Library UniMath.CategoryTheory.Equivalences.Core
Equivalence of categories
Contents:
- Definition of (adjoint) equivalence of precategories
- Equivalence of categories yields weak equivalence of object types
- A fully faithful and ess. surjective functor induces equivalence of precategories, if the source is a univalent_category.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Local Open Scope cat.
Definition forms_equivalence {A B : category} (X : adjunction_data A B)
(η := adjunit X) (ε := adjcounit X) : UU
:= (∏ a, is_iso (η a)) × (∏ b, is_iso (ε b)).
Definition equivalence_of_cats (A B : category) : UU
:= ∑ (X : adjunction_data A B), forms_equivalence X.
Coercion adjunction_data_from_equivalence_of_cats {A B}
(X : equivalence_of_cats A B) : adjunction_data A B := pr1 X.
Definition adj_equivalence_of_cats {A B : category} (F : functor A B) : UU :=
∑ (H : is_left_adjoint F), forms_equivalence H.
Definition adj_from_equiv (D1 D2 : category) (F : functor D1 D2):
adj_equivalence_of_cats F → is_left_adjoint F := λ x, pr1 x.
Coercion adj_from_equiv : adj_equivalence_of_cats >-> is_left_adjoint.
Definition make_adj_equivalence_of_cats {A B : category} (F : functor A B)
(G : functor B A) η ε
(H1 : form_adjunction F G η ε)
(H2 : forms_equivalence ((F,,G,,η,,ε)))
: adj_equivalence_of_cats F.
Proof.
use tpair.
- ∃ G. ∃ (η,,ε). apply H1.
- apply H2.
Defined.
Definition adj_equivalence_inv {A B : category}
{F : functor A B} (HF : adj_equivalence_of_cats F) : functor B A :=
right_adjoint (pr1 HF).
Local Notation "HF ^^-1" := (adj_equivalence_inv HF)(at level 3).
Section Accessors.
Context {A B : category} {F : functor A B} (HF : adj_equivalence_of_cats F).
Definition unit_pointwise_iso_from_adj_equivalence :
∏ a, iso a (HF^^-1 (F a)).
Proof.
intro a.
∃ (unit_from_left_adjoint (pr1 HF) a).
exact (pr1 (pr2 HF) a).
Defined.
Definition counit_pointwise_iso_from_adj_equivalence :
∏ b, iso (F (HF^^-1 b)) b.
Proof.
intro b.
∃ (counit_from_left_adjoint (pr1 HF) b).
exact (pr2 (pr2 HF) b).
Defined.
Definition unit_nat_iso_from_adj_equivalence_of_cats :
nat_iso (functor_identity A) (functor_composite F (right_adjoint (pr1 HF))).
Proof.
∃ (unit_from_left_adjoint (pr1 HF)).
exact (dirprod_pr1 (pr2 HF)).
Defined.
Definition counit_nat_iso_from_adj_equivalence_of_cats :
nat_iso (functor_composite (right_adjoint (pr1 HF)) F) (functor_identity B).
Proof.
∃ (counit_from_left_adjoint (pr1 HF)).
exact (dirprod_pr2 (pr2 HF)).
Defined.
Definition unit_iso_from_adj_equivalence_of_cats :
iso (C:=[A, A]) (functor_identity A)
(functor_composite F (right_adjoint (pr1 HF))).
Proof.
∃ (unit_from_left_adjoint (pr1 HF)).
apply functor_iso_if_pointwise_iso. intro c.
apply (pr1 (pr2 HF)).
Defined.
Definition counit_iso_from_adj_equivalence_of_cats :
iso (C:=[B, B]) (functor_composite (right_adjoint (pr1 HF)) F)
(functor_identity B).
Proof.
∃ (counit_from_left_adjoint (pr1 HF)).
apply functor_iso_if_pointwise_iso. intro c.
apply (pr2 (pr2 HF)).
Defined.
End Accessors.
Adjointification of a sloppy equivalence
One triangle equality is enough
Lemma triangle_2_from_1 {C D}
(A : adjunction_data C D)
(E : forms_equivalence A)
: triangle_1_statement A → triangle_2_statement A.
Proof.
destruct A as [F [G [η ε]]].
destruct E as [Hη Hε]; cbn in Hη, Hε.
unfold triangle_1_statement, triangle_2_statement; cbn.
intros T1 x.
assert (etaH := nat_trans_ax η); cbn in etaH.
assert (epsH := nat_trans_ax ε); cbn in epsH.
apply (invmaponpathsweq (make_weq _ (iso_comp_left_isweq (make_iso _ (Hη _ )) _ ))).
cbn.
apply pathsinv0. etrans. apply id_left. etrans. apply (! id_right _ ).
apply pathsinv0.
apply (iso_inv_to_left _ _ _ (make_iso _ (Hη _ ))).
apply (invmaponpathsweq (make_weq _ (iso_comp_left_isweq (functor_on_iso G (make_iso _ (Hε _ ))) _ ))).
cbn.
set (XR := functor_on_iso_is_iso _ _ G _ _ (make_iso _ (Hε x))).
set (XR' := make_iso (#G (ε x)) XR). cbn in XR'.
apply pathsinv0. etrans. apply id_left. etrans. apply (! id_right _ ).
apply pathsinv0.
apply (iso_inv_to_left _ _ _ XR').
unfold XR', XR; clear XR' XR.
repeat rewrite assoc.
set (i := inv_from_iso
(make_iso (# G (ε x))
(functor_on_iso_is_iso D C G (F (G x)) x (make_iso (ε x) (Hε x))))).
set (i' := inv_from_iso (make_iso (η (G x)) (Hη (G x)))).
etrans. apply cancel_postcomposition. repeat rewrite <- assoc.
rewrite etaH. apply idpath.
etrans. repeat rewrite <- assoc. rewrite <- functor_comp.
rewrite (epsH). rewrite functor_comp. apply idpath.
etrans. apply maponpaths. apply maponpaths. repeat rewrite assoc. rewrite etaH.
apply cancel_postcomposition. rewrite <- assoc. rewrite <- functor_comp.
rewrite T1. rewrite functor_id. apply id_right.
etrans. apply maponpaths. rewrite assoc. apply cancel_postcomposition.
use (iso_after_iso_inv (make_iso _ (Hη _ ))).
rewrite id_left.
apply (iso_after_iso_inv ).
Defined.
(A : adjunction_data C D)
(E : forms_equivalence A)
: triangle_1_statement A → triangle_2_statement A.
Proof.
destruct A as [F [G [η ε]]].
destruct E as [Hη Hε]; cbn in Hη, Hε.
unfold triangle_1_statement, triangle_2_statement; cbn.
intros T1 x.
assert (etaH := nat_trans_ax η); cbn in etaH.
assert (epsH := nat_trans_ax ε); cbn in epsH.
apply (invmaponpathsweq (make_weq _ (iso_comp_left_isweq (make_iso _ (Hη _ )) _ ))).
cbn.
apply pathsinv0. etrans. apply id_left. etrans. apply (! id_right _ ).
apply pathsinv0.
apply (iso_inv_to_left _ _ _ (make_iso _ (Hη _ ))).
apply (invmaponpathsweq (make_weq _ (iso_comp_left_isweq (functor_on_iso G (make_iso _ (Hε _ ))) _ ))).
cbn.
set (XR := functor_on_iso_is_iso _ _ G _ _ (make_iso _ (Hε x))).
set (XR' := make_iso (#G (ε x)) XR). cbn in XR'.
apply pathsinv0. etrans. apply id_left. etrans. apply (! id_right _ ).
apply pathsinv0.
apply (iso_inv_to_left _ _ _ XR').
unfold XR', XR; clear XR' XR.
repeat rewrite assoc.
set (i := inv_from_iso
(make_iso (# G (ε x))
(functor_on_iso_is_iso D C G (F (G x)) x (make_iso (ε x) (Hε x))))).
set (i' := inv_from_iso (make_iso (η (G x)) (Hη (G x)))).
etrans. apply cancel_postcomposition. repeat rewrite <- assoc.
rewrite etaH. apply idpath.
etrans. repeat rewrite <- assoc. rewrite <- functor_comp.
rewrite (epsH). rewrite functor_comp. apply idpath.
etrans. apply maponpaths. apply maponpaths. repeat rewrite assoc. rewrite etaH.
apply cancel_postcomposition. rewrite <- assoc. rewrite <- functor_comp.
rewrite T1. rewrite functor_id. apply id_right.
etrans. apply maponpaths. rewrite assoc. apply cancel_postcomposition.
use (iso_after_iso_inv (make_iso _ (Hη _ ))).
rewrite id_left.
apply (iso_after_iso_inv ).
Defined.
Section adjointification.
Context {C D : category} (E : equivalence_of_cats C D).
Let F : functor C D := left_functor E.
Let G : functor D C := right_functor E.
Let ηntiso : iso (C:= [C,C]) (functor_identity _ ) (F ∙ G).
Proof.
use functor_iso_from_pointwise_iso.
use (adjunit E). intro c.
apply (pr1 (pr2 E)).
Defined.
Let εntiso : iso (C:= [D,D]) (G ∙ F) (functor_identity _ ).
Proof.
use functor_iso_from_pointwise_iso.
use (adjcounit E). intro c.
apply (pr2 (pr2 E)).
Defined.
Let FF : functor [D,D] [C, D]
:= (pre_comp_functor F).
Let GG : functor [C, D] [D, D]
:= (pre_comp_functor G).
Definition ε'ntiso : iso (C:= [D,D]) (G ∙ F) (functor_identity _ ).
Proof.
eapply iso_comp.
set (XR := functor_on_iso GG (functor_on_iso FF εntiso)).
set (XR':= iso_inv_from_iso XR). apply XR'.
eapply iso_comp.
2: apply εntiso.
set (XR := functor_on_iso (pre_comp_functor G) (iso_inv_from_iso ηntiso)).
set (XR':= functor_on_iso (post_comp_functor F) XR).
apply XR'.
Defined.
Definition adjointification_triangle_1
: triangle_1_statement (F,,G,,pr1 ηntiso,,pr1 ε'ntiso).
Proof.
intro x. cbn. rewrite id_right. rewrite id_right. rewrite id_right. rewrite id_right.
repeat rewrite assoc.
assert (ηinvH := nat_trans_ax (inv_from_iso ηntiso)).
cbn in ηinvH. simpl in ηinvH.
assert (εinvH := nat_trans_ax (inv_from_iso εntiso)).
cbn in εinvH. simpl in εinvH.
etrans. apply cancel_postcomposition. apply cancel_postcomposition.
etrans. apply maponpaths. apply (! (id_right _ )).
apply εinvH.
rewrite id_right.
repeat rewrite assoc. rewrite assoc4.
apply id_conjugation.
- etrans. eapply pathsinv0. apply functor_comp.
etrans. apply maponpaths. etrans. apply maponpaths. eapply pathsinv0. apply id_right.
apply ηinvH.
etrans. apply maponpaths.
apply (nat_trans_inv_pointwise_inv_before _ _ _ _ _ ηntiso (pr2 ηntiso)).
apply functor_id.
- assert (XR := nat_trans_inv_pointwise_inv_before _ _ _ _ _ εntiso (pr2 εntiso)).
cbn in XR.
etrans. apply cancel_postcomposition. eapply pathsinv0. apply id_right. apply XR.
Qed.
Lemma adjointification_forms_equivalence :
forms_equivalence (F,, G,, pr1 ηntiso,, pr1 ε'ntiso).
Proof.
split.
- cbn. apply (is_functor_iso_pointwise_if_iso _ _ _ _ _ ηntiso (pr2 ηntiso)).
- cbn. apply (is_functor_iso_pointwise_if_iso _ _ _ _ _ ε'ntiso (pr2 ε'ntiso)).
Qed.
Definition adjointification_triangle_2
: triangle_2_statement (F,,G,,pr1 ηntiso,,pr1 ε'ntiso).
Proof.
use triangle_2_from_1.
- apply adjointification_forms_equivalence.
- apply adjointification_triangle_1.
Qed.
Definition adjointificiation : adj_equivalence_of_cats F.
Proof.
use make_adj_equivalence_of_cats.
- exact G.
- apply ηntiso.
- apply ε'ntiso.
- ∃ adjointification_triangle_1.
apply adjointification_triangle_2.
- apply adjointification_forms_equivalence.
Defined.
End adjointification.
Lemma identity_functor_is_adj_equivalence {A : category} :
adj_equivalence_of_cats (functor_identity A).
Proof.
use tpair.
- exact is_left_adjoint_functor_identity.
- now split; intros a; apply identity_is_iso.
Defined.
Equivalence of categories yields equivalence of object types
Fundamentally needed that both source and target are categoriesLemma adj_equiv_of_cats_is_weq_of_objects (A B : category)
(HA : is_univalent A) (HB : is_univalent B) (F : [A, B, B ])
(HF : adj_equivalence_of_cats F) : isweq (pr1 (pr1 F)).
Proof.
set (G := right_adjoint (pr1 HF)).
set (et := unit_iso_from_adj_equivalence_of_cats HF).
set (ep := counit_iso_from_adj_equivalence_of_cats HF).
set (AAcat := is_univalent_functor_category A _ HA).
set (BBcat := is_univalent_functor_category B _ HB).
set (Et := isotoid _ AAcat et).
set (Ep := isotoid _ BBcat ep).
apply (isweq_iso _ (λ b, pr1 (right_adjoint (pr1 HF)) b)); intro a.
apply (!toforallpaths _ _ _ (base_paths _ _ (base_paths _ _ Et)) a).
now apply (toforallpaths _ _ _ (base_paths _ _ (base_paths _ _ Ep))).
Defined.
Definition weq_on_objects_from_adj_equiv_of_cats (A B : category)
(HA : is_univalent A) (HB : is_univalent B) (F : ob [A, B, B])
(HF : adj_equivalence_of_cats F) : weq
(ob A) (ob B).
Proof.
∃ (pr1 (pr1 F)).
now apply (@adj_equiv_of_cats_is_weq_of_objects _ _ HA).
Defined.
If the source precategory is a univalent_category, then being split
essentially surjective is a proposition
Lemma isaprop_sigma_iso (A B : category) (HA : is_univalent A)
(F : functor A B) (HF : fully_faithful F) :
∏ b : ob B, isaprop (∑ a : ob A, iso (F a) b).
Proof.
intro b.
apply invproofirrelevance.
intros x x'; destruct x as [a f]; destruct x' as [a' f'].
set (fminusf := iso_comp f (iso_inv_from_iso f')).
set (g := iso_from_fully_faithful_reflection HF fminusf).
apply (two_arg_paths_f (B:=λ a', iso ((pr1 F) a') b) (isotoid _ HA g)).
intermediate_path (iso_comp (iso_inv_from_iso
(functor_on_iso F (idtoiso (isotoid _ HA g)))) f).
- generalize (isotoid _ HA g).
intro p0; destruct p0.
rewrite <- functor_on_iso_inv. simpl.
rewrite iso_inv_of_iso_id.
apply eq_iso.
simpl; rewrite functor_id.
rewrite id_left.
apply idpath.
- rewrite idtoiso_isotoid.
unfold g; clear g.
unfold fminusf; clear fminusf.
assert (HFg : functor_on_iso F
(iso_from_fully_faithful_reflection HF
(iso_comp f (iso_inv_from_iso f'))) =
iso_comp f (iso_inv_from_iso f')).
+ generalize (iso_comp f (iso_inv_from_iso f')).
intro h.
apply eq_iso; simpl.
set (H3:= homotweqinvweq (weq_from_fully_faithful HF a a')).
simpl in H3. unfold fully_faithful_inv_hom.
unfold invweq; simpl.
rewrite H3; apply idpath.
+ rewrite HFg.
rewrite iso_inv_of_iso_comp.
apply eq_iso; simpl.
repeat rewrite <- assoc.
rewrite iso_after_iso_inv.
rewrite id_right.
set (H := iso_inv_iso_inv _ _ f').
now apply (base_paths _ _ H).
Qed.
Lemma isaprop_split_essentially_surjective (A B : category) (HA : is_univalent A)
(F : functor A B) (HF : fully_faithful F) :
isaprop (split_essentially_surjective F).
Proof.
apply impred; intro.
now apply isaprop_sigma_iso.
Qed.
If the source precategory is a univalent_category, then essential
surjectivity of a fully faithful functor implies split essential
surjectivity.
Lemma ff_essentially_surjective_to_split (A B : category) (HA : is_univalent A)
(F : functor A B) (HF : fully_faithful F) (HF' : essentially_surjective F) :
split_essentially_surjective F.
Proof.
intro b.
apply (squash_to_prop (HF' b)).
- apply isaprop_sigma_iso; assumption.
- exact (idfun _).
Defined.
(F : functor A B) (HF : fully_faithful F) (HF' : essentially_surjective F) :
split_essentially_surjective F.
Proof.
intro b.
apply (squash_to_prop (HF' b)).
- apply isaprop_sigma_iso; assumption.
- exact (idfun _).
Defined.
From full faithfullness and ess surj to equivalence
Section from_fully_faithful_and_ess_surj_to_equivalence.
Variables A B : category.
Hypothesis HA : is_univalent A.
Variable F : functor A B.
Hypothesis HF : fully_faithful F.
Hypothesis HS : essentially_surjective F.
Definition of a functor which will later be the right adjoint.
Definition rad_ob : ob B → ob A.
Proof.
use split_essentially_surjective_inv_on_obj.
- exact F.
- apply ff_essentially_surjective_to_split; assumption.
Defined.
Definition of the epsilon transformation
Definition rad_eps (b : ob B) : iso (pr1 F (rad_ob b)) b.
Proof.
apply (pr2 (HS b (tpair (λ x, isaprop x) _
(isaprop_sigma_iso A B HA F HF b)) (λ x, x))).
Defined.
The right adjoint on morphisms
Definition rad_mor (b b' : ob B) (g : b --> b') : rad_ob b --> rad_ob b'.
Proof.
set (epsgebs' := rad_eps b · g · iso_inv_from_iso (rad_eps b')).
set (Gg := fully_faithful_inv_hom HF (rad_ob b) _ epsgebs').
exact Gg.
Defined.
Definition of the eta transformation
Definition rad_eta (a : ob A) : a --> rad_ob (pr1 F a).
Proof.
set (epsFa := inv_from_iso (rad_eps (pr1 F a))).
exact (fully_faithful_inv_hom HF _ _ epsFa).
Defined.
Above data specifies a functor
Definition rad_functor_data : functor_data B A.
Proof.
∃ rad_ob.
exact rad_mor.
Defined.
Lemma rad_is_functor : is_functor rad_functor_data.
Proof.
split. simpl.
intro b. simpl . unfold rad_mor . simpl .
rewrite id_right,
iso_inv_after_iso,
fully_faithful_inv_identity.
apply idpath.
intros a b c f g. simpl .
unfold rad_mor; simpl.
rewrite <- fully_faithful_inv_comp.
apply maponpaths.
repeat rewrite <- assoc.
repeat apply maponpaths.
rewrite assoc.
rewrite iso_after_iso_inv, id_left.
apply idpath.
Qed.
Definition rad : ob [B, A, A].
Proof.
∃ rad_functor_data.
apply rad_is_functor.
Defined.
Epsilon is natural
Lemma rad_eps_is_nat_trans : is_nat_trans
(functor_composite rad F) (functor_identity B)
(λ b, rad_eps b).
Proof.
unfold is_nat_trans.
simpl.
intros b b' g.
unfold rad_mor; unfold fully_faithful_inv_hom.
set (H3 := homotweqinvweq (weq_from_fully_faithful HF (pr1 rad b) (pr1 rad b'))).
simpl in ×.
rewrite H3; clear H3.
repeat rewrite <- assoc.
rewrite iso_after_iso_inv, id_right.
apply idpath.
Qed.
Definition rad_eps_trans : nat_trans _ _ :=
tpair (is_nat_trans _ _ ) _ rad_eps_is_nat_trans.
Eta is natural
Ltac inv_functor x y :=
let H:=fresh in
set (H:= homotweqinvweq (weq_from_fully_faithful HF x y));
simpl in H;
unfold fully_faithful_inv_hom; simpl;
rewrite H; clear H.
Lemma rad_eta_is_nat_trans : is_nat_trans
(functor_identity A) (functor_composite F rad)
(λ a, rad_eta a).
Proof.
unfold is_nat_trans.
simpl.
intros a a' f.
unfold rad_mor. simpl.
apply (invmaponpathsweq
(weq_from_fully_faithful HF a (rad_ob ((pr1 F) a')))).
simpl; repeat rewrite functor_comp.
unfold rad_eta.
set (HHH := rad_eps_is_nat_trans (pr1 F a) (pr1 F a')).
simpl in HHH; rewrite <- HHH; clear HHH.
inv_functor a' (rad_ob ((pr1 F) a')).
inv_functor a (rad_ob ((pr1 F) a)).
inv_functor (rad_ob (pr1 F a)) (rad_ob ((pr1 F) a')).
unfold rad_mor. simpl.
repeat rewrite <- assoc.
rewrite iso_inv_after_iso.
rewrite id_right.
inv_functor (rad_ob (pr1 F a)) (rad_ob ((pr1 F) a')).
repeat rewrite assoc.
rewrite iso_after_iso_inv.
rewrite id_left.
apply idpath.
Qed.
Definition rad_eta_trans : nat_trans _ _ :=
tpair (is_nat_trans _ _ ) _ rad_eta_is_nat_trans.
Lemma rad_form_adjunction : form_adjunction F rad rad_eta_trans rad_eps_trans.
Proof.
split; simpl.
- intro a. cbn.
unfold rad_eta.
inv_functor a (rad_ob (pr1 F a)).
apply iso_after_iso_inv.
- intro b.
apply (invmaponpathsweq
(weq_from_fully_faithful HF (rad_ob b) (rad_ob b))).
simpl; rewrite functor_comp.
unfold rad_eta.
inv_functor (rad_ob b) (rad_ob (pr1 F (rad_ob b))).
unfold rad_mor.
inv_functor (rad_ob (pr1 F (rad_ob b))) (rad_ob b).
repeat rewrite assoc.
rewrite iso_after_iso_inv.
rewrite <- assoc.
rewrite iso_inv_after_iso.
rewrite id_left.
rewrite functor_id.
apply idpath.
Qed.
Definition rad_are_adjoints : are_adjoints F rad.
Proof.
∃ (make_dirprod rad_eta_trans rad_eps_trans).
apply rad_form_adjunction.
Defined.
Definition rad_is_left_adjoint : is_left_adjoint F.
Proof.
∃ rad.
apply rad_are_adjoints.
Defined.
Lemma rad_equivalence_of_cats : adj_equivalence_of_cats F.
Proof.
∃ rad_is_left_adjoint.
split; simpl.
intro a.
unfold rad_eta.
set (H := fully_faithful_reflects_iso_proof _ _ _ HF
a (rad_ob ((pr1 F) a))).
simpl in ×.
set (H' := H (iso_inv_from_iso (rad_eps ((pr1 F) a)))).
change ((fully_faithful_inv_hom HF a (rad_ob ((pr1 F) a))
(inv_from_iso (rad_eps ((pr1 F) a))))) with
(fully_faithful_inv_hom HF a (rad_ob ((pr1 F) a))
(iso_inv_from_iso (rad_eps ((pr1 F) a)))).
apply H'.
intro b. apply (pr2 (rad_eps b)).
Defined.
End from_fully_faithful_and_ess_surj_to_equivalence.