Library UniMath.Bicategories.Core.Unitors
Bicategories
Benedikt Ahrens, Marco Maggesi April 2018Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Examples.OpMorBicat.
Require Import UniMath.Bicategories.Core.Examples.OpCellBicat.
Local Open Scope cat.
Section unitors.
Context {C : bicat}.
The triangle with "?" in the proof of the Proposition
Lemma runitor_rwhisker_rwhisker {a b c d: C} (f : C⟦a, b⟧)
(g : C⟦b, c⟧) (h : C⟦c, d⟧)
: (rassociator f g (identity c) ▹ h) • ((f ◃ runitor g) ▹ h) =
runitor (f · g) ▹ h.
Proof.
rewrite with uppler left triangle
attach rassociator on both sides
rewrite upper right square
etrans.
{ apply vassocl. }
etrans.
{ apply maponpaths.
apply pathsinv0, lwhisker_lwhisker_rassociator.
}
{ apply vassocl. }
etrans.
{ apply maponpaths.
apply pathsinv0, lwhisker_lwhisker_rassociator.
}
rewrite lower middle square
apply pathsinv0.
etrans. { apply vassocl. }
etrans.
{ apply maponpaths.
apply pathsinv0, rwhisker_lwhisker_rassociator.
}
etrans. { apply vassocl. }
etrans.
{ apply maponpaths.
apply pathsinv0, rwhisker_lwhisker_rassociator.
}
rewrite lower right triangle
distribute the whiskering
remove trailing lunitor
etrans. { apply vassocr. }
etrans. { apply vassocr. }
apply pathsinv0.
etrans. { apply vassocr. }
apply maponpaths_2.
etrans. { apply vassocr. }
apply pathsinv0.
etrans. { apply vassocr. }
apply maponpaths_2.
turn the rassociators into lassociators
use inv_cell_eq.
- use is_invertible_2cell_vcomp.
+ apply is_invertible_2cell_rassociator.
+ apply is_invertible_2cell_rassociator.
- use is_invertible_2cell_vcomp.
+ use is_invertible_2cell_vcomp.
× apply is_invertible_2cell_rwhisker.
apply is_invertible_2cell_rassociator.
× apply is_invertible_2cell_rassociator.
+ apply is_invertible_2cell_lwhisker.
apply is_invertible_2cell_rassociator.
- cbn.
apply pathsinv0.
etrans. apply vassocr.
apply lassociator_lassociator.
Qed.
Lemma rwhisker_id_inj {a b : C} (f g : C⟦a, b⟧)
(x y : f ==> g)
: x ▹ identity b = y ▹ identity b → x = y.
Proof.
intro H.
apply (vcomp_lcancel (runitor _)).
- apply is_invertible_2cell_runitor.
- etrans. apply pathsinv0, vcomp_runitor.
etrans. 2: apply vcomp_runitor.
apply maponpaths_2. apply H.
Qed.
Lemma lwhisker_id_inj {a b : C} (f g : C⟦a, b⟧)
(x y : f ==> g)
: identity a ◃ x = identity a ◃ y → x = y.
Proof.
intro H.
apply (vcomp_lcancel (lunitor _)).
- apply is_invertible_2cell_lunitor.
- etrans. apply pathsinv0, vcomp_lunitor.
etrans. 2: apply vcomp_lunitor.
apply maponpaths_2. apply H.
Qed.
- use is_invertible_2cell_vcomp.
+ apply is_invertible_2cell_rassociator.
+ apply is_invertible_2cell_rassociator.
- use is_invertible_2cell_vcomp.
+ use is_invertible_2cell_vcomp.
× apply is_invertible_2cell_rwhisker.
apply is_invertible_2cell_rassociator.
× apply is_invertible_2cell_rassociator.
+ apply is_invertible_2cell_lwhisker.
apply is_invertible_2cell_rassociator.
- cbn.
apply pathsinv0.
etrans. apply vassocr.
apply lassociator_lassociator.
Qed.
Lemma rwhisker_id_inj {a b : C} (f g : C⟦a, b⟧)
(x y : f ==> g)
: x ▹ identity b = y ▹ identity b → x = y.
Proof.
intro H.
apply (vcomp_lcancel (runitor _)).
- apply is_invertible_2cell_runitor.
- etrans. apply pathsinv0, vcomp_runitor.
etrans. 2: apply vcomp_runitor.
apply maponpaths_2. apply H.
Qed.
Lemma lwhisker_id_inj {a b : C} (f g : C⟦a, b⟧)
(x y : f ==> g)
: identity a ◃ x = identity a ◃ y → x = y.
Proof.
intro H.
apply (vcomp_lcancel (lunitor _)).
- apply is_invertible_2cell_lunitor.
- etrans. apply pathsinv0, vcomp_lunitor.
etrans. 2: apply vcomp_lunitor.
apply maponpaths_2. apply H.
Qed.
The first triangle in the Proposition a · (1 ⊗ r) = r
Lemma runitor_triangle {a b c: C} (f : C⟦a, b⟧) (g : C⟦b, c⟧)
: rassociator f g (identity c) • (f ◃ runitor g) = runitor (f · g).
Proof.
apply rwhisker_id_inj.
etrans. 2: apply runitor_rwhisker_rwhisker.
apply pathsinv0, rwhisker_vcomp.
Qed.
: rassociator f g (identity c) • (f ◃ runitor g) = runitor (f · g).
Proof.
apply rwhisker_id_inj.
etrans. 2: apply runitor_rwhisker_rwhisker.
apply pathsinv0, rwhisker_vcomp.
Qed.
The square in the Proposition
r = r ⊗ 1
Lemma runitor_is_runitor_rwhisker (a : C)
: runitor (identity a · identity a) = runitor (identity a) ▹ (identity a).
Proof.
apply (vcomp_rcancel (runitor _ )).
- apply is_invertible_2cell_runitor.
- apply pathsinv0. apply vcomp_runitor .
Qed.
: runitor (identity a · identity a) = runitor (identity a) ▹ (identity a).
Proof.
apply (vcomp_rcancel (runitor _ )).
- apply is_invertible_2cell_runitor.
- apply pathsinv0. apply vcomp_runitor .
Qed.
l = 1 ⊗ l
Lemma lunitor_is_lunitor_lwhisker (a : C)
: lunitor (identity a · identity a) = identity a ◃ lunitor (identity a).
Proof.
apply (vcomp_rcancel (lunitor _ )).
- apply is_invertible_2cell_lunitor.
- apply pathsinv0. apply vcomp_lunitor .
Qed.
: lunitor (identity a · identity a) = identity a ◃ lunitor (identity a).
Proof.
apply (vcomp_rcancel (lunitor _ )).
- apply is_invertible_2cell_lunitor.
- apply pathsinv0. apply vcomp_lunitor .
Qed.
1 ⊗ r = 1 ⊗ l
Lemma lwhisker_runitor_lunitor (a : C)
: identity a ◃ runitor (identity a) = identity a ◃ lunitor (identity a).
Proof.
apply (vcomp_lcancel (rassociator _ _ _ )).
- apply is_invertible_2cell_rassociator.
- rewrite runitor_triangle.
rewrite lunitor_lwhisker.
apply runitor_is_runitor_rwhisker.
Qed.
Lemma runitor_lunitor_identity (a : C)
: runitor (identity a) = lunitor (identity a).
Proof.
apply (vcomp_lcancel (lunitor _ )).
{ apply is_invertible_2cell_lunitor. }
etrans. { apply pathsinv0. apply vcomp_lunitor. }
etrans. { apply maponpaths_2. apply lwhisker_runitor_lunitor. }
apply maponpaths_2. apply (!lunitor_is_lunitor_lwhisker _).
Qed.
Lemma lunitor_runitor_identity (a : C)
: lunitor (identity a) = runitor (identity a).
Proof.
apply (! runitor_lunitor_identity _ ).
Qed.
End unitors.
: identity a ◃ runitor (identity a) = identity a ◃ lunitor (identity a).
Proof.
apply (vcomp_lcancel (rassociator _ _ _ )).
- apply is_invertible_2cell_rassociator.
- rewrite runitor_triangle.
rewrite lunitor_lwhisker.
apply runitor_is_runitor_rwhisker.
Qed.
Lemma runitor_lunitor_identity (a : C)
: runitor (identity a) = lunitor (identity a).
Proof.
apply (vcomp_lcancel (lunitor _ )).
{ apply is_invertible_2cell_lunitor. }
etrans. { apply pathsinv0. apply vcomp_lunitor. }
etrans. { apply maponpaths_2. apply lwhisker_runitor_lunitor. }
apply maponpaths_2. apply (!lunitor_is_lunitor_lwhisker _).
Qed.
Lemma lunitor_runitor_identity (a : C)
: lunitor (identity a) = runitor (identity a).
Proof.
apply (! runitor_lunitor_identity _ ).
Qed.
End unitors.
Definition rinvunitor_triangle (C : bicat) (a b c : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧)
: (f ◃ rinvunitor g) • lassociator f g (identity c) = rinvunitor (f · g)
:= runitor_triangle (C := op2_bicat C) f g.
Definition lunitor_triangle (C : bicat) (a b c : C) (f : C⟦a,b⟧) (g : C⟦b,c⟧)
: lassociator (identity a) f g • (lunitor f ▹ g) = lunitor (f · g)
:= runitor_triangle (C := op1_bicat C) g f.