Library UniMath.Algebra.Universal.Examples.Group

Example on groups.

Gianluca Amato, Marco Maggesi, Cosimo Perini Brogi 2019-2021
This file contains the definition of the signature of groups and the way to turn a group (as defined in UniMath.Algebra.Groups) into an algebra.

Require Import UniMath.MoreFoundations.Notations.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.MoreLists.
Require Import UniMath.Algebra.Groups.

Require Import UniMath.Algebra.Universal.EqAlgebras.

Local Open Scope stn.

Group structure without equations.
Algebra of groups.

Module Algebra.

Definition group_mul_op: names group_signature := 0.
Definition group_id_op: names group_signature := 1.
Definition group_inv_op: names group_signature := 2.

Section GroupAlgebra.

  Context (G: gr).

  Definition group_algebra := make_algebra_simple_single_sorted group_signature G
    [(
      λ p, op (pr1 p) (pr12 p) ;
      λ _, unel G ;
      λ p, grinv G (pr1 p)
    )].

End GroupAlgebra.

Definition group_mul := build_gterm_curried group_mul_op.
Definition group_id := build_gterm_curried group_id_op.
Definition group_inv := build_gterm_curried group_inv_op.

End Algebra.

Module Eqspec.

Equational specification and the free algebra of open terms.