Library UniMath.SubstitutionSystems.SignatureExamples

Definitions of various signatures.
Written by: Anders Mörtberg, 2016 Based on a note by Ralph Matthes
Revised and extended by Ralph Matthes, 2017
The precategory of pointed endofunctors on C
Local Notation "'Ptd'" := (precategory_Ptd C hsC).
The category of endofunctors on C
Local Notation "'EndC'":= ([C, C, hsC]) .

distributivity with laws as a simple form the strength with laws, for endofunctors on the base category
Section def_of_δ.

Variable G : functor C C.

Definition δ_source_ob (Ze : Ptd) : EndC := G pr1 Ze.
Definition δ_source_mor {Ze Ze' : Ptd} (α : Ze --> Ze') :
  δ_source_ob Ze --> δ_source_ob Ze' := horcomp (pr1 α) (nat_trans_id G).

Definition δ_source_functor_data : functor_data Ptd EndC.
Proof.
δ_source_ob.
exact (@δ_source_mor).
Defined.

Lemma is_functor_δ_source : is_functor δ_source_functor_data.
Proof.
split; simpl.
- intro Ze.
  apply (nat_trans_eq hsC).
  now intro c; simpl; rewrite functor_id, id_right.
- intros H1 H2 H3 H4 H5; induction H1 as [Z e]; induction H2 as [Z' e']; induction H3 as [Z'' e'']; induction H4 as [α a]; induction H5 as [β b].
  apply (nat_trans_eq hsC); intro c; simpl in ×.
  now rewrite !id_left, functor_comp.
Qed.

Definition δ_source : functor Ptd EndC := tpair _ _ is_functor_δ_source.

Definition δ_target_ob (Ze : Ptd) : EndC := pr1 Ze G.
Definition δ_target_mor {Ze Ze' : Ptd} (α : Ze --> Ze') :
  δ_target_ob Ze --> δ_target_ob Ze' := horcomp (nat_trans_id G) (pr1 α).

Definition δ_target_functor_data : functor_data Ptd EndC.
Proof.
δ_target_ob.
exact (@δ_target_mor).
Defined.

Lemma is_functor_δ_target : is_functor δ_target_functor_data.
Proof.
split; simpl.
- intro Ze.
  apply (nat_trans_eq hsC).
  now intro c; simpl; rewrite functor_id, id_right.
- intros H1 H2 H3 H4 H5; induction H1 as [Z e]; induction H2 as [Z' e']; induction H3 as [Z'' e'']; induction H4 as [α a]; induction H5 as [β b].
  apply (nat_trans_eq hsC); intro c; simpl in ×.
  now rewrite !functor_id, !id_right.
Qed.

Definition δ_target : functor Ptd EndC := tpair _ _ is_functor_δ_target.

Section δ_laws.

Variable δ : δ_source δ_target.

Definition δ_law1 : UU := δ (id_Ptd C hsC) = nat_trans_id G.
Let D' Ze Ze' :=
  nat_trans_comp (α_functor (pr1 Ze) (pr1 Ze') G)
 (nat_trans_comp (pre_whisker (pr1 Ze) (δ Ze'))
 (nat_trans_comp (α_functor_inv (pr1 Ze) G (pr1 Ze'))
 (nat_trans_comp (post_whisker (δ Ze) (pr1 Ze'))
                 (α_functor G (pr1 Ze) (pr1 Ze'))))).
Definition δ_law2 : UU := Ze Ze', δ (Ze p Ze') = D' Ze Ze'.

End δ_laws.

Definition DistributiveLaw : UU :=
         δ : nat_trans δ_source δ_target , δ_law1 δ × δ_law2 δ.

Definition δ (DL : DistributiveLaw) : nat_trans δ_source δ_target := pr1 DL.

Definition distributive_law1 (DL : DistributiveLaw) : δ_law1 _ := pr1 (pr2 DL).

Definition distributive_law2 (DL : DistributiveLaw) : δ_law2 _ := pr2 (pr2 DL).

End def_of_δ.

Section δ_for_id.

Definition DL_id : DistributiveLaw (functor_identity C).
Proof.
use tpair; simpl.
+ use tpair; simpl.
  × intro x.
    { use tpair.
      - intro y; simpl; apply identity.
      - abstract (now intros y y' f; rewrite id_left, id_right).
    }
  × abstract (now intros y y' f; apply (nat_trans_eq hsC); intro z;
                  simpl; rewrite id_left, id_right, id_left, functor_id, id_right; apply idpath).
+ split.
  × apply (nat_trans_eq hsC); intro c; simpl; apply idpath.
  × intros Ze Ze'; apply (nat_trans_eq hsC); intro c; simpl. do 3 rewrite id_left. rewrite id_right. apply pathsinv0. apply functor_id.
Defined.

End δ_for_id.

Construct θ in a Signature in the case when the functor is precomposition with a functor G from a family of simpler distributive laws δ
Section θ_from_δ.

Variable G : functor C C.
Variable DL : DistributiveLaw G.

Let precompG := (pre_composition_functor _ _ _ hsC hsC G).

Definition θ_from_δ_mor (XZe : [C, C, hsC] XX Ptd) :
  [C, C, hsC] θ_source precompG XZe, θ_target precompG XZe .
Proof.
set (X := pr1 XZe); set (Z := pr1 (pr2 XZe)).
set (F1 := α_functor G Z X).
set (F2 := post_whisker (δ G DL (pr2 XZe)) X).
set (F3 := α_functor_inv Z G X).
apply (nat_trans_comp F3 (nat_trans_comp F2 F1)).
Defined.

Lemma is_nat_trans_θ_from_δ_mor :
   is_nat_trans (θ_source precompG) (θ_target precompG) θ_from_δ_mor.
Proof.
intros H1 H2 H3; induction H1 as [F1 X1]; induction H2 as [F2 X2];induction H3 as [α X]; simpl in ×.
apply (nat_trans_eq hsC); intro c; simpl; rewrite !id_right, !id_left.
generalize (nat_trans_eq_pointwise (nat_trans_ax (δ G DL) X1 X2 X) c); simpl.
rewrite id_left, functor_id, id_right.
intros H.
rewrite <- assoc.
eapply pathscomp0.
  eapply maponpaths, pathsinv0, functor_comp.
eapply pathscomp0.
  eapply maponpaths, maponpaths, H.
rewrite assoc; apply pathsinv0.
eapply pathscomp0.
  eapply cancel_postcomposition, nat_trans_ax.
now rewrite <- assoc, <- functor_comp.
Qed.

Definition θ_from_δ : θ_source precompG θ_target precompG :=
  tpair _ _ is_nat_trans_θ_from_δ_mor.

Lemma θ_Strength1_int_from_δ : θ_Strength1_int θ_from_δ.
Proof.
intro F.
apply (nat_trans_eq hsC); intro c; simpl.
rewrite id_left, !id_right.
eapply pathscomp0;
  [eapply maponpaths, (nat_trans_eq_pointwise (distributive_law1 G DL) c)|].
apply functor_id.
Qed.

Lemma θ_Strength2_int_from_δ : θ_Strength2_int θ_from_δ.
Proof.
intros F Ze Ze'; simpl.
set (Z := pr1 Ze); set (Z' := pr1 Ze').
apply (nat_trans_eq hsC); intro c; simpl.
generalize (nat_trans_eq_pointwise (distributive_law2 G DL Ze Ze') c); simpl.
rewrite !id_left, !id_right; intro H.
eapply pathscomp0;
  [eapply maponpaths, H|].
apply functor_comp.
Qed.

Definition θ_precompG : θ : θ_source precompG θ_target precompG,
                              θ_Strength1_int θ × θ_Strength2_int θ :=
  tpair _ θ_from_δ (θ_Strength1_int_from_δ,,θ_Strength2_int_from_δ).

Definition θ_from_δ_Signature : Signature C hsC C hsC :=
  tpair _ precompG θ_precompG.

End θ_from_δ.

Section δ_mul.

  Variable G1 : functor C C.
  Variable DL1 : DistributiveLaw G1.
  Variable G2 : functor C C.
  Variable DL2 : DistributiveLaw G2.

Definition δ_comp_mor (Ze : ptd_obj C) :
       functor_composite_data (pr1 Ze) (functor_composite_data G1 G2)
    functor_composite_data (functor_composite_data G1 G2) (pr1 Ze).
Proof.
set (Z := pr1 Ze).
set (F1 := α_functor_inv Z G1 G2).
set (F2 := post_whisker (δ G1 DL1 Ze) G2).
set (F3 := α_functor G1 Z G2).
set (F4 := pre_whisker G1 (δ G2 DL2 Ze)).
set (F5 := α_functor_inv G1 G2 Z).
exact (nat_trans_comp F1 (nat_trans_comp F2 (nat_trans_comp F3 (nat_trans_comp F4 F5)))).
Defined.

Lemma is_nat_trans_δ_comp_mor : is_nat_trans (δ_source (G2 G1 : [C,C,hsC]))
                                             (δ_target (G2 G1 : [C,C,hsC])) δ_comp_mor.
Proof.
intros Ze Z'e' αX; induction Ze as [Z e]; induction Z'e' as [Z' e']; induction αX as [α X]; simpl in ×.
apply (nat_trans_eq hsC); intro c; simpl; rewrite functor_id, !id_right, !id_left.
eapply pathscomp0.
  rewrite assoc.
  eapply cancel_postcomposition, pathsinv0, functor_comp.
eapply pathscomp0.
  eapply cancel_postcomposition, maponpaths.
  generalize (nat_trans_eq_pointwise (nat_trans_ax (δ G1 DL1) (Z,,e) (Z',, e') (α,,X)) c).
  simpl; rewrite id_left, functor_id, id_right; intro H1.
  apply H1.
rewrite functor_comp, <- assoc.
eapply pathscomp0.
  eapply maponpaths.
  generalize (nat_trans_eq_pointwise (nat_trans_ax (δ G2 DL2) (Z,,e) (Z',, e') (α,,X)) (G1 c)).
  simpl; rewrite id_left, functor_id, id_right; intro H2.
  apply H2.
now rewrite assoc.
Qed.

Definition δ_comp : δ_source (G2 G1 : [C,C,hsC]) δ_target (G2 G1 : [C,C,hsC]) :=
  tpair _ δ_comp_mor is_nat_trans_δ_comp_mor.

Lemma δ_comp_law1 : δ_law1 (G2 G1 : [C,C,hsC]) δ_comp.
Proof.
apply (nat_trans_eq hsC); intro c; simpl; rewrite !id_left, id_right.
eapply pathscomp0.
  eapply maponpaths, (nat_trans_eq_pointwise (distributive_law1 G2 DL2) (G1 c)).
eapply pathscomp0.
  eapply cancel_postcomposition, maponpaths, (nat_trans_eq_pointwise (distributive_law1 G1 DL1) c).
now rewrite id_right; apply functor_id.
Qed.

Lemma δ_comp_law2 : δ_law2 (G2 G1 : [C,C,hsC]) δ_comp.
Proof.
intros Ze Ze'.
apply (nat_trans_eq hsC); intro c; simpl; rewrite !id_left, !id_right.
eapply pathscomp0.
  eapply cancel_postcomposition, maponpaths, (nat_trans_eq_pointwise (distributive_law2 G1 DL1 Ze Ze') c).
eapply pathscomp0.
  eapply maponpaths, (nat_trans_eq_pointwise (distributive_law2 G2 DL2 Ze Ze') (G1 c)).
simpl; rewrite !id_left, !id_right.
eapply pathscomp0.
  eapply cancel_postcomposition, functor_comp.
rewrite <- !assoc.
apply maponpaths.
rewrite assoc.
eapply pathscomp0.
  eapply cancel_postcomposition, (nat_trans_ax (δ G2 DL2 Ze') _ _ (pr1 (δ G1 DL1 Ze) c)).
simpl; rewrite <- !assoc.
now apply maponpaths, pathsinv0, functor_comp.
Qed.

Definition DL_comp : DistributiveLaw (G2 G1 : [C,C,hsC]).
Proof.
use tpair.
  × exact δ_comp.
  × split.
    - exact δ_comp_law1.
    - exact δ_comp_law2.
Defined.

End δ_mul.

Construct the δ when G is generalized option
Section genoption_sig.

Variables (A : C) (CC : BinCoproducts C).

Let genopt := constcoprod_functor1 CC A.

Definition δ_genoption_mor (Ze : Ptd) (c : C) : C BinCoproductObject C (CC A (pr1 Ze c)),
                                                  pr1 Ze (BinCoproductObject C (CC A c)) .
Proof.
apply (@BinCoproductArrow _ _ _ (CC A (pr1 Ze c)) (pr1 Ze (BinCoproductObject C (CC A c)))).
- apply (BinCoproductIn1 _ (CC A c) · pr2 Ze (BinCoproductObject _ (CC A c))).
- apply (# (pr1 Ze) (BinCoproductIn2 _ (CC A c))).
Defined.

Lemma is_nat_trans_δ_genoption_mor (Ze : Ptd) :
  is_nat_trans (δ_source genopt Ze : functor C C) (δ_target genopt Ze : functor C C)
     (δ_genoption_mor Ze).
Proof.
intros a b f; simpl.
induction Ze as [Z e].
unfold BinCoproduct_of_functors_mor; simpl.
eapply pathscomp0.
  apply precompWithBinCoproductArrow.
rewrite id_left.
apply pathsinv0, BinCoproductArrowUnique.
- eapply pathscomp0.
    rewrite assoc.
    eapply cancel_postcomposition, BinCoproductIn1Commutes.
  rewrite <- assoc.
  eapply pathscomp0.
    eapply maponpaths, pathsinv0, (nat_trans_ax e).
  simpl; rewrite assoc.
  apply cancel_postcomposition.
  eapply pathscomp0.
    apply BinCoproductOfArrowsIn1.
  now rewrite id_left.
- rewrite assoc.
  eapply pathscomp0.
    eapply cancel_postcomposition, BinCoproductIn2Commutes.
  rewrite <- !functor_comp.
  now apply maponpaths, BinCoproductOfArrowsIn2.
Qed.

Lemma is_nat_trans_δ_genoption_mor_nat_trans : is_nat_trans (δ_source_functor_data genopt)
     (δ_target_functor_data genopt)
     (λ Ze : Ptd, δ_genoption_mor Ze,, is_nat_trans_δ_genoption_mor Ze).
Proof.
intro Ze; induction Ze as [Z e]; intro Z'e'; induction Z'e' as [Z' e']; intro αX; induction αX as [α X]; simpl in ×.
apply (nat_trans_eq hsC); intro c; simpl.
rewrite id_left, functor_id, id_right.
unfold BinCoproduct_of_functors_mor, BinCoproduct_of_functors_ob, δ_genoption_mor; simpl.
rewrite precompWithBinCoproductArrow.
apply pathsinv0, BinCoproductArrowUnique.
- rewrite id_left, assoc.
  eapply pathscomp0.
    eapply cancel_postcomposition, BinCoproductIn1Commutes.
  rewrite <- assoc.
  now apply maponpaths, X.
- rewrite assoc.
  eapply pathscomp0.
    eapply cancel_postcomposition, BinCoproductIn2Commutes.
  now apply nat_trans_ax.
Qed.

Definition δ_genoption : δ_source genopt δ_target genopt.
Proof.
use tpair.
- intro Ze.
  apply (tpair _ (δ_genoption_mor Ze) (is_nat_trans_δ_genoption_mor Ze)).
- apply is_nat_trans_δ_genoption_mor_nat_trans.
Defined.

Lemma δ_law1_genoption : δ_law1 genopt δ_genoption.
Proof.
apply (nat_trans_eq hsC); intro c; simpl.
unfold δ_genoption_mor, BinCoproduct_of_functors_ob; simpl.
rewrite id_right.
apply pathsinv0, BinCoproduct_endo_is_identity.
- apply BinCoproductIn1Commutes.
- apply BinCoproductIn2Commutes.
Qed.

Lemma δ_law2_genoption : δ_law2 genopt δ_genoption.
Proof.
intros Ze Z'e'; induction Ze as [Z e]; induction Z'e' as [Z' e'].
apply (nat_trans_eq hsC); intro c; simpl.
unfold δ_genoption_mor, BinCoproduct_of_functors_ob; simpl.
rewrite !id_left, id_right.
apply pathsinv0, BinCoproductArrowUnique.
- rewrite assoc.
  eapply pathscomp0.
    eapply cancel_postcomposition, BinCoproductIn1Commutes.
  rewrite <- assoc.
  eapply pathscomp0.
    eapply maponpaths, pathsinv0, (nat_trans_ax e').
  simpl; rewrite assoc.
  eapply pathscomp0.
    eapply cancel_postcomposition, BinCoproductIn1Commutes.
  rewrite <- !assoc.
  now apply maponpaths, (nat_trans_ax e').
- rewrite assoc.
  eapply pathscomp0.
    eapply cancel_postcomposition, BinCoproductIn2Commutes.
  eapply pathscomp0.
    eapply pathsinv0, functor_comp.
  now apply maponpaths, BinCoproductIn2Commutes.
Qed.

Definition genoption_DistributiveLaw : DistributiveLaw genopt.
Proof.
δ_genoption.
    split.
    × exact δ_law1_genoption.
    × exact δ_law2_genoption.
Defined.

Definition precomp_genoption_Signature : Signature C hsC C hsC :=
  θ_from_δ_Signature genopt genoption_DistributiveLaw.

End genoption_sig.

trivially instantiate previous section to option functor
Define δ for G = F^n
Section iter1_dl.

Variable G : functor C C.
Variable DL : DistributiveLaw G.

Definition DL_iter_functor1 (n: nat) : DistributiveLaw (iter_functor1 G n).
Proof.
induction n as [|n IHn].
- exact DL.
- apply DL_comp.
  + apply IHn.
  + exact DL.
Defined.

End iter1_dl.

End around_δ.

Section id_signature.

Variable (C : precategory) (hsC : has_homsets C).

Definition θ_functor_identity :
  θ : θ_source (functor_identity [C,C,hsC]) θ_target (functor_identity [C,C,hsC]),
  θ_Strength1_int θ × θ_Strength2_int θ.
Proof.
use tpair; simpl.
+ use tpair; simpl.
  × intro x.
    { use tpair.
      - intro y; simpl; apply identity.
      - abstract (now intros y y' f; rewrite id_left, id_right).
    }
  × abstract (now intros y y' f; apply (nat_trans_eq hsC); intro z;
                  simpl; rewrite id_left, id_right).
+ now split; intros x; intros; apply (nat_trans_eq hsC); intro c; simpl; rewrite !id_left.
Defined.

Signature for the Id functor
an alternative approach would be to go through θfromδSignature, based on the observation that functor_identity C,C,hsC and pre_composition_functor _ hsC hsC (functor_identity C) are isomorphic; however, they are probably not propositionally equal, and so the benefit is marginal

End id_signature.

Section constantly_constant_signature.

  Variable (C D : category).
  Variable (d : D).

  Let H := constant_functor (functor_category C C) (functor_category C D) (constant_functor C D d).

  Definition θ_const_const :
  θ : θ_source H θ_target H, θ_Strength1_int θ × θ_Strength2_int θ.
Proof.
use tpair; simpl.
+ use tpair; simpl.
  × intro x.
    { use tpair.
      - intro y; simpl; apply identity.
      - abstract (now intros y y' f; rewrite id_left, id_right).
    }
  × abstract (now intros y y' f; apply (nat_trans_eq (homset_property D)); intro z;
                  simpl; rewrite id_left, id_right).
+ now split; intros x; intros; apply (nat_trans_eq (homset_property D)); intro c; simpl; rewrite !id_left.
Defined.

Definition ConstConstSignature : Signature _ (homset_property C) _ (homset_property D) :=
  tpair _ H θ_const_const.

  End constantly_constant_signature.

Transform a signature with strength θ with underlying functor H into a signature with strength Gθ for the functor that comes from post-composition of all HX with a functor G
G need not be an endofunctor, which is why the strength concept had to be given more heterogeneously than only on endofunctors on endofunctor categories
Section θ_for_postcomposition.

Variable C : precategory.
Variable hsC : has_homsets C.
Variable D : precategory.
Variable hsD : has_homsets D.
Variable E : precategory.
Variable hsE : has_homsets E.

The precategory of pointed endofunctors on C
Local Notation "'Ptd'" := (precategory_Ptd C hsC).
The category of endofunctors on C
Local Notation "'EndC'":= ([C, C, hsC]) .

Variable S: Signature C hsC D hsD.
Let H : functor [C, C, hsC] [C, D, hsD] := Signature_Functor _ _ _ _ S.
Let θ : nat_trans (θ_source H) (θ_target H) := theta S.
Let θ_strength1 := Sig_strength_law1 _ _ _ _ S.
Let θ_strength2 := Sig_strength_law2 _ _ _ _ S.
Variable G : functor D E.

Let GH : functor [C, C, hsC] [C, E, hsE] := functor_composite H (post_composition_functor _ _ _ _ _ G).

Definition Gθ_mor (XZe : [C, C, hsC] XX Ptd) :
  [C, E, hsE] θ_source GH XZe, θ_target GH XZe .
Proof.
set (X := pr1 XZe); set (Z := pr1 (pr2 XZe)).
set (F1 := α_functor_inv Z (H X) G).
set (F2 := post_whisker (θ XZe) G).
apply (nat_trans_comp F1 F2).
Defined.

Lemma is_nat_trans_Gθ_mor :
   is_nat_trans (θ_source GH) (θ_target GH) Gθ_mor.
Proof.
intros H1 H2 H3; induction H1 as [F1 X1]; induction H2 as [F2 X2]; induction H3 as [α X]; simpl in ×.
apply (nat_trans_eq hsE); intro c; simpl.
do 2 rewrite <- assoc.
do 2 rewrite id_left.
eapply pathscomp0.
  + eapply maponpaths, pathsinv0, functor_comp.
  + eapply pathscomp0.
    - eapply pathsinv0, functor_comp.
    - apply pathsinv0. eapply pathscomp0.
      × eapply pathsinv0, functor_comp.
      × eapply maponpaths.
        apply pathsinv0.
        rewrite assoc.
        generalize (nat_trans_eq_pointwise (nat_trans_ax θ (F1,,X1)(F2,,X2)(α,,X)) c); simpl.
        intro Hyp.
        apply Hyp.
Qed.

Definition : θ_source GH θ_target GH :=
  tpair _ _ is_nat_trans_Gθ_mor.

Lemma Gθ_Strength1_int : θ_Strength1_int .
Proof.
intro F.
apply (nat_trans_eq hsE); intro c; simpl.
rewrite <- assoc.
rewrite id_left.
eapply pathscomp0.
  + eapply pathsinv0, functor_comp.
  + apply pathsinv0. eapply pathscomp0.
    × eapply pathsinv0, functor_id.
    × eapply maponpaths.
      generalize (nat_trans_eq_pointwise (θ_strength1 F) c); simpl.
      intro Hyp.
      apply pathsinv0, Hyp.
Qed.

Lemma Gθ_Strength2_int : θ_Strength2_int .
Proof.
intros F Ze Ze'; simpl.
set (Z := pr1 Ze); set (Z' := pr1 Ze').
apply (nat_trans_eq hsE); intro c; simpl.
do 4 rewrite id_left.
eapply pathscomp0.
  + eapply pathsinv0, functor_comp.
  + apply pathsinv0. eapply pathscomp0.
    × eapply pathsinv0, functor_comp.
    × eapply maponpaths.
      generalize (nat_trans_eq_pointwise (θ_strength2 F Ze Ze') c); simpl.
      rewrite id_left.
      intro Hyp.
      apply pathsinv0, Hyp.
Qed.

Definition Gθ_with_laws : θ : θ_source GH θ_target GH,
                              θ_Strength1_int θ × θ_Strength2_int θ :=
  tpair _ (Gθ_Strength1_int,,Gθ_Strength2_int).

Definition Gθ_Signature : Signature C hsC E hsE :=
  tpair _ GH Gθ_with_laws.

End θ_for_postcomposition.