlt k).
    }
    induction e.
    apply natlthandplusl.
    assert ((m stn_left'' ltS) lastelement = m i) as e. {
      simpl. apply maponpaths.
      apply subtypePath_prop, idpath.
    }
    induction e.
    apply (stnlt j).
  - assert (stnsum (m stn_left'' ltS) =
            stnsum (m stn_left'' (stnlt i') stn_left' _ _ lt)) as e. {
      apply stnsum_eq.
      intros k.
      simpl. apply maponpaths.
      apply subtypePath_prop, idpath.
    }
    rewrite e.
    apply stnsum_left_le'.
Defined.

Lemma partial_sum_prop {n : nat} {m : n nat} {l : nat} :
  isaprop ( (i : n ) (j : m i ), stnsum (m stn_left'' (stnlt i)) + j = l).
Proof.
  intros.
  apply invproofirrelevance.
  intros t t'.
  induction t as [i je]. induction je as [j e].
  induction t' as [i' je']. induction je' as [j' e'].
  pose (e'' := e @ !e').
  assert (i = i') as p. {
    induction (nat_eq_or_neq i i') as [eq | ne].
    + apply subtypePath_prop. assumption.
    + apply fromempty.
      generalize e''.
      apply nat_neq_to_nopath.
      induction (natneqchoice _ _ ne);
        [apply natgthtoneq | apply natlthtoneq];
        apply partial_sum_prop_aux;
        assumption.
  }
  apply total2_paths_f with p.
  - use total2_paths_f.
    + induction p. simpl.
      apply subtypePath_prop.
      apply (natpluslcan _ _ _ e'').
    + apply isasetnat.
Defined.

Lemma partial_sum_slot {n : nat} {m : n nat} {l : nat} : l < stnsum m
  ∃! (i : n ) (j : m i ), stnsum (m stn_left'' (stnlt i)) + j = l.
Proof.
  intros lt.
  set (len := stnsum m).
  induction n as [|n IH].
  { apply fromempty. change (hProptoType(l < 0)) in lt. exact (negnatlthn0 _ lt). }
  set (m' := m dni_lastelement).
  set (len' := stnsum m').
  induction (natlthorgeh l len') as [I|J].
  - assert (IH' := IH m' I); clear IH.
    induction IH' as [ijJ Q]. induction ijJ as [i jJ]. induction jJ as [j J].
    use tpair.
    + (dni_lastelement i). j.
      abstract (use (_ @ J); apply (maponpaths (λ x, x+j)); apply stnsum_eq; intro r;
      unfold m'; simpl; apply maponpaths; apply subtypePath_prop, idpath).
    + intro t.
      apply partial_sum_prop.
  - clear IH. set (j := l - len').
    apply iscontraprop1.
    { apply partial_sum_prop. }
    assert (K := minusplusnmm _ _ J). change (l-len') with j in K.
     lastelement.
    use tpair.
    × j. apply (natlthandpluslinv _ _ len'). rewrite natpluscomm.
      induction (!K); clear K J j.
      assert(C : len = len' + m lastelement).
      { use (stnsum_step _ @ _). unfold len', m'; clear m' len'.
        rewrite replace_dni_last. apply idpath. }
      induction C. exact lt.
    × simpl. intermediate_path (stnsum m' + j).
      -- apply (maponpaths (λ x, x+j)). apply stnsum_eq; intro i.
         unfold m'. simpl. apply maponpaths.
         apply subtypePath_prop, idpath.
      -- rewrite natpluscomm. exact K.
Defined.

Lemma stn_right_first (n i : nat) :
  stn_right i (S n) firstelement = make_stn (i + S n) i (natltplusS n i).
Proof.
  intros.
  apply subtypePath_prop.
  simpl.
  apply natplusr0.
Defined.

Lemma nat_rect_step (P : nat UU) (p0 : P 0) (IH : n, P n P (S n)) n :
  nat_rect P p0 IH (S n) = IH n (nat_rect P p0 IH n).
Proof.
  intros.
  apply idpath.
Defined.

Definition weqstnsum1_prelim {n : nat} (f : n nat) :
  ( i, f i) stnsum f.
Proof.
  revert f.
  induction n as [ | n' IHn ].
  { intros f. apply weqempty.
    - exact (negstn0 pr1).
    - exact negstn0. }
  intros f.
  change (stnsum f) with (stnsum (f dni lastelement) + f lastelement).
  use (weqcomp _ (weqfromcoprodofstn _ _)).
  use (weqcomp (weqoverdnicoprod _) _).
  apply weqcoprodf1.
  apply IHn.
Defined.

Lemma weqstnsum1_step {n : nat} (f : S n nat)
  : (
      weqstnsum1_prelim f
      =
      weqfromcoprodofstn (stnsum (funcomp (dni lastelement) f)) (f lastelement)
       (weqcoprodf1 (weqstnsum1_prelim (λ i, f (dni lastelement i)))
          weqoverdnicoprod (λ i, f i ))) % weq.
Proof.
  intros.
  apply idpath.
Defined.

Lemma weqstnsum1_prelim_eq { n : nat } (f : n nat) :
  weqstnsum1_prelim f ¬ weqstnsum_map f.
Proof.
  revert f.
  induction n as [|n I].
  - intros f ij. apply fromempty, negstn0. exact (pr1 ij).
  - intros f.
    rewrite weqstnsum1_step.
    intros ij.
    rewrite 2 weqcomp_to_funcomp_app.
    unfold weqcoprodf1.
    change (pr1weq (weqcoprodf (weqstnsum1_prelim (λ i, f (dni lastelement i)))
                               (idweq ( f lastelement ))))
    with (coprodf (weqstnsum1_prelim (λ i, f (dni lastelement i)))
                  (idfun ( f lastelement ))).
    intermediate_path
      ((weqfromcoprodofstn (stnsum (f dni lastelement)) (f lastelement))
         (coprodf (weqstnsum_map (λ i, f (dni lastelement i)))
                  (idfun ( f lastelement )) ((weqoverdnicoprod (λ i, f i )) ij))).
    + apply maponpaths.
      apply homotcoprodfhomot.
      × apply I.
      × intro x. apply idpath.
    + clear I.
      apply pathsinv0.
      generalize ij ; clear ij.
      apply (homotweqinv' (weqstnsum_map f)
                          (weqoverdnicoprod (λ i : S n , f i ))
                          (λ c, pr1weq (weqfromcoprodofstn (stnsum (f dni lastelement)) (f lastelement))
                                       (coprodf (weqstnsum_map (λ i, f (dni lastelement i)))
                                                (idfun _) c))
            ).
      intros c.
      simpl.
      set (P := λ i, f i ).
      change (pr1weq (weqfromcoprodofstn (stnsum (λ x : n , f (dni lastelement x))) (f lastelement)))
      with (weqfromcoprodofstn_map (stnsum (λ x : n , f (dni lastelement x))) (f lastelement)).
      induction c as [jk|k].
      × unfold coprodf.
        induction jk as [j k].
        change (invmap (weqoverdnicoprod P) (ii1 (j,,k))) with (tpair P (dni lastelement j) k).
        unfold weqfromcoprodofstn_map. unfold coprod_rect. unfold weqstnsum_map.
        apply subtypePath_prop.
        induction k as [k K]. simpl.
        apply (maponpaths (λ x, x+k)). unfold funcomp, stntonat, di.
        clear K k.
        induction (natlthorgeh _ n) as [G|G'].
        -- simpl. apply stnsum_eq; intro k. apply maponpaths.
           apply subtypePath_prop. simpl.
           apply pathsinv0, di_eq1.
           exact (istransnatlth _ _ _ (stnlt k) G).
        -- apply fromempty. exact (natlthtonegnatgeh _ _ (stnlt j) G').
      × change (invmap (weqoverdnicoprod P) (ii2 k)) with (tpair P lastelement k).
        simpl.
        unfold weqstnsum_map.
        apply subtypePath_prop.
        induction k as [k K]. simpl.
        apply (maponpaths (λ x, x+k)).
        apply maponpaths.
        apply funextfun; intro i. induction i as [i I].
        simpl. apply maponpaths.
        apply subtypePath_prop.
        simpl.
        apply pathsinv0, di_eq1. assumption.
Defined.

Lemma weqstnsum1_prelim_eq' { n : nat } (f : n nat) :
  invweq (weqstnsum1_prelim f) ¬ weqstnsum_invmap f.
Proof.
  revert f.
  induction n as [|n I].
  - intros f k. apply fromempty, negstn0. exact k.
  - intros f. rewrite weqstnsum1_step.
    intros k. rewrite 2 invweqcomp. rewrite 2 weqcomp_to_funcomp_app. rewrite 3 pr1_invweq.
    unfold weqcoprodf1.
    change (invmap (weqcoprodf (weqstnsum1_prelim (λ i, f (dni lastelement i))) (idweq ( f lastelement ))))
    with (coprodf (invweq (weqstnsum1_prelim (λ i, f (dni lastelement i)))) (idweq ( f lastelement ))).
    intermediate_path (invmap (weqoverdnicoprod (λ i : S n , f i ))
                              (coprodf (weqstnsum_invmap (λ i : n , f (dni lastelement i))) (idweq ( f lastelement ))
                                       (invmap (weqfromcoprodofstn (stnsum (f dni lastelement)) (f lastelement)) k))).
    + apply maponpaths.
      change (invmap _ k)
      with (invmap (weqfromcoprodofstn (stnsum (f dni lastelement)) (f lastelement)) k).
      generalize (invmap (weqfromcoprodofstn (stnsum (f dni lastelement)) (f lastelement)) k).
      intro c.
      apply homotcoprodfhomot.
      × apply I.
      × apply homotrefl.
    + clear I.
      generalize k; clear k.
      use (homotweqinv
                (λ c, invmap (weqoverdnicoprod (λ i, f i ))
                             (coprodf (weqstnsum_invmap (λ i, f (dni lastelement i)))
                                      (idweq ( f lastelement ))
                                      c))
                (weqfromcoprodofstn (stnsum (f dni lastelement)) (f lastelement))
                ).
      unfold funcomp.
      intro c.
      induction c as [r|s].
      × unfold coprodf.
        change (pr1weq (weqfromcoprodofstn (stnsum (λ x, f (dni lastelement x))) (f lastelement)))
        with (weqfromcoprodofstn_map (stnsum (λ x, f (dni lastelement x))) (f lastelement)).
        set (P := (λ i : S n , f i )).
        rewrite weqstnsum_invmap_step1.
        change (λ i : n , f (dni lastelement i)) with (f dni lastelement).
        generalize (weqstnsum_invmap (f dni lastelement) r); intro ij.
        induction ij as [i j].
        apply idpath.
      × unfold coprodf.
        change (pr1weq (idweq _) s) with s.
        set (P := (λ i : S n , f i )).
        change (pr1weq _)
        with (weqfromcoprodofstn_map (stnsum (λ x : n , f (dni lastelement x))) (f lastelement)).
        rewrite weqstnsum_invmap_step2.
        apply idpath.
Defined.

Definition weqstnsum1 {n : nat} (f : n nat) : ( i, f i) stnsum f.
Proof.
  intros. use (remakeweqboth (weqstnsum1_prelim_eq _) (weqstnsum1_prelim_eq' _)).
Defined.

Lemma weqstnsum1_eq {n : nat} (f : n nat) : pr1weq (weqstnsum1 f) = weqstnsum_map f.
Proof.
  intros.
  apply idpath.
Defined.

Lemma weqstnsum1_eq' {n : nat} (f : n nat) : invmap (weqstnsum1 f) = weqstnsum_invmap f.
Proof.
  intros.
  apply idpath.
Defined.

Theorem weqstnsum { n : nat } (P : n UU) (f : n nat) :
  ( i, f i P i) total2 P stnsum f.
Proof.
  intros w.
  intermediate_weq ( i, f i).
  - apply invweq. apply weqfibtototal. assumption.
  - apply weqstnsum1.
Defined.

Corollary weqstnsum2 { X : UU } {n : nat} (f : n nat) (g : X n ) :
  ( i, f i hfiber g i) X stnsum f.
Proof.
  intros w.
  use (weqcomp _ (weqstnsum _ _ w)).
  apply weqtococonusf.
Defined.

lexical enumeration of pairs of natural numbers
two generalizations of stnsum, potentially useful

Definition foldleft {E} (e : E) (m : binop E) {n : nat} (x: n E) : E.
Proof.
  intros.
  induction n as [|n foldleft].
  + exact e.
  + exact (m (foldleft (x (dni lastelement))) (x lastelement)).
Defined.

Definition foldright {E} (m : binop E) (e : E) {n : nat} (x: n E) : E.
Proof.
  intros.
  induction n as [|n foldright].
  + exact e.
  + exact (m (x firstelement) (foldright (x dni firstelement))).
Defined.

Weak equivalence between the direct product of stn n and stn m and stn n × m


Theorem weqfromprodofstn ( n m : nat ) : n × m n×m.
Proof.
  intros.
  induction ( natgthorleh m 0 ) as [ is | i ].
  - assert ( i1 : i j : nat, i < n j < m j + i × m < n × m).
    + intros i j li lj.
      apply (natlthlehtrans ( j + i × m ) ( ( S i ) × m ) ( n × m )).
      × change (S i × m) with (i×m + m).
        rewrite natpluscomm.
        exact (natgthandplusl m j ( i × m ) lj ).
      × exact ( natlehandmultr ( S i ) n m ( natgthtogehsn _ _ li ) ).
    + set ( f := λ ij : n × m,
                   match ij
                   with tpair _ i j
                        make_stn ( n × m ) ( j + i × m ) ( i1 i j ( pr2 i ) ( pr2 j ) )
                   end ).
      split with f.
      assert ( isinf : isincl f ).
      × apply isinclbetweensets.
        apply ( isofhleveldirprod 2 _ _ ( isasetstn n ) ( isasetstn m ) ).
        apply ( isasetstn ( n × m ) ).
        intros ij ij' e. destruct ij as [ i j ]. destruct ij' as [ i' j' ].
        destruct i as [ i li ]. destruct i' as [ i' li' ].
        destruct j as [ j lj ]. destruct j' as [ j' lj' ].
        simpl in e.
        assert ( e' := maponpaths ( stntonat ( n × m ) ) e ). simpl in e'.
        assert ( eei : i = i' ).
        { apply ( pr1 ( natdivremunique m i j i' j' lj lj' ( maponpaths ( stntonat _ ) e ) ) ). }
        set ( eeis := invmaponpathsincl _ ( isinclstntonat _ ) ( make_stn _ i li ) ( make_stn _ i' li' ) eei ).
        assert ( eej : j = j' ).
        { apply ( pr2 ( natdivremunique m i j i' j' lj lj' ( maponpaths ( stntonat _ ) e ) ) ). }
        set ( eejs := invmaponpathsincl _ ( isinclstntonat _ ) ( make_stn _ j lj ) ( make_stn _ j' lj' ) eej ).
        apply ( pathsdirprod eeis eejs ).
      × intro xnm.
        apply iscontraprop1. apply ( isinf xnm ).
        set ( e := pathsinv0 ( natdivremrule xnm m ( natgthtoneq _ _ is ) ) ).
        set ( i := natdiv xnm m ). set ( j := natrem xnm m ).
        destruct xnm as [ xnm lxnm ].
        set ( li := natlthandmultrinv _ _ _ ( natlehlthtrans _ _ _ ( natlehmultnatdiv xnm m ( natgthtoneq _ _ is ) ) lxnm ) ).
        set ( lj := lthnatrem xnm m ( natgthtoneq _ _ is ) ).
        split with ( make_dirprod ( make_stn n i li ) ( make_stn m j lj ) ).
        simpl.
        apply ( invmaponpathsincl _ ( isinclstntonat _ ) _ _ ). simpl.
        apply e.
  - set ( e := natleh0tois0 i ). rewrite e. rewrite ( natmultn0 n ). split with ( @pr2 _ _ ). apply ( isweqtoempty2 _ ( weqstn0toempty ) ).
Defined.

Weak equivalences between decidable subsets of stn n and stn x


Theorem weqfromdecsubsetofstn { n : nat } ( f : n bool ) :
  total2 ( λ x : nat, hfiber f true (x) ).
Proof.
  revert f.
  induction n as [ | n IHn ].
  - intros.
    split with 0.
    assert ( g : hfiber f true (0) ).
    { intro hf.
      destruct hf as [ i e ].
      destruct ( weqstn0toempty i ).
    }
    apply ( weqtoempty2 g weqstn0toempty ).
  - intro.
    set ( g := weqfromcoprodofstn 1 n ).
    change ( 1 + n ) with ( S n ) in g.
    set ( fl := λ i : 1, f ( g ( ii1 i ) ) ).
    set ( fh := λ i : n, f ( g ( ii2 i ) ) ).
    assert ( w : ( hfiber f true ) ( hfiber ( sumofmaps fl fh ) true ) ).
    { set ( int := invweq ( weqhfibersgwtog g f true ) ).
      assert ( h : x : _ , paths ( f ( g x ) ) ( sumofmaps fl fh x ) ).
      { intro.
        destruct x as [ x1 | xn ].
        + apply idpath.
        + apply idpath.
      }
      apply ( weqcomp int ( weqhfibershomot _ _ h true ) ).
    }
    set ( w' := weqcomp w ( invweq ( weqhfibersofsumofmaps fl fh true ) ) ).
    set ( x0 := pr1 ( IHn fh ) ).
    set ( w0 := pr2 ( IHn fh ) ).
    simpl in w0.
    destruct ( boolchoice ( fl lastelement ) ) as [ i | ni ].
    + split with ( S x0 ).
      assert ( wi : hfiber fl true 1 ).
      { assert ( is : iscontr ( hfiber fl true ) ).
        { apply iscontraprop1.
          × apply ( isinclfromstn1 fl isasetbool true ).
          × apply ( make_hfiber _ lastelement i ).
        }
        apply ( weqcontrcontr is iscontrstn1 ).
      }
      apply ( weqcomp ( weqcomp w' ( weqcoprodf wi w0 ) ) ( weqfromcoprodofstn 1 _ ) ).
    + split with x0.
      assert ( g' : ¬ ( hfiber fl true ) ).
      { intro hf.
        destruct hf as [ j e ].
        assert ( ee : j = lastelement ).
        { apply proofirrelevancecontr, iscontrstn1. }
        destruct ( nopathstruetofalse ( pathscomp0 ( pathscomp0 ( pathsinv0 e ) ( maponpaths fl ee ) ) ni ) ).
      }
      apply ( weqcomp w' ( weqcomp ( invweq ( weqii2withneg _ g' ) ) w0 ) ).
Defined.

Weak equivalences between hfibers of functions from stn n over isolated points and stn x


Theorem weqfromhfiberfromstn { n : nat } { X : UU } ( x : X )
  ( is : isisolated X x ) ( f : n X ) :
  total2 ( λ x0 : nat, hfiber f x (x0) ).
Proof.
  intros.
  set ( t := weqfromdecsubsetofstn ( λ i : _, eqbx X x is ( f i ) ) ).
  split with ( pr1 t ).
  apply ( weqcomp ( weqhfibertobhfiber f x is ) ( pr2 t ) ).
Defined.

Weak equivalence between stn n stn m and stn ( natpower m n ) ( uses functional extensionality )


Theorem weqfromfunstntostn ( n m : nat ) : (n m) natpower m n.
Proof.
  revert m.
  induction n as [ | n IHn ].
  - intro m.
    apply weqcontrcontr.
    + apply ( iscontrfunfromempty2 _ weqstn0toempty ).
    + apply iscontrstn1.
  - intro m.
    set ( w1 := weqfromcoprodofstn 1 n ).
    assert ( w2 : ( S n m ) ( (1 ⨿ n) m ) ) by apply ( weqbfun _ w1 ).
    set ( w3 := weqcomp w2 ( weqfunfromcoprodtoprod (1) (n) (m) ) ).
    set ( w4 := weqcomp w3 ( weqdirprodf ( weqfunfromcontr (m) iscontrstn1 ) ( IHn m ) ) ).
    apply ( weqcomp w4 ( weqfromprodofstn m ( natpower m n ) ) ).
Defined.

Weak equivalence from the space of functions of a family stn ( f x ) over stn n to stn ( stnprod n f ) ( uses functional extensionality )


Definition stnprod { n : nat } ( f : n nat ) : nat.
Proof.
  revert f.
  induction n as [ | n IHn ].
  - intro.
    apply 1.
  - intro f.
    apply ( ( IHn ( λ i : n, f ( dni lastelement i ) ) ) × f lastelement ).
Defined.

Definition stnprod_step { n : nat } ( f : S n nat ) :
  stnprod f = stnprod (f dni lastelement) × f lastelement.
Proof.
  intros.
  apply idpath.
Defined.

Lemma stnprod_eq {n : nat} (f g: n nat) : f ¬ g stnprod f = stnprod g.
Proof.
  intros h. induction n as [|n IH].
  { apply idpath. }
  rewrite 2? stnprod_step. induction (h lastelement).
  apply (maponpaths (λ i, i × f lastelement)). apply IH. intro x. apply h.
Defined.

Theorem weqstnprod { n : nat } ( P : n UU ) ( f : n nat )
  ( ww : i : n , ( stn ( f i ) ) ( P i ) ) :
  ( x : n , P x ) stn ( stnprod f ).
Proof.
  revert P f ww.
  induction n as [ | n IHn ].
  - intros. simpl. apply ( weqcontrcontr ).
    + apply ( iscontrsecoverempty2 _ ( negstn0 ) ).
    + apply iscontrstn1.
  - intros.
    set ( w1 := weqdnicoprod n lastelement ).
    assert ( w2 := weqonsecbase P w1 ).
    assert ( w3 := weqsecovercoprodtoprod ( λ x : _, P ( w1 x ) ) ).
    assert ( w4 := weqcomp w2 w3 ) ; clear w2 w3.
    assert ( w5 := IHn ( λ x : n, P ( w1 ( ii1 x ) ) ) ( λ x : n, f ( w1 ( ii1 x ) ) ) ( λ i : n, ww ( w1 ( ii1 i ) ) ) ).
    assert ( w6 := weqcomp w4 ( weqdirprodf w5 ( weqsecoverunit _ ) ) ) ; clear w4 w5.
    simpl in w6.
    assert ( w7 := weqcomp w6 ( weqdirprodf ( idweq _ ) ( invweq ( ww lastelement ) ) ) ).
    refine ( _ w7 )%weq.
    unfold w1.
    exact (weqfromprodofstn _ _ ).
Defined.

Weak equivalence between ( stn n ) ( stn n ) and stn ( factorial n ) ( uses functional extensionality )


Theorem weqweqstnsn ( n : nat ) : (S n S n) S n × ( n n ).
Proof.
  assert ( l := @lastelement n ).
  intermediate_weq ( isolated (S n) × (compl _ l compl _ l) ).
  { apply weqcutonweq. intro i. apply isdeceqstn. }
  apply weqdirprodf.
  - apply weqisolatedstntostn.
  - apply weqweq. apply invweq.
    intermediate_weq (compl_ne (S n) l (stnneq l)).
    + apply weqdnicompl.
    + apply compl_weq_compl_ne.
Defined.

Theorem weqfromweqstntostn ( n : nat ) : ( (n) (n) ) factorial n.
Proof.
  induction n as [ | n IHn ].
  - simpl.
    apply ( weqcontrcontr ).
    + apply ( iscontraprop1 ).
      × apply ( isapropweqtoempty2 _ ( negstn0 ) ).
      × apply idweq.
    + apply iscontrstn1.
  - change ( factorial ( S n ) ) with ( ( S n ) × ( factorial n ) ).
    set ( w1 := weqweqstnsn n ).
    apply ( weqcomp w1 ( weqcomp ( weqdirprodf ( idweq _ ) IHn ) ( weqfromprodofstn _ _ ) ) ).
Defined.


Standard finite sets satisfy weak axiom of choice


Theorem ischoicebasestn ( n : nat ) : ischoicebase (n).
Proof.
  induction n as [ | n IHn ].
  - apply ( ischoicebaseempty2 negstn0 ).
  - apply ( ischoicebaseweqf ( weqdnicoprod n lastelement )
                             ( ischoicebasecoprod IHn ischoicebaseunit ) ).
Defined.

Weak equivalence class of stn n determines n .


Lemma negweqstnsn0 (n : nat) : ¬ (S n stn O).
Proof.
  unfold neg.
  assert (lp: S n) by apply lastelement.
  intro X.
  apply weqstn0toempty.
  apply (pr1 X lp).
Defined.

Lemma negweqstn0sn (n : nat) : ¬ (stn O S n).
Proof.
  unfold neg.
  assert (lp: S n) by apply lastelement.
  intro X.
  apply weqstn0toempty.
  apply (pr1 ( invweq X ) lp).
Defined.

Lemma weqcutforstn ( n n' : nat ) : S n S n' n n'.
Proof.
  intros w. assert ( k := @lastelement n ).
  intermediate_weq (stn_compl k).
  - apply weqdnicompl.
  - intermediate_weq (stn_compl (w k)).
    + apply weqoncompl_ne.
    + apply invweq, weqdnicompl.
Defined.

Theorem weqtoeqstn { n n' : nat } : n n' n = n'.
Proof. revert n'.
       induction n as [ | n IHn ].
       - intro. destruct n' as [ | n' ].
         + intros; apply idpath.
         + intro X. apply (fromempty (negweqstn0sn _ X)).
       - intro n'. destruct n' as [ | n' ].
         + intro X. apply (fromempty ( negweqstnsn0 n X)).
         + intro X. apply maponpaths. apply IHn.
           apply weqcutforstn. assumption.
Defined.

Corollary stnsdnegweqtoeq ( n n' : nat ) ( dw : dneg (n n') ) : n = n'.
Proof.
  apply (eqfromdnegeq nat isdeceqnat _ _ (dnegf (@weqtoeqstn n n') dw)).
Defined.

Some results on bounded quantification


Lemma weqforallnatlehn0 ( F : nat hProp ) :
  ( n : nat , natleh n 0 F n ) ( F 0 ).
Proof.
  intros.
  assert ( lg : ( n : nat , natleh n 0 F n ) ( F 0 ) ).
  { split.
    - intro f.
      apply ( f 0 ( isreflnatleh 0 ) ).
    - intros f0 n l.
      set ( e := natleh0tois0 l ).
      rewrite e.
      apply f0.
  }
  assert ( is1 : isaprop ( n : nat , natleh n 0 F n ) ).
  { apply impred.
    intro n.
    apply impred.
    intro l.
    apply ( pr2 ( F n ) ).
  }
  apply ( weqimplimpl ( pr1 lg ) ( pr2 lg ) is1 ( pr2 ( F 0 ) ) ).
Defined.

Lemma weqforallnatlehnsn' ( n' : nat ) ( F : nat hProp ) :
  ( n : nat , natleh n ( S n' ) F n )
  ( n : nat , natleh n n' F n ) × ( F ( S n' ) ).
Proof.
  intros.
  assert ( lg : ( n : nat , natleh n ( S n' ) F n )
                ( n : nat , natleh n n' F n ) × ( F ( S n' ) ) ).
  { split.
    - intro f.
      apply ( make_dirprod ( λ n, λ l, ( f n ( natlehtolehs _ _ l ) ) )
                          ( f ( S n' ) ( isreflnatleh _ ) ) ).
    - intro d2.
      intro n. intro l.
      destruct ( natlehchoice2 _ _ l ) as [ h | e ].
      + simpl in h.
        apply ( pr1 d2 n h ).
      + destruct d2 as [ f2 d2 ].
        rewrite e.
        apply d2.
  }
  assert ( is1 : isaprop ( n : nat , natleh n ( S n' ) F n ) ).
  { apply impred.
    intro n.
    apply impred.
    intro l.
    apply ( pr2 ( F n ) ).
  }
  assert ( is2 : isaprop ( ( n : nat , natleh n n' F n ) × ( F ( S n' ) ) ) ).
  { apply isapropdirprod.
    - apply impred.
      intro n.
      apply impred.
      intro l.
      apply ( pr2 ( F n ) ).
    - apply ( pr2 ( F ( S n' ) ) ).
  }
  apply ( weqimplimpl ( pr1 lg ) ( pr2 lg ) is1 is2 ).
Defined.

Lemma weqexistsnatlehn0 ( P : nat hProp ) :
  ( hexists ( λ n : nat, ( natleh n 0 ) × ( P n ) ) ) P 0.
Proof.
  assert ( lg : hexists ( λ n : nat, ( natleh n 0 ) × ( P n ) ) P 0 ).
  { split.
    - simpl.
      apply ( @hinhuniv _ ( P 0 ) ).
      intro t2.
      destruct t2 as [ n d2 ].
      destruct d2 as [ l p ].
      set ( e := natleh0tois0 l ).
      clearbody e.
      destruct e.
      apply p.
    - intro p.
      apply hinhpr.
      split with 0.
      split with ( isreflnatleh 0 ).
      apply p.
  }
  apply ( weqimplimpl ( pr1 lg ) ( pr2 lg ) ( pr2 _ ) ( pr2 _ ) ).
Defined.

Lemma weqexistsnatlehnsn' ( n' : nat ) ( P : nat hProp ) :
  ( hexists ( λ n : nat, ( natleh n ( S n' ) ) × ( P n ) ) )
  hdisj ( hexists ( λ n : nat, ( natleh n n' ) × ( P n ) ) ) ( P ( S n' ) ).
Proof.
  intros.
  assert ( lg : hexists ( λ n : nat, ( natleh n ( S n' ) ) × ( P n ) )
                hdisj ( hexists ( λ n : nat, ( natleh n n' ) × ( P n ) ) ) ( P ( S n' ) ) ).
  { split.
    - apply hinhfun.
      intro t2.
      destruct t2 as [ n d2 ].
      destruct d2 as [ l p ].
      destruct ( natlehchoice2 _ _ l ) as [ h | nh ].
      + simpl in h.
        apply ii1.
        apply hinhpr.
        split with n.
        apply ( make_dirprod h p ).
      + destruct nh.
        apply ( ii2 p ).
    - simpl.
      apply ( @hinhuniv _ ( ishinh _ ) ).
      intro c.
      destruct c as [ t | p ].
      + generalize t.
        simpl.
        apply hinhfun.
        clear t.
        intro t.
        destruct t as [ n d2 ].
        destruct d2 as [ l p ].
        split with n.
        split with ( natlehtolehs _ _ l ).
        apply p.
      + apply hinhpr.
        split with ( S n' ).
        split with ( isreflnatleh _ ).
        apply p.
  }
  apply ( weqimplimpl ( pr1 lg ) ( pr2 lg ) ( pr2 _ ) ( pr2 _ ) ).
Defined.

Lemma isdecbexists ( n : nat ) ( P : nat UU ) ( is : n' , isdecprop ( P n' ) ) :
  isdecprop ( hexists ( λ n', ( natleh n' n ) × ( P n' ) ) ).
Proof.
  intros.
  set ( P' := λ n' : nat, make_hProp _ ( is n' ) ).
  induction n as [ | n IHn ].
  - apply ( isdecpropweqb ( weqexistsnatlehn0 P' ) ).
    apply ( is 0 ).
  - apply ( isdecpropweqb ( weqexistsnatlehnsn' _ P' ) ).
    apply isdecprophdisj.
    + apply IHn.
    + apply ( is ( S n ) ).
Defined.

Lemma isdecbforall ( n : nat ) ( P : nat UU ) ( is : n' , isdecprop ( P n' ) ) :
  isdecprop ( n' , natleh n' n P n' ).
Proof.
  intros.
  set ( P' := λ n' : nat, make_hProp _ ( is n' ) ).
  induction n as [ | n IHn ].
  - apply ( isdecpropweqb ( weqforallnatlehn0 P' ) ).
    apply ( is 0 ).
  - apply ( isdecpropweqb ( weqforallnatlehnsn' _ P' ) ).
    apply isdecpropdirprod.
    + apply IHn.
    + apply ( is ( S n ) ).
Defined.

The following lemma finds the largest n' such that neg ( P n' ) . It is a stronger form of ( neg ∏ ) -> ( exists neg ) in the case of bounded quantification of decidable propositions.

Lemma negbforalldectototal2neg ( n : nat ) ( P : nat UU )
  ( is : n' : nat , isdecprop ( P n' ) ) :
  ¬ ( n' : nat , natleh n' n P n' )
  total2 ( λ n', ( natleh n' n ) × ¬ ( P n' ) ).
Proof.
  set ( P' := λ n' : nat, make_hProp _ ( is n' ) ).
  induction n as [ | n IHn ].
  - intro nf.
    set ( nf0 := negf ( invweq ( weqforallnatlehn0 P' ) ) nf ).
    split with 0.
    apply ( make_dirprod ( isreflnatleh 0 ) nf0 ).
  - intro nf.
    set ( nf2 := negf ( invweq ( weqforallnatlehnsn' n P' ) ) nf ).
    set ( nf3 := fromneganddecy ( is ( S n ) ) nf2 ).
    destruct nf3 as [ f1 | f2 ].
    + set ( int := IHn f1 ).
      destruct int as [ n' d2 ].
      destruct d2 as [ l np ].
      split with n'.
      split with ( natlehtolehs _ _ l ).
      apply np.
    + split with ( S n ).
      split with ( isreflnatleh _ ).
      apply f2.
Defined.

Accessibility - the least element of an inhabited decidable subset of nat


Definition natdecleast ( F : nat UU ) ( is : n , isdecprop ( F n ) ) :=
  total2 ( λ n : nat, ( F n ) × ( n' : nat , F n' natleh n n' ) ).

Lemma isapropnatdecleast ( F : nat UU ) ( is : n , isdecprop ( F n ) ) :
  isaprop ( natdecleast F is ).
Proof.
  intros.
  set ( P := λ n' : nat, make_hProp _ ( is n' ) ).
  assert ( int1 : n : nat, isaprop ( ( F n ) × ( n' : nat , F n' natleh n n' ) ) ).
  { intro n.
    apply isapropdirprod.
    - apply ( pr2 ( P n ) ).
    - apply impred.
      intro t.
      apply impred.
      intro.
      apply ( pr2 ( natleh n t ) ).
  }
  set ( int2 := ( λ n : nat, make_hProp _ ( int1 n ) ) : nat hProp ).
  change ( isaprop ( total2 int2 ) ).
  apply isapropsubtype.
  intros x1 x2. intros c1 c2.
  simpl in ×.
  destruct c1 as [ e1 c1 ].
  destruct c2 as [ e2 c2 ].
  set ( l1 := c1 x2 e2 ).
  set ( l2 := c2 x1 e1 ).
  apply ( isantisymmnatleh _ _ l1 l2 ).
Defined.

Theorem accth ( F : nat UU ) ( is : n , isdecprop ( F n ) )
        ( is' : hexists F ) : natdecleast F is.
Proof.
  revert is'.
  simpl.
  apply (@hinhuniv _ ( make_hProp _ ( isapropnatdecleast F is ) ) ).
  intro t2.
  destruct t2 as [ n l ].
  simpl.
  set ( F' := λ n' : nat, hexists ( λ n'', ( natleh n'' n' ) × ( F n'' ) ) ).
  assert ( X : n' , F' n' natdecleast F is ).
  { intro n'.
    induction n' as [ | n' IHn' ].
    - apply ( @hinhuniv _ ( make_hProp _ ( isapropnatdecleast F is ) ) ).
      intro t2.
      destruct t2 as [ n'' is'' ].
      destruct is'' as [ l'' d'' ].
      split with 0.
      split.
      + set ( e := natleh0tois0 l'' ).
        clearbody e.
        destruct e.
        apply d''.
      + apply ( λ n', λ f : _, natleh0n n' ).
    - apply ( @hinhuniv _ ( make_hProp _ ( isapropnatdecleast F is ) ) ).
      intro t2.
      destruct t2 as [ n'' is'' ].
      set ( j := natlehchoice2 _ _ ( pr1 is'' ) ).
      destruct j as [ jl | je ].
      + simpl.
        apply ( IHn' ( hinhpr ( tpair _ n'' ( make_dirprod jl ( pr2 is'' ) ) ) ) ).
      + simpl.
        rewrite je in is''.
        destruct is'' as [ nn is'' ].
        clear nn. clear je. clear n''.
        assert ( is' : isdecprop ( F' n' ) ) by apply ( isdecbexists n' F is ).
        destruct ( pr1 is' ) as [ f | nf ].
        × apply ( IHn' f ).
        × split with ( S n' ).
          split with is''.
          intros n0 fn0.
          destruct ( natlthorgeh n0 ( S n' ) ) as [ l' | g' ].
          -- set ( i' := natlthtolehsn _ _ l' ).
             destruct ( nf ( hinhpr ( tpair _ n0 ( make_dirprod i' fn0 ) ) ) ).
          -- apply g'.
  }
  apply ( X n ( hinhpr ( tpair _ n ( make_dirprod ( isreflnatleh n ) l ) ) ) ).
Defined.

Corollary dni_lastelement_is_inj {n : nat} {i j : n }
  (e : dni_lastelement i = dni_lastelement j) :
  i = j.
Proof.
  apply isinjstntonat.
  unfold dni_lastelement in e.
  apply (maponpaths pr1) in e.
  exact e.
Defined.

Corollary dni_lastelement_eq : (n : nat) (i : S n ) (ie : pr1 i < n),
    i = dni_lastelement (make_stn n (pr1 i) ie).
Proof.
  intros n i ie.
  apply isinjstntonat.
  apply idpath.
Defined.

Corollary lastelement_eq : (n : nat) (i : S n ) (e : pr1 i = n),
    i = lastelement.
Proof.
  intros n i e.
  unfold lastelement.
  apply isinjstntonat.
  apply e.
Defined.

Ltac inductive_reflexivity i b :=
  
  
  induction i as [|i];
  [ try apply isinjstntonat ; apply idpath |
    contradicts (negnatlthn0 i) b || inductive_reflexivity i b ].

concatenation and flattening of functions

Definition concatenate' {X:UU} {m n:nat} (f : m X) (g : n X) : m+n X.
Proof.
  intros i.
  induction (weqfromcoprodofstn_invmap _ _ i) as [j | k].
  + exact (f j).
  + exact (g k).
Defined.

Definition concatenate'_r0 {X:UU} {m:nat} (f : m X) (g : 0 X) :
  concatenate' f g = transportb (λ n, n X) (natplusr0 m) f.
Proof.
  intros. apply funextfun; intro i. unfold concatenate'.
  rewrite weqfromcoprodofstn_invmap_r0; simpl. clear g.
  apply transportb_fun'.
Defined.

Definition concatenate'_r0' {X:UU} {m:nat} (f : m X) (g : 0 X) (i : m+0 ) :
  concatenate' f g i = f (transportf stn (natplusr0 m) i).
Proof.
  intros.
  unfold concatenate'.
  rewrite weqfromcoprodofstn_invmap_r0.
  apply idpath.
Defined.

Definition flatten' {X:UU} {n:nat} {m: n nat} :
  ( (i: n ), m i X) ( stnsum m X).
Proof.
  intros g.
  exact (uncurry g invmap (weqstnsum1 m)).
Defined.

Definition stn_predicate {n : nat} (P : n UU)
           (k : nat) (h h' : k < n) :
           P (k,,h) P (k,,h').
Proof.
  intros H.
  transparent assert (X : (h = h')).
  - apply propproperty.
  - exact (transportf (λ x, P (k,,x)) X H).
Defined.

Definition two := 2.

Definition two_rec {A : UU} (a b : A) : 2 A.
Proof.
  induction 1 as [n p].
  induction n as [|n _]; [apply a|].
  induction n as [|n _]; [apply b|].
  induction (nopathsfalsetotrue p).
Defined.

Definition two_rec_dep (P : two UU):
  P ( 0) P ( 1) n, P n.
Proof.
  intros a b n.
  induction n as [n p].
  induction n as [|n _]. eapply stn_predicate. apply a.
  induction n as [|n _]. eapply stn_predicate. apply b.
  induction (nopathsfalsetotrue p).
Defined.

Definition three := stn 3.

Definition three_rec {A : UU} (a b c : A) : stn 3 A.
Proof.
  induction 1 as [n p].
  induction n as [|n _]; [apply a|].
  induction n as [|n _]; [apply b|].
  induction n as [|n _]; [apply c|].
  induction (nopathsfalsetotrue p).
Defined.

Definition three_rec_dep (P : three UU):
  P ( 0) P ( 1) P ( 2) n, P n.
Proof.
  intros a b c n.
  induction n as [n p].
  induction n as [|n _]. eapply stn_predicate. apply a.
  induction n as [|n _]. eapply stn_predicate. apply b.
  induction n as [|n _]. eapply stn_predicate. apply c.
  induction (nopathsfalsetotrue p).
Defined.

ordered bijections are unique

Definition is_stn_increasing {m : nat} (f : m nat) :=
   (i j: m ), i j f i f j.

Definition is_stn_strictly_increasing {m : nat} (f : m nat) :=
   (i j: m ), i < j f i < f j.

Lemma is_strincr_impl_incr {m : nat} (f : m nat) :
  is_stn_strictly_increasing f is_stn_increasing f.
Proof.
  intros inc ? ? e. induction (natlehchoice _ _ e) as [I|J]; clear e.
  + apply natlthtoleh. apply inc. exact I.
  + assert (J' : i = j).
    { apply subtypePath_prop. exact J. }
    clear J. induction J'. apply isreflnatleh.
Defined.

Lemma is_incr_impl_strincr {m : nat} (f : m nat) :
  isincl f is_stn_increasing f is_stn_strictly_increasing f.
Proof.
  intros incl incr i j e.
  assert (d : i j).
  { apply natlthtoleh. assumption. }
  assert (c := incr _ _ d); clear d.
  assert (b : i != j).
  { intro p. induction p. exact (isirreflnatlth _ e). }
  induction (natlehchoice _ _ c) as [T|U].
  - exact T.
  - apply fromempty.
    unfold isincl,isofhlevel,isofhlevelf in incl.
    assert (V := invmaponpathsincl f incl i j U).
    induction V.
    exact (isirreflnatlth _ e).
Defined.

Lemma stnsum_ge1 {m : nat} (f : m nat) : ( i, f i 1 ) stnsum f m.
Proof.
  intros G.
  set (g := λ i:m, 1).
  assert (E : stnsum g = m).
  { apply stnsum_1. }
  assert (F : stnsum g stnsum f).
  { apply stnsum_le. exact G. }
  generalize E F; generalize (stnsum g); clear E F g; intros s e i.
  induction e.
  exact i.
Defined.

Lemma stnsum_add {m : nat} (f g : m nat) : stnsum (λ i, f i + g i) = stnsum f + stnsum g.
Proof.
  intros.
  induction m as [|m I].
  - apply idpath.
  - rewrite 3 stnsum_step.
    change ((λ i : S m , f i + g i) dni lastelement)
    with (λ y : m , f (dni lastelement y) + g (dni lastelement y)).
    rewrite I. rewrite natplusassoc.
    rewrite natplusassoc. simpl. apply maponpaths. rewrite natpluscomm.
    rewrite natplusassoc. apply maponpaths. rewrite natpluscomm. apply idpath.
Defined.

Lemma stnsum_lt {m : nat} (f g : m nat) :
  ( i, f i < g i ) stnsum g stnsum f + m.
Proof.
  intros. set (h := λ i, f i + 1).
  assert (E : stnsum h = stnsum f + m).
  { unfold h; clear h. rewrite stnsum_add. rewrite stnsum_1. apply idpath. }
  rewrite <- E. apply stnsum_le. intros i. unfold h. apply natlthtolehp1. apply X.
Defined.

Local Arguments dni {_} _ _.

Lemma stnsum_diffs {m : nat} (f : S m nat) : is_stn_increasing f
  stnsum (λ i, f (dni_firstelement i) - f (dni_lastelement i)) =
  f lastelement - f firstelement.
Proof.
  intros e.
  induction m as [|m I].
  - change (0 = f firstelement - f firstelement).
    apply pathsinv0.
    apply minuseq0'.
  - rewrite stnsum_step.
    change (f (dni_firstelement lastelement)) with (f lastelement).
    rewrite natpluscomm.
    use (_ @ ! @natdiffplusdiff
                     (f lastelement)
                     (f (dni_lastelement lastelement))
                     (f firstelement) _ _).
    + apply maponpaths.
      use (_ @ I (f dni_lastelement) _ @ _).
      × simpl. apply stnsum_eq; intros i.
        rewrite replace_dni_last. apply idpath.
      × intros i j s. unfold funcomp. apply e. apply s.
      × apply idpath.
    + apply e. apply lastelement_ge.
    + apply e. apply firstelement_le.
Defined.

Lemma stn_ord_incl {m : nat} (f : S m nat) :
  is_stn_strictly_increasing f f lastelement f firstelement + m.
Proof.
  intros strinc.
  assert (inc := is_strincr_impl_incr _ strinc).
  set (d := λ i : m , f (dni_firstelement i) - f (dni_lastelement i)).
  assert (E := stnsum_diffs f inc).
  change (stnsum d = f lastelement - f firstelement) in E.
  assert (F : i, f (dni_firstelement i) > f (dni_lastelement i)).
  { intros i. apply strinc. change (stntonat _ i < S(stntonat _ i)). apply natlthnsn. }
  assert (G : i, d i 1).
  { intros i. apply natgthtogehsn. apply minusgth0. apply F. }
  clear F.
  assert (H := stnsum_ge1 _ G). clear G.
  rewrite E in H. clear E d.
  assert (I : f lastelement f firstelement).
  { apply inc. apply idpath. }
  assert (J := minusplusnmm _ _ I); clear I.
  rewrite <- J; clear J.
  rewrite natpluscomm.
  apply natgehandplusl.
  exact H.
Defined.

Lemma stn_ord_inj {n : nat} (f : incl (n) (n)) :
  ( (i j: n ), i j f i f j) i, f i = i.
Proof.
  intros inc ?.
  induction n as [|n I].
  - apply fromempty. apply negstn0. assumption.
  - assert (strincr : is_stn_strictly_increasing (pr1incl _ _ f)).
    { apply is_incr_impl_strincr.
      { use (isinclcomp f (stntonat_incl _)). }
      { exact inc. } }
    assert (M : stntonat _ (f lastelement) = n).
    { apply isantisymmnatgeh.
      × assert (N : f lastelement f firstelement + n).
        { exact (stn_ord_incl (pr1incl _ _ f) strincr). }
        use (istransnatgeh _ _ _ N).
        apply natgehplusnmm.
      × exact (stnlt (f lastelement)). }
    assert (L : j, f (dni lastelement j) < n).
    { intros. induction M. apply strincr. apply dni_last_lt. }
    
    pose (f'' :=
        inclcomp (inclcomp (make_incl _ (isincldni n lastelement)) f)
                 (make_incl _ (isinclstntonat _))).
    pose (f' := λ j : n, make_stn n (f'' j) (L j)).
    assert (J : isincl f').
    { unfold f'. intros x j j'.
      apply iscontraprop1.
      × apply isaset_hfiber; apply isasetstn.
      × use subtypePath.
        ** intros ?. apply isasetstn.
        ** induction j as [j e]. induction j' as [j' e']. simpl.
           apply (invmaponpathsincl f'' (pr2 f'')).
           apply (base_paths _ _ (e @ !e')). }
    assert (F : j : n, f' j = j).
    { apply (I (make_incl _ J)).
      intros j j' lt. apply inc.
      change (pr1 (dni lastelement j) pr1 (dni lastelement j')).
      rewrite 2?dni_last. assumption. }

    apply subtypePath_prop.
    change (stntonat _ (f i) = i).
    induction (natgehchoice _ _ (lastelement_ge i)) as [ge | eq].
    + pose (p := maponpaths (stntonat _) (F (make_stn n i ge))).
      simpl in p. induction p.
      change (stntonat _ (f i) = f (dni lastelement (make_stn n i ge))).
      apply maponpaths, maponpaths, pathsinv0.
      apply subtypePath_prop. apply dni_last.
    + apply subtypePath_prop in eq.
      rewrite <- eq.
      apply M.
Defined.

Lemma stn_ord_bij {n : nat} (f : n n ) :
  ( (i j: n ), i j f i f j) i, f i = i.
Proof.
  apply (stn_ord_inj (weqtoincl f)).
Defined.