Library UniMath.Bicategories.WkCatEnrichment.whiskering
Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.categories.StandardCategories. Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.Bicategories.WkCatEnrichment.prebicategory.
Require Import UniMath.Bicategories.WkCatEnrichment.Notations.
Definition whisker_left {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c} (alpha : g -2-> h)
: (f ;1; g) -2-> (f ;1; h)
:= identity f ;h; alpha.
Lemma whisker_left_id_1mor {C : prebicategory} {b c : C}
{g h : b -1-> c} (alpha : g -2-> h)
: whisker_left (identity1 _) alpha =
left_unitor _ ;v; alpha ;v; inv_from_z_iso (left_unitor _).
Proof.
unfold whisker_left.
apply id_2mor_left.
Defined.
Lemma whisker_left_id_2mor {C : prebicategory} {a b c : C}
(f : a -1-> b) (g : b -1-> c)
: whisker_left f (identity g) = identity (f ;1; g).
Proof.
intermediate_path (functor_on_morphisms (compose_functor a b c)
(identity (make_catbinprod f g))).
reflexivity.
apply functor_id.
Defined.
Lemma cancel_whisker_left {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c}
{alpha alpha': g -2-> h} (p : alpha = alpha')
: whisker_left f alpha = whisker_left f alpha'.
Proof.
induction p.
reflexivity.
Defined.
Definition whisker_left_iso {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c} (alpha : z_iso g h)
: z_iso (f ;1; g) (f ;1; h).
Proof.
∃ (whisker_left f alpha).
apply functor_on_is_z_isomorphism.
apply is_z_iso_binprod_z_iso.
- apply identity_is_z_iso.
- apply alpha.
Defined.
Lemma whisker_left_inv {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c} (alpha : z_iso g h)
: whisker_left f (z_iso_inv_from_z_iso alpha)
= inv_from_z_iso (whisker_left_iso f alpha).
Proof.
unfold whisker_left.
intermediate_path (inv_from_z_iso (identity_z_iso f);h;inv_from_z_iso alpha).
set (W := maponpaths pr1 (iso_inv_of_iso_id f)).
simpl in W.
rewrite <- W.
reflexivity.
apply (maponpaths pr1 (inv_horizontal_comp (identity_z_iso f) alpha)).
Defined.
Lemma whisker_left_id_inj {C : prebicategory} {b c : C}
{g h : b -1-> c} (alpha alpha' : g -2-> h)
: whisker_left (identity1 _) alpha = whisker_left (identity1 _) alpha'
→ alpha = alpha'.
Proof.
intros w.
intermediate_path (inv_from_z_iso (left_unitor _)
;v; whisker_left (identity1 _) alpha
;v; left_unitor _ ).
apply pathsinv0.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_left_id_1mor.
intermediate_path (inv_from_z_iso (left_unitor _)
;v; whisker_left (identity1 _) alpha'
;v; left_unitor _ ).
apply cancel_postcomposition.
apply cancel_precomposition.
assumption.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_left_id_1mor.
Defined.
Lemma whisker_left_on_comp {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h i : b -1-> c}
(alpha : g -2-> h) (alpha' : h -2-> i)
: whisker_left f (alpha ;v; alpha')
= whisker_left f alpha ;v; whisker_left f alpha'.
Proof.
unfold whisker_left.
intermediate_path ((identity f;v; identity f);h;(alpha;v;alpha')).
rewrite id_left.
reflexivity.
now apply interchange.
Defined.
Definition whisker_right {C : prebicategory} {a b c : C}
{f g : a -1-> b} (alpha : f -2-> g) (h : b -1-> c)
: (f ;1; h) -2-> (g ;1; h)
:= alpha ;h; identity h.
Lemma whisker_right_id_1mor {C : prebicategory} {a b : C}
{f g : a -1-> b} (alpha : f -2-> g)
: whisker_right alpha (identity1 _) =
right_unitor _ ;v; alpha ;v; inv_from_z_iso (right_unitor _).
Proof.
unfold whisker_right.
apply id_2mor_right.
Defined.
Lemma whisker_right_id_2mor {C : prebicategory} {a b c : C}
(f : a -1-> b) (g : b -1-> c)
: whisker_right (identity f) g = identity (f ;1; g).
Proof.
intermediate_path (functor_on_morphisms (compose_functor a b c)
(identity (make_catbinprod f g))).
reflexivity.
apply functor_id.
Defined.
Definition cancel_whisker_right {C : prebicategory} {a b c : C}
{f g : a -1-> b} {alpha alpha' : f -2-> g} (p : alpha = alpha') (h : b -1-> c)
: whisker_right alpha h = whisker_right alpha' h.
Proof.
induction p.
reflexivity.
Defined.
Definition whisker_right_iso {C : prebicategory} {a b c : C}
{f g : a -1-> b} (alpha : z_iso f g) (h : b -1-> c)
: z_iso (f ;1; h) (g ;1; h).
Proof.
∃ (whisker_right alpha h).
apply functor_on_is_z_isomorphism.
apply is_z_iso_binprod_z_iso.
- apply alpha.
- apply identity_is_z_iso.
Defined.
Lemma whisker_right_inv {C : prebicategory} {a b c : C}
{f g : a -1-> b} (alpha : z_iso f g) (h : b -1-> c)
: whisker_right (inv_from_z_iso alpha) h
=
inv_from_z_iso (whisker_right_iso alpha h).
Proof.
unfold whisker_right.
intermediate_path (inv_from_z_iso alpha ;h; inv_from_iso (identity_iso h)).
set (W := maponpaths pr1 (iso_inv_of_iso_id h)).
simpl in W.
rewrite <- W.
reflexivity.
apply (maponpaths pr1 (inv_horizontal_comp alpha (identity_z_iso h))).
Defined.
Lemma whisker_right_id_inj {C : prebicategory} {a b : C}
{f g : a -1-> b} (alpha alpha' : f -2-> g)
: whisker_right alpha (identity1 _) = whisker_right alpha' (identity1 _)
→ alpha = alpha'.
Proof.
intros w.
intermediate_path (inv_from_z_iso (right_unitor _)
;v; whisker_right alpha (identity1 _)
;v; right_unitor _ ).
apply pathsinv0.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_right_id_1mor.
intermediate_path (inv_from_z_iso (right_unitor _)
;v; whisker_right alpha' (identity1 _)
;v; right_unitor _ ).
apply cancel_postcomposition.
apply cancel_precomposition.
assumption.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_right_id_1mor.
Defined.
Lemma whisker_right_on_comp {C : prebicategory} {a b c : C}
{f g h : a -1-> b} (alpha : f -2-> g) (alpha' : g -2-> h) (i : b -1-> c)
: whisker_right (alpha ;v; alpha') i
= whisker_right alpha i ;v; whisker_right alpha' i.
Proof.
unfold whisker_right.
intermediate_path ((alpha;v;alpha');h;(identity i;v; identity i)).
rewrite id_left.
reflexivity.
now apply interchange.
Defined.
Lemma left_unitor_naturality {C : prebicategory} {a b : C}
(f g : a -1-> b) (alpha : f -2-> g)
: whisker_left (identity1 _) alpha ;v; left_unitor g
= left_unitor f ;v; alpha.
Proof.
intermediate_path ((functor_on_morphisms
(functor_composite
(bindelta_pair_functor
(functor_composite (functor_to_unit _) (constant_functor unit_category _ (identity1 a)))
(functor_identity _))
(compose_functor a a b))
alpha)
;v;(left_unitor g)).
reflexivity.
intermediate_path (left_unitor f ;v; functor_on_morphisms (functor_identity _) alpha).
apply (nat_trans_ax (left_unitor_trans a b)).
reflexivity.
Defined.
Lemma right_unitor_naturality {C : prebicategory} {a b : C}
(f g : a -1-> b) (alpha : f -2-> g)
: whisker_right alpha (identity1 _) ;v; right_unitor g
= right_unitor f ;v; alpha.
Proof.
intermediate_path ((functor_on_morphisms
(functor_composite
(bindelta_pair_functor
(functor_identity _)
(functor_composite (functor_to_unit _) (constant_functor unit_category _ (identity1 b))))
(compose_functor a b b))
alpha)
;v;(right_unitor _)).
reflexivity.
intermediate_path (right_unitor f ;v; functor_on_morphisms (functor_identity _) alpha).
apply (nat_trans_ax (right_unitor_trans a b)).
reflexivity.
Defined.
Lemma associator_naturality {C : prebicategory} { a b c d : C }
{f f' : a -1-> b} (alpha : f -2-> f')
{g g' : b -1-> c} (beta : g -2-> g')
{h h' : c -1-> d} (gamma : h -2-> h')
: (alpha ;h; (beta ;h; gamma)) ;v; associator f' g' h'
= associator f g h ;v; ((alpha ;h; beta) ;h; gamma).
Proof.
intermediate_path ((functor_on_morphisms
(functor_composite
(pair_functor (functor_identity _) (compose_functor b c d))
(compose_functor a b d))
(catbinprodmor alpha (catbinprodmor beta gamma)))
;v; associator f' g' h'
).
reflexivity.
intermediate_path (associator f g h ;v;
(functor_on_morphisms
(functor_composite
(precategory_binproduct_assoc _ _ _)
(functor_composite
(pair_functor (compose_functor a b c) (functor_identity _))
(compose_functor a c d)))
(catbinprodmor alpha (catbinprodmor beta gamma)))).
apply (nat_trans_ax (associator_trans a b c d) _ _
(catbinprodmor alpha (catbinprodmor beta gamma))).
reflexivity.
Defined.
Lemma twomor_naturality {C : prebicategory} {a b c : C}
{f g : a -1-> b} {h k : b -1-> c}
(gamma : f -2-> g) (delta : h -2-> k)
: (whisker_right gamma h) ;v; (whisker_left g delta)
= (whisker_left f delta) ;v; (whisker_right gamma k).
Proof.
unfold whisker_left, whisker_right.
intermediate_path ((gamma ;v; identity g);h;(identity h ;v; delta)).
apply pathsinv0.
apply interchange.
intermediate_path ((identity f ;v; gamma);h;(delta ;v; identity k)).
rewrite !id_left, !id_right.
reflexivity.
apply interchange.
Defined.
Section kelly_left_pieces.
Variable C : prebicategory.
Variables a b c d : C.
Variable f : a -1-> b.
Variable g : b -1-> c.
Variable h : c -1-> d.
Local Lemma kelly_left_region_1235 :
associator f (identity1 _) (g ;1; h)
;v; associator (f ;1; (identity1 _)) g h
;v; whisker_right (whisker_right (right_unitor f) g) h
= whisker_left f (associator (identity1 b) g h)
;v; associator f (identity1 _ ;1; g) h
;v; whisker_right (whisker_left f (left_unitor g)) h.
Proof.
simpl.
unfold whisker_left at 2.
rewrite (cancel_whisker_right (triangle_axiom f g) h).
rewrite whisker_right_on_comp.
rewrite assoc.
apply cancel_postcomposition.
apply (pentagon_axiom f (identity1 b) g h).
Defined.
Local Lemma kelly_left_region_123 :
associator f (identity1 _) (g ;1; h)
;v; associator (f ;1; (identity1 _)) g h
;v; whisker_right (whisker_right (right_unitor f) g) h
= whisker_left f (associator (identity1 b) g h)
;v; whisker_left f (whisker_right (left_unitor g) h)
;v; associator f g h.
Proof.
rewrite <- (assoc _ _ (associator f g h)).
unfold whisker_left at 2.
unfold whisker_right at 3.
rewrite associator_naturality.
fold (whisker_left f (left_unitor g)).
fold (whisker_right (whisker_left f (left_unitor g)) h).
rewrite assoc.
apply kelly_left_region_1235.
Defined.
Local Lemma kelly_left_region_12 :
associator f (identity1 _) (g ;1; h)
;v; whisker_right (right_unitor f) (g ;1; h)
= whisker_left f (associator (identity1 b) g h)
;v; whisker_left f (whisker_right (left_unitor g) h).
Proof.
use (post_comp_with_z_iso_is_inj (associator f g h)).
unfold whisker_right at 1.
rewrite <- horizontal_comp_id.
rewrite <- assoc.
rewrite associator_naturality.
rewrite assoc.
apply kelly_left_region_123.
Defined.
Local Lemma kelly_left_region_1 :
whisker_left f (left_unitor_2mor (g ;1; h))
= whisker_left f (associator (identity1 b) g h)
;v; whisker_left f (whisker_right (left_unitor g) h).
Proof.
unfold whisker_left at 1.
rewrite triangle_axiom.
apply kelly_left_region_12.
Defined.
End kelly_left_pieces.
Lemma kelly_left {C : prebicategory} {b c d : C}
{g : b -1-> c} {h : c -1-> d}
: left_unitor_2mor (g ;1; h)
=
associator (identity1 b) g h ;v; whisker_right (left_unitor g) h.
Proof.
apply whisker_left_id_inj.
rewrite whisker_left_on_comp.
apply kelly_left_region_1.
Defined.
Lemma left_unitor_on_id {C : prebicategory} {a : C}
: whisker_left (identity1 a) (left_unitor (identity1 a))
= left_unitor (identity1 a ;1; identity1 a).
Proof.
use (post_comp_with_z_iso_is_inj (left_unitor (identity1 a))).
apply left_unitor_naturality.
Defined.
Lemma left_unitor_id_is_right_unitor_id {C : prebicategory} {a : C}
: left_unitor_2mor (identity1 a)
= right_unitor_2mor (identity1 a).
Proof.
apply whisker_right_id_inj.
use (pre_comp_with_z_iso_is_inj (associator _ _ _)).
intermediate_path (left_unitor_2mor ((identity1 a) ;1; (identity1 a))).
apply pathsinv0.
apply kelly_left.
intermediate_path (whisker_left (identity1 a) (left_unitor (identity1 a))).
apply pathsinv0.
apply left_unitor_on_id.
apply (triangle_axiom (identity1 a) (identity1 a)).
Defined.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.categories.StandardCategories. Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.Bicategories.WkCatEnrichment.prebicategory.
Require Import UniMath.Bicategories.WkCatEnrichment.Notations.
Definition whisker_left {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c} (alpha : g -2-> h)
: (f ;1; g) -2-> (f ;1; h)
:= identity f ;h; alpha.
Lemma whisker_left_id_1mor {C : prebicategory} {b c : C}
{g h : b -1-> c} (alpha : g -2-> h)
: whisker_left (identity1 _) alpha =
left_unitor _ ;v; alpha ;v; inv_from_z_iso (left_unitor _).
Proof.
unfold whisker_left.
apply id_2mor_left.
Defined.
Lemma whisker_left_id_2mor {C : prebicategory} {a b c : C}
(f : a -1-> b) (g : b -1-> c)
: whisker_left f (identity g) = identity (f ;1; g).
Proof.
intermediate_path (functor_on_morphisms (compose_functor a b c)
(identity (make_catbinprod f g))).
reflexivity.
apply functor_id.
Defined.
Lemma cancel_whisker_left {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c}
{alpha alpha': g -2-> h} (p : alpha = alpha')
: whisker_left f alpha = whisker_left f alpha'.
Proof.
induction p.
reflexivity.
Defined.
Definition whisker_left_iso {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c} (alpha : z_iso g h)
: z_iso (f ;1; g) (f ;1; h).
Proof.
∃ (whisker_left f alpha).
apply functor_on_is_z_isomorphism.
apply is_z_iso_binprod_z_iso.
- apply identity_is_z_iso.
- apply alpha.
Defined.
Lemma whisker_left_inv {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h : b -1-> c} (alpha : z_iso g h)
: whisker_left f (z_iso_inv_from_z_iso alpha)
= inv_from_z_iso (whisker_left_iso f alpha).
Proof.
unfold whisker_left.
intermediate_path (inv_from_z_iso (identity_z_iso f);h;inv_from_z_iso alpha).
set (W := maponpaths pr1 (iso_inv_of_iso_id f)).
simpl in W.
rewrite <- W.
reflexivity.
apply (maponpaths pr1 (inv_horizontal_comp (identity_z_iso f) alpha)).
Defined.
Lemma whisker_left_id_inj {C : prebicategory} {b c : C}
{g h : b -1-> c} (alpha alpha' : g -2-> h)
: whisker_left (identity1 _) alpha = whisker_left (identity1 _) alpha'
→ alpha = alpha'.
Proof.
intros w.
intermediate_path (inv_from_z_iso (left_unitor _)
;v; whisker_left (identity1 _) alpha
;v; left_unitor _ ).
apply pathsinv0.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_left_id_1mor.
intermediate_path (inv_from_z_iso (left_unitor _)
;v; whisker_left (identity1 _) alpha'
;v; left_unitor _ ).
apply cancel_postcomposition.
apply cancel_precomposition.
assumption.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_left_id_1mor.
Defined.
Lemma whisker_left_on_comp {C : prebicategory} {a b c : C}
(f : a -1-> b) {g h i : b -1-> c}
(alpha : g -2-> h) (alpha' : h -2-> i)
: whisker_left f (alpha ;v; alpha')
= whisker_left f alpha ;v; whisker_left f alpha'.
Proof.
unfold whisker_left.
intermediate_path ((identity f;v; identity f);h;(alpha;v;alpha')).
rewrite id_left.
reflexivity.
now apply interchange.
Defined.
Definition whisker_right {C : prebicategory} {a b c : C}
{f g : a -1-> b} (alpha : f -2-> g) (h : b -1-> c)
: (f ;1; h) -2-> (g ;1; h)
:= alpha ;h; identity h.
Lemma whisker_right_id_1mor {C : prebicategory} {a b : C}
{f g : a -1-> b} (alpha : f -2-> g)
: whisker_right alpha (identity1 _) =
right_unitor _ ;v; alpha ;v; inv_from_z_iso (right_unitor _).
Proof.
unfold whisker_right.
apply id_2mor_right.
Defined.
Lemma whisker_right_id_2mor {C : prebicategory} {a b c : C}
(f : a -1-> b) (g : b -1-> c)
: whisker_right (identity f) g = identity (f ;1; g).
Proof.
intermediate_path (functor_on_morphisms (compose_functor a b c)
(identity (make_catbinprod f g))).
reflexivity.
apply functor_id.
Defined.
Definition cancel_whisker_right {C : prebicategory} {a b c : C}
{f g : a -1-> b} {alpha alpha' : f -2-> g} (p : alpha = alpha') (h : b -1-> c)
: whisker_right alpha h = whisker_right alpha' h.
Proof.
induction p.
reflexivity.
Defined.
Definition whisker_right_iso {C : prebicategory} {a b c : C}
{f g : a -1-> b} (alpha : z_iso f g) (h : b -1-> c)
: z_iso (f ;1; h) (g ;1; h).
Proof.
∃ (whisker_right alpha h).
apply functor_on_is_z_isomorphism.
apply is_z_iso_binprod_z_iso.
- apply alpha.
- apply identity_is_z_iso.
Defined.
Lemma whisker_right_inv {C : prebicategory} {a b c : C}
{f g : a -1-> b} (alpha : z_iso f g) (h : b -1-> c)
: whisker_right (inv_from_z_iso alpha) h
=
inv_from_z_iso (whisker_right_iso alpha h).
Proof.
unfold whisker_right.
intermediate_path (inv_from_z_iso alpha ;h; inv_from_iso (identity_iso h)).
set (W := maponpaths pr1 (iso_inv_of_iso_id h)).
simpl in W.
rewrite <- W.
reflexivity.
apply (maponpaths pr1 (inv_horizontal_comp alpha (identity_z_iso h))).
Defined.
Lemma whisker_right_id_inj {C : prebicategory} {a b : C}
{f g : a -1-> b} (alpha alpha' : f -2-> g)
: whisker_right alpha (identity1 _) = whisker_right alpha' (identity1 _)
→ alpha = alpha'.
Proof.
intros w.
intermediate_path (inv_from_z_iso (right_unitor _)
;v; whisker_right alpha (identity1 _)
;v; right_unitor _ ).
apply pathsinv0.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_right_id_1mor.
intermediate_path (inv_from_z_iso (right_unitor _)
;v; whisker_right alpha' (identity1 _)
;v; right_unitor _ ).
apply cancel_postcomposition.
apply cancel_precomposition.
assumption.
apply z_iso_inv_to_right.
apply z_iso_inv_on_right.
rewrite assoc.
apply whisker_right_id_1mor.
Defined.
Lemma whisker_right_on_comp {C : prebicategory} {a b c : C}
{f g h : a -1-> b} (alpha : f -2-> g) (alpha' : g -2-> h) (i : b -1-> c)
: whisker_right (alpha ;v; alpha') i
= whisker_right alpha i ;v; whisker_right alpha' i.
Proof.
unfold whisker_right.
intermediate_path ((alpha;v;alpha');h;(identity i;v; identity i)).
rewrite id_left.
reflexivity.
now apply interchange.
Defined.
Lemma left_unitor_naturality {C : prebicategory} {a b : C}
(f g : a -1-> b) (alpha : f -2-> g)
: whisker_left (identity1 _) alpha ;v; left_unitor g
= left_unitor f ;v; alpha.
Proof.
intermediate_path ((functor_on_morphisms
(functor_composite
(bindelta_pair_functor
(functor_composite (functor_to_unit _) (constant_functor unit_category _ (identity1 a)))
(functor_identity _))
(compose_functor a a b))
alpha)
;v;(left_unitor g)).
reflexivity.
intermediate_path (left_unitor f ;v; functor_on_morphisms (functor_identity _) alpha).
apply (nat_trans_ax (left_unitor_trans a b)).
reflexivity.
Defined.
Lemma right_unitor_naturality {C : prebicategory} {a b : C}
(f g : a -1-> b) (alpha : f -2-> g)
: whisker_right alpha (identity1 _) ;v; right_unitor g
= right_unitor f ;v; alpha.
Proof.
intermediate_path ((functor_on_morphisms
(functor_composite
(bindelta_pair_functor
(functor_identity _)
(functor_composite (functor_to_unit _) (constant_functor unit_category _ (identity1 b))))
(compose_functor a b b))
alpha)
;v;(right_unitor _)).
reflexivity.
intermediate_path (right_unitor f ;v; functor_on_morphisms (functor_identity _) alpha).
apply (nat_trans_ax (right_unitor_trans a b)).
reflexivity.
Defined.
Lemma associator_naturality {C : prebicategory} { a b c d : C }
{f f' : a -1-> b} (alpha : f -2-> f')
{g g' : b -1-> c} (beta : g -2-> g')
{h h' : c -1-> d} (gamma : h -2-> h')
: (alpha ;h; (beta ;h; gamma)) ;v; associator f' g' h'
= associator f g h ;v; ((alpha ;h; beta) ;h; gamma).
Proof.
intermediate_path ((functor_on_morphisms
(functor_composite
(pair_functor (functor_identity _) (compose_functor b c d))
(compose_functor a b d))
(catbinprodmor alpha (catbinprodmor beta gamma)))
;v; associator f' g' h'
).
reflexivity.
intermediate_path (associator f g h ;v;
(functor_on_morphisms
(functor_composite
(precategory_binproduct_assoc _ _ _)
(functor_composite
(pair_functor (compose_functor a b c) (functor_identity _))
(compose_functor a c d)))
(catbinprodmor alpha (catbinprodmor beta gamma)))).
apply (nat_trans_ax (associator_trans a b c d) _ _
(catbinprodmor alpha (catbinprodmor beta gamma))).
reflexivity.
Defined.
Lemma twomor_naturality {C : prebicategory} {a b c : C}
{f g : a -1-> b} {h k : b -1-> c}
(gamma : f -2-> g) (delta : h -2-> k)
: (whisker_right gamma h) ;v; (whisker_left g delta)
= (whisker_left f delta) ;v; (whisker_right gamma k).
Proof.
unfold whisker_left, whisker_right.
intermediate_path ((gamma ;v; identity g);h;(identity h ;v; delta)).
apply pathsinv0.
apply interchange.
intermediate_path ((identity f ;v; gamma);h;(delta ;v; identity k)).
rewrite !id_left, !id_right.
reflexivity.
apply interchange.
Defined.
Section kelly_left_pieces.
Variable C : prebicategory.
Variables a b c d : C.
Variable f : a -1-> b.
Variable g : b -1-> c.
Variable h : c -1-> d.
Local Lemma kelly_left_region_1235 :
associator f (identity1 _) (g ;1; h)
;v; associator (f ;1; (identity1 _)) g h
;v; whisker_right (whisker_right (right_unitor f) g) h
= whisker_left f (associator (identity1 b) g h)
;v; associator f (identity1 _ ;1; g) h
;v; whisker_right (whisker_left f (left_unitor g)) h.
Proof.
simpl.
unfold whisker_left at 2.
rewrite (cancel_whisker_right (triangle_axiom f g) h).
rewrite whisker_right_on_comp.
rewrite assoc.
apply cancel_postcomposition.
apply (pentagon_axiom f (identity1 b) g h).
Defined.
Local Lemma kelly_left_region_123 :
associator f (identity1 _) (g ;1; h)
;v; associator (f ;1; (identity1 _)) g h
;v; whisker_right (whisker_right (right_unitor f) g) h
= whisker_left f (associator (identity1 b) g h)
;v; whisker_left f (whisker_right (left_unitor g) h)
;v; associator f g h.
Proof.
rewrite <- (assoc _ _ (associator f g h)).
unfold whisker_left at 2.
unfold whisker_right at 3.
rewrite associator_naturality.
fold (whisker_left f (left_unitor g)).
fold (whisker_right (whisker_left f (left_unitor g)) h).
rewrite assoc.
apply kelly_left_region_1235.
Defined.
Local Lemma kelly_left_region_12 :
associator f (identity1 _) (g ;1; h)
;v; whisker_right (right_unitor f) (g ;1; h)
= whisker_left f (associator (identity1 b) g h)
;v; whisker_left f (whisker_right (left_unitor g) h).
Proof.
use (post_comp_with_z_iso_is_inj (associator f g h)).
unfold whisker_right at 1.
rewrite <- horizontal_comp_id.
rewrite <- assoc.
rewrite associator_naturality.
rewrite assoc.
apply kelly_left_region_123.
Defined.
Local Lemma kelly_left_region_1 :
whisker_left f (left_unitor_2mor (g ;1; h))
= whisker_left f (associator (identity1 b) g h)
;v; whisker_left f (whisker_right (left_unitor g) h).
Proof.
unfold whisker_left at 1.
rewrite triangle_axiom.
apply kelly_left_region_12.
Defined.
End kelly_left_pieces.
Lemma kelly_left {C : prebicategory} {b c d : C}
{g : b -1-> c} {h : c -1-> d}
: left_unitor_2mor (g ;1; h)
=
associator (identity1 b) g h ;v; whisker_right (left_unitor g) h.
Proof.
apply whisker_left_id_inj.
rewrite whisker_left_on_comp.
apply kelly_left_region_1.
Defined.
Lemma left_unitor_on_id {C : prebicategory} {a : C}
: whisker_left (identity1 a) (left_unitor (identity1 a))
= left_unitor (identity1 a ;1; identity1 a).
Proof.
use (post_comp_with_z_iso_is_inj (left_unitor (identity1 a))).
apply left_unitor_naturality.
Defined.
Lemma left_unitor_id_is_right_unitor_id {C : prebicategory} {a : C}
: left_unitor_2mor (identity1 a)
= right_unitor_2mor (identity1 a).
Proof.
apply whisker_right_id_inj.
use (pre_comp_with_z_iso_is_inj (associator _ _ _)).
intermediate_path (left_unitor_2mor ((identity1 a) ;1; (identity1 a))).
apply pathsinv0.
apply kelly_left.
intermediate_path (whisker_left (identity1 a) (left_unitor (identity1 a))).
apply pathsinv0.
apply left_unitor_on_id.
apply (triangle_axiom (identity1 a) (identity1 a)).
Defined.