Library UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.
Local Open Scope cat.
Section Sub1CellBicategory.
Context (B : bicat)
(P : ∏ (x y : B), x --> y → UU)
(Pid : ∏ (x : B), P _ _ (id₁ x))
(Pcomp : ∏ (x y z : B) (f : x --> y) (g : y --> z),
P _ _ f → P _ _ g → P _ _ (f · g)).
Definition disp_sub1cell_disp_cat
: disp_cat_ob_mor B.
Proof.
use make_disp_cat_ob_mor.
- exact (λ _, unit).
- exact (λ _ _ _ _ f, P _ _ f).
Defined.
Definition disp_sub1cell_disp_cat_id_comp
: disp_cat_id_comp _ disp_sub1cell_disp_cat.
Proof.
use tpair.
- exact (λ _ _, Pid _).
- exact (λ _ _ _ _ _ _ _ _ p q, Pcomp _ _ _ _ _ p q).
Defined.
Definition disp_sub1cell_disp_cat_data
: disp_cat_data B.
Proof.
use tpair.
- exact disp_sub1cell_disp_cat.
- exact disp_sub1cell_disp_cat_id_comp.
Defined.
Definition disp_sub1cell_prebicat : disp_prebicat B
:= disp_cell_unit_bicat disp_sub1cell_disp_cat_data.
Definition disp_sub1cell_bicat : disp_bicat B
:= disp_cell_unit_bicat disp_sub1cell_disp_cat_data.
Definition disp_sub1cell_univalent_2_1
(HP : ∏ (x y : B) (f : x --> y), isaprop (P _ _ f))
: disp_univalent_2_1 disp_sub1cell_bicat.
Proof.
use disp_cell_unit_bicat_univalent_2_1.
intros.
apply HP.
Defined.
Definition disp_sub1cell_univalent_2_0
(HB : is_univalent_2_1 B)
(HP : ∏ (x y : B) (f : x --> y), isaprop (P _ _ f))
: disp_univalent_2_0 disp_sub1cell_bicat.
Proof.
use disp_cell_unit_bicat_univalent_2_0.
- exact HB.
- intros ; apply HP.
- simpl ; intro.
apply isasetunit.
- simpl.
intros.
apply isapropunit.
Qed.
End Sub1CellBicategory.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.BicategoryLaws.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Unitors.
Require Import UniMath.Bicategories.Core.Adjunctions.
Require Import UniMath.Bicategories.Core.Univalence.
Require Import UniMath.Bicategories.DisplayedBicats.DispAdjunctions.
Require Import UniMath.Bicategories.DisplayedBicats.DispUnivalence.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.
Local Open Scope cat.
Section Sub1CellBicategory.
Context (B : bicat)
(P : ∏ (x y : B), x --> y → UU)
(Pid : ∏ (x : B), P _ _ (id₁ x))
(Pcomp : ∏ (x y z : B) (f : x --> y) (g : y --> z),
P _ _ f → P _ _ g → P _ _ (f · g)).
Definition disp_sub1cell_disp_cat
: disp_cat_ob_mor B.
Proof.
use make_disp_cat_ob_mor.
- exact (λ _, unit).
- exact (λ _ _ _ _ f, P _ _ f).
Defined.
Definition disp_sub1cell_disp_cat_id_comp
: disp_cat_id_comp _ disp_sub1cell_disp_cat.
Proof.
use tpair.
- exact (λ _ _, Pid _).
- exact (λ _ _ _ _ _ _ _ _ p q, Pcomp _ _ _ _ _ p q).
Defined.
Definition disp_sub1cell_disp_cat_data
: disp_cat_data B.
Proof.
use tpair.
- exact disp_sub1cell_disp_cat.
- exact disp_sub1cell_disp_cat_id_comp.
Defined.
Definition disp_sub1cell_prebicat : disp_prebicat B
:= disp_cell_unit_bicat disp_sub1cell_disp_cat_data.
Definition disp_sub1cell_bicat : disp_bicat B
:= disp_cell_unit_bicat disp_sub1cell_disp_cat_data.
Definition disp_sub1cell_univalent_2_1
(HP : ∏ (x y : B) (f : x --> y), isaprop (P _ _ f))
: disp_univalent_2_1 disp_sub1cell_bicat.
Proof.
use disp_cell_unit_bicat_univalent_2_1.
intros.
apply HP.
Defined.
Definition disp_sub1cell_univalent_2_0
(HB : is_univalent_2_1 B)
(HP : ∏ (x y : B) (f : x --> y), isaprop (P _ _ f))
: disp_univalent_2_0 disp_sub1cell_bicat.
Proof.
use disp_cell_unit_bicat_univalent_2_0.
- exact HB.
- intros ; apply HP.
- simpl ; intro.
apply isasetunit.
- simpl.
intros.
apply isapropunit.
Qed.
End Sub1CellBicategory.