Library UniMath.SubstitutionSystems.LiftingInitial_alt
**********************************************************
Contents:
This file differs from LiftingInitial.v in the hypotheses. Here we use omega cocontinuity instead of
Kan extensions.
Written by: Anders Mörtberg, 2016 (adapted from LiftingInitial.v)
- Construction of a substitution system from an initial algebra Proof that the substitution system
- Constructed from an initial algebra is an initial substitution system
Set Kernel Term Sharing.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.yoneda.
Require Import UniMath.CategoryTheory.categories.HSET.Core.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration_alt.
Require Import UniMath.CategoryTheory.EndofunctorsMonoidal.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Local Open Scope cat.
Local Coercion alg_carrier : algebra_ob >-> ob.
Section category_Algebra.
Variables (C : precategory) (hsC : has_homsets C) (CP : BinCoproducts C).
Variables (IC : Initial C) (CC : Colims_of_shape nat_graph C).
Variables (H : Signature C hsC C hsC) (HH : is_omega_cocont H).
Local Notation "'EndC'":= ([C, C, hsC]) .
Local Notation "'Ptd'" := (precategory_Ptd C hsC).
Let hsEndC : has_homsets EndC := functor_category_has_homsets C C hsC.
Let CPEndC : BinCoproducts EndC := BinCoproducts_functor_precat _ _ CP hsC.
Let EndEndC := [EndC, EndC, hsEndC].
Let CPEndEndC:= BinCoproducts_functor_precat _ _ CPEndC hsEndC: BinCoproducts EndEndC.
Let θ := theta H.
Definition Const_plus_H (X : EndC) : functor EndC EndC
:= BinCoproduct_of_functors _ _ CPEndC (constant_functor _ _ X) H.
Definition Id_H : functor [C, C, hsC] [C, C, hsC]
:= Const_plus_H (functor_identity _ : EndC).
Let Alg : precategory := FunctorAlg Id_H hsEndC.
Let InitialEndC : Initial EndC.
Proof.
apply Initial_functor_precat, IC.
Defined.
Let Colims_of_shape_nat_graph_EndC : Colims_of_shape nat_graph EndC.
Proof.
apply ColimsFunctorCategory_of_shape, CC.
Defined.
Lemma is_omega_cocont_Id_H : is_omega_cocont Id_H.
Proof.
apply is_omega_cocont_BinCoproduct_of_functors; try apply functor_category_has_homsets.
- apply is_omega_cocont_constant_functor, functor_category_has_homsets.
- apply HH.
Defined.
Definition InitAlg : Alg :=
InitialObject (colimAlgInitial hsEndC InitialEndC is_omega_cocont_Id_H (Colims_of_shape_nat_graph_EndC _)).
Lemma isInitial_pre_comp (Z : Ptd) : isInitial [C, C, hsC] (ℓ (U Z) InitialEndC).
Proof.
use mk_isInitial; intros F.
use tpair.
- use tpair.
+ intros c; simpl; apply InitialArrow.
+ abstract (intros x y f; cbn; apply InitialArrowEq).
- abstract (intros G; apply subtypeEquality;
[ intros x; apply isaprop_is_nat_trans,hsC
| apply funextsec; intro c; apply InitialArrowUnique]).
Defined.
Local Lemma HU (Z : Ptd) : is_omega_cocont (pre_composition_functor C C C hsC hsC (U Z)).
Proof.
apply is_omega_cocont_pre_composition_functor, CC.
Defined.
Definition SpecializedGMIt (Z : Ptd) (X : EndC) :
∏ (G : functor [C, C, hsC] [C, C, hsC]) (ρ : [C, C, hsC] ⟦ G X, X ⟧)
(θ : functor_composite Id_H (ℓ (U Z)) ⟹ functor_composite (ℓ (U Z)) G),
∃! h : [C, C, hsC] ⟦ ℓ (U Z) (alg_carrier _ InitAlg), X ⟧,
# (ℓ (U Z)) (alg_map Id_H InitAlg) · h =
θ (alg_carrier _ InitAlg) · # G h · ρ
:= SpecialGenMendlerIteration hsEndC InitialEndC Colims_of_shape_nat_graph_EndC
Id_H is_omega_cocont_Id_H hsEndC X (ℓ (U Z)) (isInitial_pre_comp Z) (HU Z).
Definition θ_in_first_arg (Z: Ptd)
: functor_fix_snd_arg [C, C,hsC] Ptd [C, C, hsC] (θ_source H) Z
⟹
functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_target H) Z
:= nat_trans_fix_snd_arg _ _ _ _ _ θ Z.
Local Lemma aux_iso_1_is_nat_trans (Z : Ptd) :
is_nat_trans
(functor_composite Id_H (ℓ (U Z)))
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_source H) Z))))
(λ X : [C, C, hsC],
BinCoproductOfArrows [C, C, hsC]
(CPEndC (functor_composite (U Z) (functor_identity C))
((θ_source H) (X ⊗ Z))) (CPEndC (U Z) ((θ_source H) (X ⊗ Z)))
(ρ_functor (U Z)) (nat_trans_id ((θ_source H) (X ⊗ Z):functor C C))).
Proof.
intros X X' α.
apply (nat_trans_eq hsC); intro c; simpl.
eapply pathscomp0; [apply BinCoproductOfArrows_comp |].
eapply pathscomp0; [|eapply pathsinv0, BinCoproductOfArrows_comp]; simpl.
now rewrite functor_id, !id_left, !id_right.
Qed.
Definition aux_iso_1 (Z : Ptd)
: EndEndC
⟦ functor_composite Id_H (ℓ (U Z)),
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_source H) Z))⟧.
Proof.
use tpair.
- intro X.
exact (BinCoproductOfArrows EndC (CPEndC _ _) (CPEndC _ _) (ρ_functor (U Z))
(nat_trans_id (θ_source H (X⊗Z):functor C C))).
- exact (aux_iso_1_is_nat_trans Z).
Defined.
Local Lemma aux_iso_1_inv_is_nat_trans (Z : Ptd) :
is_nat_trans
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_source H) Z))) )
(functor_composite Id_H (ℓ (U Z)))
(λ X : [C, C, hsC],
BinCoproductOfArrows [C, C, hsC]
(CPEndC (functor_composite (functor_identity C) (U Z))
((θ_source H) (X ⊗ Z))) (CPEndC (U Z) ((θ_source H) (X ⊗ Z)))
(λ_functor (U Z)) (nat_trans_id ((θ_source H) (X ⊗ Z):functor C C))).
Proof.
intros X X' α.
apply (nat_trans_eq hsC); intro c; simpl.
eapply pathscomp0;[apply BinCoproductOfArrows_comp|].
eapply pathscomp0;[|eapply pathsinv0, BinCoproductOfArrows_comp]; simpl.
now rewrite functor_id, !id_left, !id_right.
Qed.
Local Definition aux_iso_1_inv (Z: Ptd)
: EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_source H) Z)),
functor_composite Id_H (ℓ (U Z)) ⟧.
Proof.
use tpair.
- intro X.
exact (BinCoproductOfArrows EndC (CPEndC _ _) (CPEndC _ _) (λ_functor (U Z))
(nat_trans_id (θ_source H (X⊗Z):functor C C))).
- exact (aux_iso_1_inv_is_nat_trans Z).
Defined.
Local Lemma aux_iso_2_inv_is_nat_trans (Z : Ptd) :
is_nat_trans
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC](θ_target H) Z))) )
(functor_composite (ℓ (U Z))
(Const_plus_H (U Z)))
(λ X : [C, C, hsC],
nat_trans_id
(BinCoproductObject [C, C, hsC] (CPEndC (U Z) ((θ_target H) (X ⊗ Z)))
:functor C C)).
Proof.
intros X X' α.
rewrite id_left, id_right.
apply (nat_trans_eq hsC); intro c; simpl.
unfold coproduct_nat_trans_data; simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data; simpl.
apply BinCoproductOfArrows_eq; trivial.
unfold functor_fix_snd_arg_mor; simpl.
unfold θ_target_mor; simpl.
revert c; apply nat_trans_eq_pointwise, maponpaths.
apply (nat_trans_eq hsC); intro c; simpl.
now rewrite <- (nat_trans_ax α), functor_id, id_left.
Qed.
Local Definition aux_iso_2_inv (Z : Ptd)
: EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_target H) Z)),
functor_composite (ℓ (U Z) ) (Const_plus_H (U Z)) ⟧.
Proof.
use tpair.
- intro X.
exact (nat_trans_id ((@BinCoproductObject EndC (U Z) (θ_target H (X⊗Z)) (CPEndC _ _) )
: functor C C)).
- exact (aux_iso_2_inv_is_nat_trans Z).
Defined.
Definition θ'_Thm15 (Z: Ptd)
: EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_source H) Z)),
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_target H) Z)) ⟧
:= BinCoproductOfArrows
EndEndC (CPEndEndC _ _) (CPEndEndC _ _)
(identity (constant_functor EndC _ (U Z): functor_precategory EndC EndC hsEndC))
(θ_in_first_arg Z).
Definition ρ_Thm15 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧)
: [C, C, hsC] ⟦ BinCoproductObject [C, C, hsC] (CPEndC (U Z) (H `InitAlg)), `InitAlg ⟧
:= @BinCoproductArrow
EndC _ _ (CPEndC (U Z)
(H (alg_carrier _ InitAlg))) (alg_carrier _ InitAlg) (#U f)
(BinCoproductIn2 _ (CPEndC _ _) · (alg_map _ InitAlg)).
Definition SpecializedGMIt_Thm15 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧)
: ∃! h : [C, C, hsC]
⟦ ℓ (U Z) (pr1 InitAlg),
pr1 InitAlg ⟧,
# (ℓ (U Z)) (alg_map Id_H InitAlg) · h =
pr1 (aux_iso_1 Z · θ'_Thm15 Z · aux_iso_2_inv Z)
(pr1 InitAlg) ·
# (Const_plus_H (U Z)) h · ρ_Thm15 Z f :=
(SpecializedGMIt Z (pr1 InitAlg) (Const_plus_H (U Z))
(ρ_Thm15 Z f) (aux_iso_1 Z · θ'_Thm15 Z · aux_iso_2_inv Z)).
Definition bracket_Thm15 (Z: Ptd)(f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧)
: [C, C, hsC]
⟦ ℓ (U Z) (pr1 InitAlg), pr1 InitAlg ⟧
:= pr1 (pr1 (SpecializedGMIt_Thm15 Z f)).
Notation "⦃ f ⦄" := (bracket_Thm15 _ f) (at level 0).
Lemma bracket_Thm15_ok_part1 (Z : Ptd) (f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧) :
# U f = # (pr1 (ℓ (U Z))) (η InitAlg) · ⦃f⦄.
Proof.
apply (nat_trans_eq hsC); intro c.
assert (h_eq := pr2 (pr1 (SpecializedGMIt_Thm15 Z f))).
assert (h_eq' := maponpaths (λ m,
(((aux_iso_1_inv Z):(_⟹_)) _)· m) h_eq); clear h_eq.
assert (h_eq1' := maponpaths (λ m,
(BinCoproductIn1 EndC (CPEndC _ _))· m) h_eq'); clear h_eq'.
assert (h_eq1'_inst := nat_trans_eq_pointwise h_eq1' c); clear h_eq1'.
eapply pathscomp0, pathscomp0; [|apply (!h_eq1'_inst)|]; clear h_eq1'_inst.
- apply BinCoproductIn1Commutes_right_in_ctx_dir; simpl.
rewrite id_left, <- !assoc.
apply BinCoproductIn1Commutes_right_in_ctx_dir; simpl.
rewrite !id_left, !(@id_left EndC).
now apply BinCoproductIn1Commutes_right_in_ctx_dir,
BinCoproductIn1Commutes_right_in_ctx_dir,
BinCoproductIn1Commutes_right_dir.
- apply BinCoproductIn1Commutes_left_in_ctx_dir; simpl.
now rewrite id_left, assoc.
Qed.
Lemma bracket_Thm15_ok_part2 (Z : Ptd) (f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧) :
(theta H) ((alg_carrier _ InitAlg) ⊗ Z) · # H ⦃f⦄ · τ InitAlg =
# (pr1 (ℓ (U Z))) (τ InitAlg) · ⦃f⦄.
Proof.
apply (nat_trans_eq hsC); intro c.
assert (h_eq := pr2 (pr1 (SpecializedGMIt_Thm15 Z f))).
assert (h_eq' := maponpaths (λ m,
(((aux_iso_1_inv Z):(_⟹_)) _)· m) h_eq); clear h_eq.
assert (h_eq2' := maponpaths (λ m,
(BinCoproductIn2 EndC (CPEndC _ _))· m) h_eq'); clear h_eq'.
assert (h_eq2'_inst := nat_trans_eq_pointwise h_eq2' c); clear h_eq2'.
eapply pathscomp0, pathscomp0; [|apply (!h_eq2'_inst)|]; clear h_eq2'_inst.
- apply BinCoproductIn2Commutes_right_in_ctx_dir; simpl.
rewrite id_right, id_left, <- !assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir; simpl.
rewrite id_left.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
apply BinCoproductIn2Commutes_right_in_double_ctx_dir.
rewrite <- assoc; apply maponpaths.
apply pathsinv0; simpl.
rewrite <- assoc; apply maponpaths.
now apply BinCoproductIn2Commutes.
- apply BinCoproductIn2Commutes_left_in_ctx_dir.
now rewrite id_left; apply assoc.
Qed.
Lemma bracket_Thm15_ok (Z : Ptd) (f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧) :
bracket_property_parts f ⦃f⦄.
Proof.
split.
+ exact (bracket_Thm15_ok_part1 Z f).
+ exact (bracket_Thm15_ok_part2 Z f).
Qed.
Lemma bracket_Thm15_ok_cor (Z : Ptd) (f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧) :
bracket_property f (bracket_Thm15 Z f).
Proof.
now apply whole_from_parts, bracket_Thm15_ok.
Qed.
Local Lemma bracket_unique (Z : Ptd) (f : Ptd ⟦ Z, ptd_from_alg InitAlg ⟧) :
∏ t : ∑ h : [C, C, hsC] ⟦ functor_composite (U Z) (pr1 InitAlg),
pr1 InitAlg ⟧, bracket_property f h,
t = tpair _ ⦃f⦄ (bracket_Thm15_ok_cor Z f).
Proof.
intros [h' h'_eq]; apply subtypeEquality; [intro; apply (isaset_nat_trans hsC)|].
simpl; apply parts_from_whole in h'_eq.
apply path_to_ctr, (nat_trans_eq hsC); intro c.
simpl; rewrite !(@id_left EndC), id_right, <- !assoc.
eapply pathscomp0; [| eapply pathsinv0, postcompWithBinCoproductArrow].
apply BinCoproductArrowUnique.
+ destruct h'_eq as [h'_eq1 _]; simpl.
rewrite id_left, assoc.
eapply pathscomp0; [eapply pathsinv0, (nat_trans_eq_pointwise h'_eq1 c)|].
now apply BinCoproductIn1Commutes_right_in_ctx_dir,
BinCoproductIn1Commutes_right_in_ctx_dir,
BinCoproductIn1Commutes_right_dir.
+ destruct h'_eq as [_ h'_eq2].
rewrite assoc.
eapply pathscomp0; [eapply pathsinv0, (nat_trans_eq_pointwise h'_eq2 c)|].
apply BinCoproductIn2Commutes_right_in_ctx_dir.
apply BinCoproductIn2Commutes_right_in_double_ctx_dir.
simpl; rewrite <- !assoc.
now apply maponpaths, maponpaths, pathsinv0, BinCoproductIn2Commutes.
Qed.
Definition bracket_for_InitAlg : bracket InitAlg.
Proof.
intros Z f.
use tpair.
- use tpair.
+ exact (bracket_Thm15 Z f).
+ exact (bracket_Thm15_ok_cor Z f).
- cbn. apply bracket_unique.
Defined.
Definition InitHSS : hss_precategory CP H.
Proof.
∃ InitAlg.
exact bracket_for_InitAlg.
Defined.
Local Definition Ghat : EndEndC := Const_plus_H (pr1 InitAlg).
Definition constant_nat_trans (C' D : precategory)
(hsD : has_homsets D) (d d' : D) (m : D⟦d,d'⟧)
: [C', D, hsD] ⟦constant_functor C' D d, constant_functor C' D d'⟧.
Proof.
∃ (λ _, m).
abstract (intros ? ? ?; intermediate_path m; [ apply id_left | apply pathsinv0, id_right]).
Defined.
Definition thetahat_0 (Z : Ptd) (f : Z --> ptd_from_alg InitAlg) :
EndEndC
⟦ BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (U Z))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_source H) Z)),
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (pr1 InitAlg))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_target H) Z)) ⟧.
Proof.
exact (BinCoproductOfArrows EndEndC (CPEndEndC _ _) (CPEndEndC _ _)
(constant_nat_trans _ _ hsEndC _ _ (#U f))
(θ_in_first_arg Z)).
Defined.
Local Definition iso1' (Z : Ptd) : EndEndC ⟦ functor_composite Id_H (ℓ (U Z)),
BinCoproductObject _
(CPEndEndC (constant_functor _ _ (U Z)) (functor_fix_snd_arg _ _ _ (θ_source H) Z)) ⟧.
Proof.
exact (aux_iso_1 Z).
Defined.
Local Lemma is_nat_trans_iso2' (Z : Ptd) :
is_nat_trans
(pr1 (BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (pr1 InitAlg))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_target H) Z))))
(functor_composite (ℓ (U Z)) Ghat)
(λ X : [C, C, hsC],
nat_trans_id
(BinCoproductObject [C, C, hsC]
(CPEndC
((constant_functor [C, C, hsC] [C, C, hsC] (pr1 InitAlg)) X)
((θ_target H) (X ⊗ Z)))
:functor C C)).
Proof.
intros X X' α.
rewrite id_left, id_right.
apply (nat_trans_eq hsC); intro c; simpl.
unfold coproduct_nat_trans_data; simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data; simpl.
apply BinCoproductOfArrows_eq; trivial.
unfold functor_fix_snd_arg_mor; simpl.
unfold θ_target_mor; simpl.
revert c; apply nat_trans_eq_pointwise, maponpaths.
apply (nat_trans_eq hsC); intro c; simpl.
rewrite <- (nat_trans_ax α), functor_id.
now apply id_left.
Qed.
Local Definition iso2' (Z : Ptd) : EndEndC ⟦
BinCoproductObject EndEndC
(CPEndEndC (constant_functor [C, C, hsC] [C, C, hsC] (pr1 InitAlg))
(functor_fix_snd_arg [C, C, hsC] Ptd [C, C, hsC] (θ_target H) Z)),
functor_composite (ℓ (U Z)) Ghat ⟧.
Proof.
use tpair.
- intro X.
exact (nat_trans_id ((@BinCoproductObject EndC _ (θ_target H (X⊗Z)) (CPEndC _ _) )
: functor C C)).
- exact (is_nat_trans_iso2' Z).
Defined.
Definition thetahat (Z : Ptd) (f : Z --> ptd_from_alg InitAlg)
: EndEndC ⟦ functor_composite Id_H (ℓ (U Z)),
functor_composite (ℓ (U Z)) (Ghat) ⟧.
Proof.
exact (iso1' Z · thetahat_0 Z f · iso2' Z).
Defined.
Local Notation "C '^op'" := (opp_precat C) (at level 3, format "C ^op").
Let Yon (X : EndC) : functor EndC^op HSET := yoneda_objects EndC hsEndC X.
Definition Phi_fusion (Z : Ptd) (X : EndC) (b : pr1 InitAlg --> X) :
functor_composite (functor_opp (ℓ (U Z))) (Yon (pr1 InitAlg))
⟹
functor_composite (functor_opp (ℓ (U Z))) (Yon X) .
Proof.
use tpair.
- intros Y a.
exact (a · b).
- abstract (intros ? ? ?; simpl; apply funextsec; intro;
unfold yoneda_objects_ob; simpl; unfold compose; simpl;
apply (nat_trans_eq hsC); simpl; intros ?;
apply pathsinv0, assoc).
Defined.
Let IA := colimAlgInitial hsEndC InitialEndC is_omega_cocont_Id_H (Colims_of_shape_nat_graph_EndC _).
Lemma ishssMor_InitAlg (T' : hss CP H) :
@ishssMor C hsC CP H InitHSS T'
(InitialArrow IA (pr1 T') : @algebra_mor EndC Id_H InitAlg T' ).
Proof.
intros Z f.
set (β0 := InitialArrow IA (pr1 T')).
match goal with | [|- _ · ?b = _ ] ⇒ set (β := b) end.
set (rhohat := BinCoproductArrow EndC (CPEndC _ _ ) β (tau_from_alg T')
: pr1 Ghat T' --> T').
set (X:= SpecializedGMIt Z _ Ghat rhohat (thetahat Z f)).
intermediate_path (pr1 (pr1 X)).
- set (TT := @fusion_law EndC hsEndC InitialEndC Colims_of_shape_nat_graph_EndC
Id_H is_omega_cocont_Id_H _ hsEndC (pr1 (InitAlg)) T').
set (Psi := ψ_from_comps (Id_H) hsEndC _ (ℓ (U Z)) (Const_plus_H (U Z)) (ρ_Thm15 Z f)
(aux_iso_1 Z · θ'_Thm15 Z · aux_iso_2_inv Z) ).
set (T2 := TT _ (HU Z) (isInitial_pre_comp Z) Psi).
set (T3 := T2 (ℓ (U Z)) (HU Z)).
set (Psi' := ψ_from_comps (Id_H) hsEndC _ (ℓ (U Z)) (Ghat) (rhohat)
(iso1' Z · thetahat_0 Z f · iso2' Z) ).
set (T4 := T3 (isInitial_pre_comp Z) Psi').
set (Φ := (Phi_fusion Z T' β)).
set (T5 := T4 Φ).
intermediate_path (Φ _ (fbracket InitHSS f)); trivial.
eapply pathscomp0; [|apply T5]; clear TT T2 T3 T4 T5 X.
× now apply cancel_postcomposition.
×
apply funextsec; intro t.
apply (nat_trans_eq hsC); intro c; simpl.
rewrite !id_right.
apply BinCoproductArrow_eq_cor.
+
rewrite <- !assoc.
apply BinCoproductIn1Commutes_left_in_ctx_dir, BinCoproductIn1Commutes_right_in_ctx_dir.
simpl; rewrite id_left.
apply BinCoproductIn1Commutes_left_in_ctx_dir, BinCoproductIn1Commutes_right_in_ctx_dir.
simpl; rewrite id_left.
apply BinCoproductIn1Commutes_left_in_ctx_dir.
simpl; rewrite id_left.
apply BinCoproductIn1Commutes_left_in_ctx_dir.
rewrite <- assoc.
apply maponpaths, BinCoproductIn1Commutes_right_in_ctx_dir.
simpl; rewrite id_left.
now apply BinCoproductIn1Commutes_right_dir.
+
rewrite <- !assoc.
apply BinCoproductIn2Commutes_left_in_ctx_dir, BinCoproductIn2Commutes_right_in_ctx_dir.
simpl; rewrite id_left.
apply BinCoproductIn2Commutes_left_in_ctx_dir, BinCoproductIn2Commutes_right_in_ctx_dir.
simpl; rewrite <- !assoc.
apply maponpaths, BinCoproductIn2Commutes_left_in_ctx_dir, BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
rewrite <- !assoc.
eapply pathscomp0;
[| eapply pathsinv0, cancel_postcomposition,
(nat_trans_eq_pointwise (functor_comp H t β) c)].
simpl; rewrite <- assoc.
apply maponpaths, BinCoproductIn2Commutes_left_in_ctx_dir.
assert (Hyp_c := nat_trans_eq_pointwise (τ_part_of_alg_mor _ hsC CP _ _ _ (InitialArrow IA (pr1 T'))) c).
simpl in Hyp_c.
eapply pathscomp0; [eapply pathsinv0, Hyp_c|].
now apply maponpaths, pathsinv0, BinCoproductIn2Commutes.
- apply pathsinv0, path_to_ctr.
apply (nat_trans_eq hsC); intro c.
simpl; rewrite id_right.
apply BinCoproductArrow_eq_cor.
+ rewrite <- !assoc.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
simpl; rewrite id_left.
apply BinCoproductIn1Commutes_right_in_ctx_dir.
simpl; rewrite <- assoc.
eapply pathscomp0;
[| apply maponpaths, BinCoproductIn1Commutes_right_in_ctx_dir; simpl;
rewrite id_left; apply BinCoproductIn1Commutes_right_dir, idpath].
rewrite !assoc.
assert (fbracket_η_inst_c := nat_trans_eq_pointwise (fbracket_η T' (f· ptd_from_alg_mor _ hsC CP H β0)) c).
eapply pathscomp0; [| apply (!fbracket_η_inst_c)].
apply cancel_postcomposition, (ptd_mor_commutes _ (ptd_from_alg_mor _ hsC CP H β0) ((pr1 Z) c)).
+
repeat rewrite <- assoc.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
simpl.
unfold coproduct_nat_trans_in1_data, coproduct_nat_trans_in2_data, coproduct_nat_trans_data.
rewrite id_left.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
unfold nat_trans_fix_snd_arg_data.
simpl.
unfold coproduct_nat_trans_in2_data.
repeat rewrite <- assoc.
eapply pathscomp0.
2: { apply maponpaths.
apply BinCoproductIn2Commutes_right_in_ctx_dir.
rewrite <- assoc.
apply maponpaths.
apply BinCoproductIn2Commutes_right_dir.
apply idpath.
}
do 2 rewrite assoc.
eapply pathscomp0.
apply cancel_postcomposition.
eapply pathsinv0.
assert (τ_part_of_alg_mor_inst := τ_part_of_alg_mor _ hsC CP H _ _ β0).
assert (τ_part_of_alg_mor_inst_Zc :=
nat_trans_eq_pointwise τ_part_of_alg_mor_inst ((pr1 Z) c));
clear τ_part_of_alg_mor_inst.
apply τ_part_of_alg_mor_inst_Zc.
simpl.
unfold coproduct_nat_trans_in2_data.
repeat rewrite <- assoc.
eapply pathscomp0.
apply maponpaths.
rewrite assoc.
eapply pathsinv0.
assert (fbracket_τ_inst := fbracket_τ T' (f· ptd_from_alg_mor _ hsC CP H β0)).
assert (fbracket_τ_inst_c := nat_trans_eq_pointwise fbracket_τ_inst c); clear fbracket_τ_inst.
apply fbracket_τ_inst_c.
simpl.
unfold coproduct_nat_trans_in2_data.
repeat rewrite assoc.
apply cancel_postcomposition.
apply cancel_postcomposition.
assert (Hyp:
((# (pr1 (ℓ(U Z))) (# H β))·
(theta H) ((alg_carrier _ T') ⊗ Z)·
# H (fbracket T' (f· ptd_from_alg_mor C hsC CP H β0))
=
θ (tpair (λ _ : functor C C, ptd_obj C) (alg_carrier _ (InitialObject IA)) Z) ·
# H (# (pr1 (ℓ(U Z))) β ·
fbracket T' (f· ptd_from_alg_mor C hsC CP H β0)))).
2: { assert (Hyp_c := nat_trans_eq_pointwise Hyp c); clear Hyp.
exact Hyp_c. }
clear c. clear X. clear rhohat.
rewrite (functor_comp H).
rewrite assoc.
apply cancel_postcomposition.
apply (nat_trans_eq hsC); intro c.
assert (θ_nat_1_pointwise_inst := θ_nat_1_pointwise _ hsC _ hsC H θ _ _ β Z c).
eapply pathscomp0 ; [exact θ_nat_1_pointwise_inst | ].
clear θ_nat_1_pointwise_inst.
simpl.
apply maponpaths.
assert (Hyp: # H (β ∙∙ nat_trans_id (pr1 Z)) = # H (# (pr1 (ℓ(U Z))) β)).
{ apply maponpaths, (nat_trans_eq hsC); intro c'; simpl.
now rewrite functor_id, id_right. }
now apply (nat_trans_eq_pointwise Hyp c).
Qed.
Definition hss_InitMor : ∏ T' : hss CP H, hssMor InitHSS T'.
Proof.
intro T'.
∃ (InitialArrow IA (pr1 T')).
apply ishssMor_InitAlg.
Defined.
Lemma hss_InitMor_unique (T' : hss_precategory CP H):
∏ t : hss_precategory CP H ⟦ InitHSS, T' ⟧, t = hss_InitMor T'.
Proof.
intro t.
apply (invmap (hssMor_eq1 _ _ _ _ _ _ _ _ )).
apply (@InitialArrowUnique _ IA (pr1 T') (pr1 t)).
Qed.
Lemma isInitial_InitHSS : isInitial (hss_precategory CP H) InitHSS.
Proof.
use mk_isInitial; intro T.
∃ (hss_InitMor T).
apply hss_InitMor_unique.
Defined.
Lemma InitialHSS : Initial (hss_precategory CP H).
Proof.
apply (mk_Initial InitHSS), isInitial_InitHSS.
Defined.
End category_Algebra.