Library UniMath.CategoryTheory.categories.HSET.Univalence

HSET is a univalent_category (is_univalent_HSET)

HSET is a univalent_category.


Definition univalenceweq (X X' : UU) : (X = X') (X X') :=
   tpair _ _ (univalenceAxiom X X').

Definition hset_id_weq_iso (A B : ob HSET) :
  (A = B) (iso A B) :=
  weqcomp (UA_for_HLevels 2 A B) (hset_equiv_weq_iso A B).

The map precat_paths_to_iso for which we need to show isweq is actually equal to the carrier of the weak equivalence we constructed above. We use this fact to show that that precat_paths_to_iso is an equivalence.

Lemma hset_id_weq_iso_is (A B : ob HSET):
    @idtoiso _ A B = pr1 (hset_id_weq_iso A B).
Proof.
  apply funextfun.
  intro p; elim p.
  apply eq_iso; simpl.
  - apply funextfun;
    intro x;
    destruct A.
    apply idpath.
Defined.

Lemma is_weq_precat_paths_to_iso_hset (A B : ob HSET):
   isweq (@idtoiso _ A B).
Proof.
  rewrite hset_id_weq_iso_is.
  apply (pr2 (hset_id_weq_iso A B)).
Defined.

Definition category_HSET : category := make_category HSET has_homsets_HSET.

Lemma is_univalent_HSET : is_univalent category_HSET.
Proof.
  intros a b.
  apply (is_weq_precat_paths_to_iso_hset a b).
Defined.

Definition HSET_univalent_category : univalent_category := _ ,, is_univalent_HSET.