Library UniMath.CategoryTheory.limits.graphs.colimits


*************************************************
Contents:
  • Definitions of graphs and diagrams
  • Formalization of colimits on this basis
  • Rules for pre- and post-composition
  • Proof that colimits form a property in a (saturated/univalent) category (isaprop_Colims)
  • Pointwise construction of colimits in functor precategories (ColimsFunctorCategory)
Written by Benedikt Ahrens and Anders Mörtberg, 2015-2016

Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.

Require Import UniMath.MoreFoundations.Tactics.

Require Import UniMath.CategoryTheory.total2_paths.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.Adjunctions.

Local Open Scope cat.

Section move_upstream.

Lemma uniqueExists (A : UU) (P : A UU)
  (Hexists : iscontr (total2 (λ a, P a)))
  (a b : A) (Ha : P a) (Hb : P b) : a = b.
Proof.
assert (H : tpair _ _ Ha = tpair _ _ Hb).
  now apply proofirrelevance, isapropifcontr.
exact (base_paths _ _ H).
Defined.

End move_upstream.

Definition of graphs and diagrams
Section diagram_def.

Definition graph := (D : UU), D D UU.

Definition vertex : graph UU := pr1.
Definition edge {g : graph} : vertex g vertex g UU := pr2 g.

Definition mk_graph (D : UU) (e : D D UU) : graph := tpair _ D e.

Definition diagram (g : graph) (C : precategory) : UU :=
   (f : vertex g C), (a b : vertex g), edge a b Cf a, f b.

Definition dob {g : graph} {C : precategory} (d : diagram g C) : vertex g C :=
  pr1 d.

Definition dmor {g : graph} {C : precategory} (d : diagram g C) :
   {a b}, edge a b Cdob d a,dob d b := pr2 d.

Section diagram_from_functor.

Variables (J C : precategory).
Variable (F : functor J C).

Definition graph_from_precategory : graph := pr1 (pr1 J).

Definition diagram_from_functor : diagram graph_from_precategory C :=
  tpair _ _ (pr2 (pr1 F)).

End diagram_from_functor.

End diagram_def.

Coercion graph_from_precategory : precategory >-> graph.

Definition of colimits

Section colim_def.

Context {C : precategory} (hsC : has_homsets C).

A cocone with tip c over a diagram d
Definition cocone {g : graph} (d : diagram g C) (c : C) : UU :=
   (f : (v : vertex g), Cdob d v,c),
     (u v : vertex g) (e : edge u v), dmor d e · f v = f u.

Definition mk_cocone {g : graph} {d : diagram g C} {c : C}
  (f : v, Cdob d v,c) (Hf : u v e, dmor d e · f v = f u) :
  cocone d c := tpair _ f Hf.

The injections to c in the cocone
Definition coconeIn {g : graph} {d : diagram g C} {c : C} (cc : cocone d c) :
   v, Cdob d v,c := pr1 cc.

Lemma coconeInCommutes {g : graph} {d : diagram g C} {c : C} (cc : cocone d c) :
   u v (e : edge u v), dmor d e · coconeIn cc v = coconeIn cc u.
Proof.
exact (pr2 cc).
Qed.

cc0 is a colimit cocone if for any other cocone cc over the same diagram there is a unique morphism from the tip of cc0 to the tip of cc
Definition isColimCocone {g : graph} (d : diagram g C) (c0 : C)
  (cc0 : cocone d c0) : UU := (c : C) (cc : cocone d c),
    iscontr ( x : Cc0,c, v, coconeIn cc0 v · x = coconeIn cc v).


Definition ColimCocone {g : graph} (d : diagram g C) : UU :=
   (A : ( c0 : C, cocone d c0)), isColimCocone d (pr1 A) (pr2 A).

Definition mk_ColimCocone {g : graph} (d : diagram g C)
  (c : C) (cc : cocone d c) (isCC : isColimCocone d c cc) : ColimCocone d :=
    tpair _ (tpair _ c cc) isCC.

colim is the tip of the colim cocone
Definition colim {g : graph} {d : diagram g C} (CC : ColimCocone d) : C :=
  pr1 (pr1 CC).

Definition colimCocone {g : graph} {d : diagram g C} (CC : ColimCocone d) :
  cocone d (colim CC) := pr2 (pr1 CC).

Definition isColimCocone_from_ColimCocone {g : graph} {d : diagram g C} (CC : ColimCocone d) :
  isColimCocone d (colim CC) _ := pr2 CC.

Definition colimIn {g : graph} {d : diagram g C} (CC : ColimCocone d) :
   (v : vertex g), Cdob d v,colim CC := coconeIn (colimCocone CC).

Lemma colimInCommutes {g : graph} {d : diagram g C}
  (CC : ColimCocone d) : (u v : vertex g) (e : edge u v),
   dmor d e · colimIn CC v = colimIn CC u.
Proof.
exact (coconeInCommutes (colimCocone CC)).
Qed.

Lemma colimUnivProp {g : graph} {d : diagram g C}
  (CC : ColimCocone d) : (c : C) (cc : cocone d c),
  iscontr ( x : Ccolim CC,c, (v : vertex g), colimIn CC v · x = coconeIn cc v).
Proof.
exact (pr2 CC).
Qed.

Lemma isaprop_isColimCocone {g : graph} (d : diagram g C) (c0 : C)
  (cc0 : cocone d c0) : isaprop (isColimCocone d c0 cc0).
Proof.
repeat (apply impred; intro).
apply isapropiscontr.
Qed.

Definition isColimCocone_ColimCocone {g : graph} {d : diagram g C}
  (CC : ColimCocone d) :
  isColimCocone d (colim CC) (tpair _ (colimIn CC) (colimInCommutes CC)) := pr2 CC.

Definition colimArrow {g : graph} {d : diagram g C} (CC : ColimCocone d)
  (c : C) (cc : cocone d c) : Ccolim CC,c := pr1 (pr1 (isColimCocone_ColimCocone CC c cc)).

Lemma colimArrowCommutes {g : graph} {d : diagram g C} (CC : ColimCocone d)
  (c : C) (cc : cocone d c) (u : vertex g) :
  colimIn CC u · colimArrow CC c cc = coconeIn cc u.
Proof.
exact ((pr2 (pr1 (isColimCocone_ColimCocone CC _ cc))) u).
Qed.

Lemma colimArrowUnique {g : graph} {d : diagram g C} (CC : ColimCocone d)
  (c : C) (cc : cocone d c) (k : Ccolim CC,c)
  (Hk : (u : vertex g), colimIn CC u · k = coconeIn cc u) :
  k = colimArrow CC c cc.
Proof.
now apply path_to_ctr, Hk.
Qed.

Lemma Cocone_postcompose {g : graph} {d : diagram g C}
  {c : C} (cc : cocone d c) (x : C) (f : Cc,x) :
     u v (e : edge u v), dmor d e · (coconeIn cc v · f) = coconeIn cc u · f.
Proof.
now intros u v e; rewrite assoc, coconeInCommutes.
Qed.

Lemma colimArrowEta {g : graph} {d : diagram g C} (CC : ColimCocone d)
  (c : C) (f : Ccolim CC,c) :
  f = colimArrow CC c (tpair _ (λ u, colimIn CC u · f)
                 (Cocone_postcompose (colimCocone CC) c f)).
Proof.
now apply colimArrowUnique.
Qed.

Definition colimOfArrows {g : graph} {d1 d2 : diagram g C}
  (CC1 : ColimCocone d1) (CC2 : ColimCocone d2)
  (f : (u : vertex g), Cdob d1 u,dob d2 u)
  (fNat : u v (e : edge u v), dmor d1 e · f v = f u · dmor d2 e) :
  Ccolim CC1,colim CC2.
Proof.
apply colimArrow; use mk_cocone.
- now intro u; apply (f u · colimIn CC2 u).
- abstract (intros u v e; simpl;
            now rewrite assoc, fNat, <- assoc, colimInCommutes).
Defined.

Lemma colimOfArrowsIn {g : graph} (d1 d2 : diagram g C)
  (CC1 : ColimCocone d1) (CC2 : ColimCocone d2)
  (f : (u : vertex g), Cdob d1 u,dob d2 u)
  (fNat : u v (e : edge u v), dmor d1 e · f v = f u · dmor d2 e) :
     u, colimIn CC1 u · colimOfArrows CC1 CC2 f fNat =
         f u · colimIn CC2 u.
Proof.
now unfold colimOfArrows; intro u; rewrite colimArrowCommutes.
Qed.

Lemma preCompWithColimOfArrows_subproof {g : graph} {d1 d2 : diagram g C}
  (CC1 : ColimCocone d1) (CC2 : ColimCocone d2)
  (f : (u : vertex g), Cdob d1 u,dob d2 u)
  (fNat : u v (e : edge u v), dmor d1 e · f v = f u · dmor d2 e)
  (x : C) (cc : cocone d2 x) u v (e : edge u v) :
     dmor d1 e · (f v · coconeIn cc v) = f u · coconeIn cc u.
Proof.
  now rewrite <- (coconeInCommutes cc u v e), !assoc, fNat.
Qed.

Lemma precompWithColimOfArrows {g : graph} (d1 d2 : diagram g C)
  (CC1 : ColimCocone d1) (CC2 : ColimCocone d2)
  (f : (u : vertex g), Cdob d1 u,dob d2 u)
  (fNat : u v (e : edge u v), dmor d1 e · f v = f u · dmor d2 e)
  (x : C) (cc : cocone d2 x) :
  colimOfArrows CC1 CC2 f fNat · colimArrow CC2 x cc =
  colimArrow CC1 x (mk_cocone (λ u, f u · coconeIn cc u)
     (preCompWithColimOfArrows_subproof CC1 CC2 f fNat x cc)).
Proof.
apply colimArrowUnique.
now intro u; rewrite assoc, colimOfArrowsIn, <- assoc, colimArrowCommutes.
Qed.

Lemma postcompWithColimArrow {g : graph} (D : diagram g C)
 (CC : ColimCocone D) (c : C) (cc : cocone D c) (d : C) (k : Cc,d) :
   colimArrow CC c cc · k =
   colimArrow CC d (mk_cocone (λ u, coconeIn cc u · k)
              (Cocone_postcompose cc d k)).
Proof.
apply colimArrowUnique.
now intro u; rewrite assoc, colimArrowCommutes.
Qed.

Lemma colim_endo_is_identity {g : graph} (D : diagram g C)
  (CC : ColimCocone D) (k : colim CC --> colim CC)
  (H : u, colimIn CC u · k = colimIn CC u) :
  identity _ = k.
Proof.
use (uniqueExists _ _ (colimUnivProp CC _ _)).
- now apply (colimCocone CC).
- intros v; simpl.
  now apply id_right.
- simpl; now apply H.
Qed.

Definition Cocone_by_postcompose {g : graph} (D : diagram g C)
 (c : C) (cc : cocone D c) (d : C) (k : Cc,d) : cocone D d.
Proof.
now (λ u, coconeIn cc u · k); apply Cocone_postcompose.
Defined.

Lemma isColim_weq_subproof1 {g : graph} (D : diagram g C)
  (c : C) (cc : cocone D c) (d : C) (k : Cc,d) :
   u, coconeIn cc u · k = pr1 (Cocone_by_postcompose D c cc d k) u.
Proof.
now intro u.
Qed.

Lemma isColim_weq_subproof2 (g : graph) (D : diagram g C)
  (c : C) (cc : cocone D c) (H : d, isweq (Cocone_by_postcompose D c cc d))
  (d : C) (cd : cocone D d) (u : vertex g) :
    coconeIn cc u · invmap (weqpair _ (H d)) cd = coconeIn cd u.
Proof.
rewrite (isColim_weq_subproof1 D c cc d (invmap (weqpair _ (H d)) _) u).
set (p := homotweqinvweq (weqpair _ (H d)) cd); simpl in p.
now rewrite p.
Qed.

Lemma isColim_weq {g : graph} (D : diagram g C) (c : C) (cc : cocone D c) :
  isColimCocone D c cc d, isweq (Cocone_by_postcompose D c cc d).
Proof.
split.
- intros H d.
  use isweq_iso.
  + intros k.
    exact (colimArrow (mk_ColimCocone D c cc H) _ k).
  + abstract (intro k; simpl;
              now apply pathsinv0, (colimArrowEta (mk_ColimCocone D c cc H))).
  + abstract (simpl; intro k;
              apply subtypeEquality;
                [ intro; now repeat (apply impred; intro); apply hsC
                | destruct k as [k Hk]; simpl; apply funextsec; intro u;
                  now apply (colimArrowCommutes (mk_ColimCocone D c cc H))]).
- intros H d cd.
  use tpair.
  + (invmap (weqpair _ (H d)) cd).
    abstract (intro u; now apply isColim_weq_subproof2).
  + abstract (intro t; apply subtypeEquality;
                [ intro; now apply impred; intro; apply hsC
                | destruct t as [t Ht]; simpl;
                  apply (invmaponpathsweq (weqpair _ (H d))); simpl;
                  apply subtypeEquality;
                    [ intro; now repeat (apply impred; intro); apply hsC
                    | simpl; apply pathsinv0, funextsec; intro u; rewrite Ht;
                      now apply isColim_weq_subproof2]]).
Defined.

Lemma isColim_is_iso {g : graph} (D : diagram g C) (CC : ColimCocone D) (d : C) (cd : cocone D d) :
  isColimCocone D d cd is_iso (colimArrow CC d cd).
Proof.
intro H.
apply is_iso_from_is_z_iso.
set (CD := mk_ColimCocone D d cd H).
apply (tpair _ (colimArrow (mk_ColimCocone D d cd H) (colim CC) (colimCocone CC))).
abstract (split;
    [ apply pathsinv0, colim_endo_is_identity; simpl; intro u;
      rewrite assoc;
      eapply pathscomp0; [eapply cancel_postcomposition; apply colimArrowCommutes|];
      apply (colimArrowCommutes CD) |
      apply pathsinv0, (colim_endo_is_identity _ CD); simpl; intro u;
      rewrite assoc;
      eapply pathscomp0; [eapply cancel_postcomposition; apply (colimArrowCommutes CD)|];
      apply colimArrowCommutes ]).
Defined.

Lemma inv_isColim_is_iso {g : graph} (D : diagram g C) (CC : ColimCocone D) (d : C)
  (cd : cocone D d) (H : isColimCocone D d cd) :
  inv_from_iso (isopair _ (isColim_is_iso D CC d cd H)) =
  colimArrow (mk_ColimCocone D d cd H) _ (colimCocone CC).
Proof.
cbn. unfold precomp_with.
apply id_right.
Qed.

Lemma is_iso_isColim {g : graph} (D : diagram g C) (CC : ColimCocone D) (d : C) (cd : cocone D d) :
  is_iso (colimArrow CC d cd) isColimCocone D d cd.
Proof.
intro H.
set (iinv := z_iso_inv_from_is_z_iso _ (is_z_iso_from_is_iso _ H)).
intros x cx.
use tpair.
- use tpair.
  + exact (iinv · colimArrow CC x cx).
  + simpl; intro u.
    rewrite <- (colimArrowCommutes CC x cx u), assoc.
    apply cancel_postcomposition, pathsinv0, z_iso_inv_on_left, pathsinv0, colimArrowCommutes.
- intros p; destruct p as [f Hf].
  apply subtypeEquality.
  + intro a; apply impred; intro u; apply hsC.
  + simpl; apply pathsinv0, z_iso_inv_on_right; simpl.
    apply pathsinv0, colimArrowUnique; intro u.
    now rewrite <- (Hf u), assoc, colimArrowCommutes.
Defined.

Definition iso_from_colim_to_colim {g : graph} {d : diagram g C}
  (CC CC' : ColimCocone d) : iso (colim CC) (colim CC').
Proof.
use isopair.
- apply colimArrow, colimCocone.
- use is_iso_qinv.
  + apply colimArrow, colimCocone.
  + abstract (now split; apply pathsinv0, colim_endo_is_identity; intro u;
              rewrite assoc, colimArrowCommutes; eapply pathscomp0; try apply colimArrowCommutes).
Defined.

End colim_def.

Section Colims.

Definition Colims (C : precategory) : UU := (g : graph) (d : diagram g C), ColimCocone d.
Definition hasColims (C : precategory) : UU :=
   (g : graph) (d : diagram g C), ColimCocone d .

Colimits of a specific shape
Definition Colims_of_shape (g : graph) (C : precategory) : UU :=
   (d : diagram g C), ColimCocone d.

If C is a univalent_category then Colims is a prop
Section Universal_Unique.

Variables (C : univalent_category).

Let H : is_univalent C := pr2 C.

Lemma isaprop_Colims: isaprop (Colims C).
Proof.
apply impred; intro g; apply impred; intro cc.
apply invproofirrelevance; intros Hccx Hccy.
apply subtypeEquality.
- intro; apply isaprop_isColimCocone.
- apply (total2_paths_f (isotoid _ H (iso_from_colim_to_colim Hccx Hccy))).
  set (B c := v, Cdob cc v,c).
  set (C' (c : C) f := u v (e : edge u v), @compose _ _ _ c (dmor cc e) (f v) = f u).
  rewrite (@transportf_total2 _ B C').
  apply subtypeEquality.
  + intro; repeat (apply impred; intro); apply univalent_category_has_homsets.
  + simpl; eapply pathscomp0; [apply transportf_isotoid_dep''|].
    apply funextsec; intro v.
    now rewrite idtoiso_isotoid; apply colimArrowCommutes.
Qed.

End Universal_Unique.
End Colims.

Defines colimits in functor categories when the target has colimits

Section ColimFunctor.

Context {A C : precategory} (hsC : has_homsets C) {g : graph} (D : diagram g [A, C, hsC]).

Definition diagram_pointwise (a : A) : diagram g C.
Proof.
(λ v, pr1 (dob D v) a); intros u v e.
now apply (pr1 (dmor D e) a).
Defined.

Variable (HCg : (a : A), ColimCocone (diagram_pointwise a)).

Definition ColimFunctor_ob (a : A) : C := colim (HCg a).

Definition ColimFunctor_mor (a a' : A) (f : Aa, a') :
  CColimFunctor_ob a,ColimFunctor_ob a'.
Proof.
use colimOfArrows.
- now intro u; apply (# (pr1 (dob D u)) f).
- abstract (now intros u v e; simpl; apply pathsinv0, (nat_trans_ax (dmor D e))).
Defined.

Definition ColimFunctor_data : functor_data A C := tpair _ _ ColimFunctor_mor.

Lemma is_functor_ColimFunctor_data : is_functor ColimFunctor_data.
Proof.
split.
- intro a; simpl.
  apply pathsinv0, colim_endo_is_identity; intro u.
  unfold ColimFunctor_mor.
  now rewrite colimOfArrowsIn, (functor_id (dob D u)), id_left.
- intros a b c fab fbc; simpl; unfold ColimFunctor_mor.
  apply pathsinv0.
  eapply pathscomp0; [now apply precompWithColimOfArrows|].
  apply pathsinv0, colimArrowUnique; intro u.
  rewrite colimOfArrowsIn.
  rewrite (functor_comp (dob D u)).
  now apply pathsinv0, assoc.
Qed.

Definition ColimFunctor : functor A C := tpair _ _ is_functor_ColimFunctor_data.

Definition colim_nat_trans_in_data v : [A, C, hsC] dob D v, ColimFunctor .
Proof.
use tpair.
- intro a; exact (colimIn (HCg a) v).
- abstract (intros a a' f;
            now apply pathsinv0, (colimOfArrowsIn _ _ (HCg a) (HCg a'))).
Defined.

Definition cocone_pointwise (F : [A,C,hsC]) (cc : cocone D F) a :
  cocone (diagram_pointwise a) (pr1 F a).
Proof.
use mk_cocone.
- now intro v; apply (pr1 (coconeIn cc v) a).
- abstract (intros u v e;
    now apply (nat_trans_eq_pointwise (coconeInCommutes cc u v e))).
Defined.

Lemma ColimFunctor_unique (F : [A, C, hsC]) (cc : cocone D F) :
  iscontr ( x : [A, C, hsC] ColimFunctor, F ,
             v : vertex g, colim_nat_trans_in_data v · x = coconeIn cc v).
Proof.
use tpair.
- use tpair.
  + apply (tpair _ (λ a, colimArrow (HCg a) _ (cocone_pointwise F cc a))).
    abstract (intros a a' f; simpl;
              eapply pathscomp0;
                [ now apply precompWithColimOfArrows
                | apply pathsinv0; eapply pathscomp0;
                  [ now apply postcompWithColimArrow
                  | apply colimArrowUnique; intro u;
                    eapply pathscomp0;
                      [ now apply colimArrowCommutes
                      | apply pathsinv0; now use nat_trans_ax ]]]).
  + abstract (intro u; apply (nat_trans_eq hsC); simpl; intro a;
              now apply (colimArrowCommutes (HCg a))).
- abstract (intro t; destruct t as [t1 t2];
            apply subtypeEquality; simpl;
              [ intro; apply impred; intro u; apply functor_category_has_homsets
              | apply (nat_trans_eq hsC); simpl; intro a;
                apply colimArrowUnique; intro u;
                now apply (nat_trans_eq_pointwise (t2 u))]).
Defined.

Lemma ColimFunctorCocone : ColimCocone D.
Proof.
use mk_ColimCocone.
- exact ColimFunctor.
- use mk_cocone.
  + now apply colim_nat_trans_in_data.
  + abstract (now intros u v e; apply (nat_trans_eq hsC);
                  intro a; apply (colimInCommutes (HCg a))).
- now intros F cc; simpl; apply (ColimFunctor_unique _ cc).
Defined.

Definition isColimFunctor_is_pointwise_Colim
  (X : [A,C,hsC]) (R : cocone D X) (H : isColimCocone D X R)
  : a, isColimCocone (diagram_pointwise a) _ (cocone_pointwise X R a).
Proof.
  intro a.
  apply (is_iso_isColim hsC _ (HCg a)).
  set (XR := isColim_is_iso D ColimFunctorCocone X R H).
  apply (is_functor_iso_pointwise_if_iso _ _ _ _ _ _ XR).
Defined.

End ColimFunctor.

Lemma ColimsFunctorCategory (A C : precategory) (hsC : has_homsets C)
  (HC : Colims C) : Colims [A,C,hsC].
Proof.
now intros g d; apply ColimFunctorCocone.
Defined.

Lemma ColimsFunctorCategory_of_shape (g : graph) (A C : precategory) (hsC : has_homsets C)
  (HC : Colims_of_shape g C) : Colims_of_shape g [A,C,hsC].
Proof.
now intros d; apply ColimFunctorCocone.
Defined.

Lemma pointwise_Colim_is_isColimFunctor
  {A C : precategory} (hsC: has_homsets C) {g : graph}
  (d : diagram g [A,C,hsC]) (G : [A,C,hsC]) (ccG : cocone d G)
  (H : a, isColimCocone _ _ (cocone_pointwise hsC d G ccG a)) :
  isColimCocone d G ccG.
Proof.
set (CC a := mk_ColimCocone _ _ _ (H a)).
set (D' := ColimFunctorCocone _ _ CC).
use is_iso_isColim.
- apply functor_category_has_homsets.
- apply D'.
- use is_iso_qinv.
  + use tpair.
    × intros a; apply identity.
    × abstract (intros a b f; rewrite id_left, id_right; simpl;
                apply (colimArrowUnique (CC a)); intro u; cbn;
                now rewrite <- (nat_trans_ax (coconeIn ccG u))).
  + abstract (split;
    [ apply (nat_trans_eq hsC); intros x; simpl; rewrite id_right;
      apply pathsinv0, colimArrowUnique; intros v;
      now rewrite id_right
    | apply (nat_trans_eq hsC); intros x; simpl; rewrite id_left;
      apply pathsinv0, (colimArrowUnique (CC x)); intro u;
      now rewrite id_right]).
Defined.

Section map.

Context {C D : precategory} (F : functor C D).

Definition mapdiagram {g : graph} (d : diagram g C) : diagram g D.
Proof.
use tpair.
- intros n; apply (F (dob d n)).
- simpl; intros m n e.
  apply (# F (dmor d e)).
Defined.

Definition mapcocone {g : graph} (d : diagram g C) {x : C}
  (dx : cocone d x) : cocone (mapdiagram d) (F x).
Proof.
use mk_cocone.
- simpl; intro n.
  exact (#F (coconeIn dx n)).
- abstract (intros u v e; simpl; rewrite <- functor_comp;
            apply maponpaths, (coconeInCommutes dx _ _ e)).
Defined.

Definition preserves_colimit {g : graph} (d : diagram g C) (L : C)
  (cc : cocone d L) : UU :=
  isColimCocone d L cc isColimCocone (mapdiagram d) (F L) (mapcocone d cc).

Left adjoints preserve colimits

Lemma left_adjoint_preserves_colimit (HF : is_left_adjoint F) (hsC : has_homsets C) (hsD : has_homsets D)
      {g : graph} (d : diagram g C) (L : C) (ccL : cocone d L) : preserves_colimit d L ccL.
Proof.
intros HccL M ccM.
set (G := right_adjoint HF).
set (H := pr2 HF : are_adjoints F G).
apply (@iscontrweqb _ ( y : C L, G M ,
     i, coconeIn ccL i · y = φ_adj H (coconeIn ccM i))).
- eapply (weqcomp (Y := y : C L, G M ,
     i, # F (coconeIn ccL i) · φ_adj_inv H y = coconeIn ccM i)).
  + apply (weqbandf (adjunction_hom_weq H L M)); simpl; intro f.
    abstract (apply weqiff; try (apply impred; intro; apply hsD);
    now rewrite φ_adj_inv_after_φ_adj).
  + eapply (weqcomp (Y := y : C L, G M ,
       i, φ_adj_inv H (coconeIn ccL i · y) = coconeIn ccM i)).
    × apply weqfibtototal; simpl; intro f.
    abstract (apply weqiff; try (apply impred; intro; apply hsD); split;
      [ intros HH i; rewrite φ_adj_inv_natural_precomp; apply HH
      | intros HH i; rewrite <- φ_adj_inv_natural_precomp; apply HH ]).
    × apply weqfibtototal; simpl; intro f.
    abstract (apply weqiff; [ | apply impred; intro; apply hsD | apply impred; intro; apply hsC ];
      split; intros HH i;
        [ now rewrite <- (HH i), φ_adj_after_φ_adj_inv
        | now rewrite (HH i), φ_adj_inv_after_φ_adj ]).
- transparent assert (X : (cocone d (G M))).
  { use mk_cocone.
    + intro v; apply (φ_adj H (coconeIn ccM v)).
    + abstract (intros m n e; simpl;
                rewrite <- (coconeInCommutes ccM m n e); simpl;
                now rewrite φ_adj_natural_precomp).
  }
  apply (HccL (G M) X).
Defined.

End map.

Section mapcocone_functor_composite.

Context {A B C : precategory} (hsC : has_homsets C)
        (F : functor A B) (G : functor B C).

Lemma mapcocone_functor_composite {g : graph} {D : diagram g A} {a : A} (cc : cocone D a) :
  mapcocone (functor_composite F G) _ cc = mapcocone G _ (mapcocone F _ cc).
Proof.
  apply subtypeEquality.
  - intros x. repeat (apply impred_isaprop; intro). apply hsC.
  - reflexivity.
Qed.

End mapcocone_functor_composite.