Library UniMath.SubstitutionSystems.MonadicSubstitution_alt
Set Kernel Term Sharing.
Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.yoneda.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.MonadsFromSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.LiftingInitial_alt.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Local Open Scope cat.
Section MainResult.
Context (C : category) (CP : BinCoproducts C).
Context (IC : Initial C) (CC : Colims_of_shape nat_graph C).
Local Notation "'EndC'":= ([C, C]) .
Local Notation "'Ptd'" := (category_Ptd C).
Let CPEndC : BinCoproducts EndC := BinCoproducts_functor_precat _ _ CP.
Let EndEndC := [EndC, EndC].
Let CPEndEndC:= BinCoproducts_functor_precat _ _ CPEndC: BinCoproducts EndEndC.
Let InitialEndC : Initial EndC.
Proof.
apply Initial_functor_precat, IC.
Defined.
Let Colims_of_shape_nat_graph_EndC : Colims_of_shape nat_graph EndC.
Proof.
apply ColimsFunctorCategory_of_shape, CC.
Defined.
Context (H : functor [C, C] [C, C])
(θ : StrengthForSignature H)
(HH : is_omega_cocont H).
Let Const_plus_H (X : EndC) : functor EndC EndC
:= BinCoproduct_of_functors _ _ CPEndC (constant_functor _ _ X) H.
Let Id_H : functor [C, C] [C, C]
:= Const_plus_H (functor_identity _ : EndC).
Definition TermHSS : hss_category CP (Presignature_Signature (H,,θ)) :=
InitHSS C CP IC CC (Presignature_Signature (H,,θ)) HH.
Definition TermHetSubst: heterogeneous_substitution C CP H
:= hetsubst_from_hss C CP (Presignature_Signature (H,,θ)) TermHSS.
Definition Terms: [C, C] := pr1 (pr1 TermHSS).
Definition TermAlgebra: FunctorAlg Id_H:= pr1 TermHSS.
Goal TermAlgebra = InitAlg C CP IC CC H HH.
Proof.
apply idpath.
Qed.
Definition isInitialTermAlgebra: isInitial (FunctorAlg Id_H) TermAlgebra.
Proof.
set (aux := colimAlgInitial InitialEndC (is_omega_cocont_Id_H C CP H HH) (Colims_of_shape_nat_graph_EndC _)).
exact (pr2 aux).
Defined.
Definition TermMonad: Monad C := Monad_from_hss C CP (H,,θ) TermHSS.
Definition VarTerms: [C, C] ⟦ functor_identity C, Terms ⟧:= eta_from_alg TermAlgebra.
Definition ConstrTerms: [C, C] ⟦ H Terms, Terms ⟧ := tau_from_alg TermAlgebra.
Goal ConstrTerms = τ TermHetSubst.
Proof.
apply idpath.
Qed.
Definition join: [C, C] ⟦ functor_compose Terms Terms, Terms ⟧ := prejoin_from_hetsubst TermHetSubst.
Goal join = μ TermMonad.
Proof.
apply idpath.
Qed.
Definition joinLookup:
∏ c : C, pr1 VarTerms (pr1 Terms c) · pr1 join c = identity (pr1 Terms c)
:= @Monad_law1 C TermMonad.
Definition θforTerms := θ_from_hetsubst C CP H TermHetSubst Terms.
Goal θforTerms = PrecategoryBinProduct.nat_trans_fix_snd_arg_data [C, C] Ptd [C, C]
(θ_source H) (θ_target H) (pr1 θ) (ptd_from_alg (InitAlg C CP IC CC H HH)) Terms.
Proof.
apply idpath.
Qed.
Definition joinHomomorphic: θforTerms · # H join · ConstrTerms =
#(pre_composition_functor _ _ _ Terms) ConstrTerms · join
:= prejoin_from_hetsubst_τ TermHetSubst.
Definition joinHasEtaLaw:
∏ c : C, # (pr1 Terms) (pr1 VarTerms c) · pr1 join c = identity (pr1 Terms c)
:= @Monad_law2 C TermMonad.
Definition joinHasPermutationLaw:
∏ c : C, # (pr1 Terms) (pr1 join c) · pr1 join c = pr1 join (pr1 Terms c) · pr1 join c
:= @Monad_law3 C TermMonad.
End MainResult.