Library UniMath.CategoryTheory.limits.graphs.pushouts
Pushouts defined in terms of colimits
Contents
- Definition of pushouts
- Coincides with the direct definition
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.pushouts.
Local Open Scope cat.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.pushouts.
Local Open Scope cat.
Section def_po.
Variable C : category.
Local Open Scope stn.
Definition One : three := ● 0.
Definition Two : three := ● 1.
Definition Three : three := ● 2.
Definition pushout_graph : graph.
Proof.
∃ three.
use three_rec.
- apply three_rec.
+ apply empty.
+ apply unit.
+ apply unit.
- apply (λ _, empty).
- apply three_rec.
+ apply empty.
+ apply empty.
+ apply empty.
Defined.
Definition pushout_diagram {a b c : C} (f : C ⟦a, b⟧) (g : C⟦a, c⟧) :
diagram pushout_graph C.
Proof.
∃ (three_rec a b c).
use three_rec_dep; cbn.
- use three_rec_dep; cbn.
+ apply fromempty.
+ intros _; exact f.
+ intros _; exact g.
- intros x; apply fromempty.
- use three_rec_dep; cbn; apply fromempty.
Defined.
Definition PushoutCocone {a b c : C} (f : C ⟦a, b⟧) (g : C⟦a, c⟧) (d : C)
(f' : C ⟦b, d⟧) (g' : C ⟦c, d⟧) (H : f · f' = g · g') :
cocone (pushout_diagram f g) d.
Proof.
use make_cocone.
- use three_rec_dep; try assumption.
apply (f · f').
- use three_rec_dep; use three_rec_dep.
+ exact (empty_rect _).
+ intros x; apply idpath.
+ intros x; apply (! H).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
Defined.
Definition isPushout {a b c d : C} (f : C ⟦a, b⟧) (g : C ⟦a, c⟧)
(i1 : C⟦b, d⟧) (i2 : C⟦c, d⟧) (H : f · i1 = g · i2) : UU :=
isColimCocone (pushout_diagram f g) d (PushoutCocone f g d i1 i2 H).
Definition make_isPushout {a b c d : C} (f : C ⟦a, b⟧) (g : C ⟦a, c⟧)
(i1 : C⟦b, d⟧) (i2 : C⟦c, d⟧) (H : f · i1 = g · i2) :
(∏ e (h : C ⟦b, e⟧) (k : C⟦c, e⟧)(Hk : f · h = g · k ),
iscontr (total2 (fun hk : C⟦d, e⟧ ⇒ dirprod (i1 · hk = h)(i2 · hk = k)))) →
isPushout f g i1 i2 H.
Proof.
intros H' x cx. unfold is_cocone_mor; simpl in ×.
set (H1 := H' x (coconeIn cx Two) (coconeIn cx Three)).
use (let p : f · coconeIn cx Two = g · coconeIn cx Three
:= _ in _ ).
{ eapply pathscomp0; [apply (coconeInCommutes cx One Two tt)|].
apply pathsinv0, (coconeInCommutes cx One Three tt). }
set (H2 := H1 p).
use tpair.
+ ∃ (pr1 (pr1 H2)).
use three_rec_dep.
× abstract (use (pathscomp0 _ (coconeInCommutes cx One Two tt));
change (three_rec_dep _ _ _ _ _) with (f · i1);
change (dmor _ _) with f; rewrite <- assoc;
apply cancel_precomposition, (pr1 (pr2 (pr1 H2)))).
× abstract ( apply (pr1 (pr2 (pr1 H2)))).
× abstract (now use (pathscomp0 _ (pr2 (pr2 (pr1 H2))))).
+ abstract (intro t; apply subtypePath;
[ intro; apply impred; intro; apply C
| destruct t as [t p0];
apply path_to_ctr; split; [ apply (p0 Two) | apply (p0 Three) ]]).
Defined.
Definition Pushout {a b c : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) : UU :=
ColimCocone (pushout_diagram f g).
Definition make_Pushout {a b c : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) (d : C)
(i1 : C⟦b,d⟧) (i2 : C ⟦c,d⟧) (H : f · i1 = g · i2)
(ispo : isPushout f g i1 i2 H) : Pushout f g.
Proof.
use tpair.
- ∃ d.
use PushoutCocone; assumption.
- apply ispo.
Defined.
Definition Pushouts : UU := ∏ (a b c : C) (f : C⟦a, b⟧)(g : C⟦a, c⟧), Pushout f g.
Definition hasPushouts : UU := ∏ (a b c : C) (f : C⟦a, b⟧) (g : C⟦a, c⟧), ishinh (Pushout f g).
Definition PushoutObject {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧}:
Pushout f g → C := λ H, colim H.
Definition PushoutIn1 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) :
C⟦b, colim Po⟧ := colimIn Po Two.
Definition PushoutIn2 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) :
C⟦c, colim Po⟧ := colimIn Po Three.
Definition PushoutSqrCommutes {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) :
f · PushoutIn1 Po = g · PushoutIn2 Po.
Proof.
eapply pathscomp0; [apply (colimInCommutes Po One Two tt) |].
apply (!colimInCommutes Po One Three tt).
Qed.
Definition PushoutArrow {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) (e : C)
(h : C⟦b, e⟧) (k : C⟦c, e⟧) (H : f · h = g · k) : C⟦colim Po, e⟧.
Proof.
now use colimArrow; use PushoutCocone.
Defined.
Lemma PushoutArrow_PushoutIn1 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g)
(e : C) (h : C⟦b , e⟧) (k : C⟦c, e⟧) (H : f · h = g · k) :
PushoutIn1 Po · PushoutArrow Po e h k H = h.
Proof.
exact (colimArrowCommutes Po e _ Two).
Qed.
Lemma PushoutArrow_PushoutIn2 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g)
(e : C) (h : C⟦b, e⟧) (k : C⟦c, e⟧) (H : f · h = g · k) :
PushoutIn2 Po · PushoutArrow Po e h k H = k.
Proof.
exact (colimArrowCommutes Po e _ Three).
Qed.
Lemma PushoutArrowUnique {a b c d : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) (Po : Pushout f g) (e : C)
(h : C⟦b, e⟧) (k : C⟦c, e⟧) (Hcomm : f · h = g · k) (w : C⟦PushoutObject Po, e⟧)
(H1 : PushoutIn1 Po · w = h) (H2 : PushoutIn2 Po · w = k) :
w = PushoutArrow Po _ h k Hcomm.
Proof.
apply path_to_ctr.
use three_rec_dep; try assumption.
set (X := colimInCommutes Po One Two tt).
use (pathscomp0 (! (maponpaths (λ h' : _, h' · w) X))).
now rewrite <- assoc; simpl; rewrite <- H1.
Qed.
Definition isPushout_Pushout {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (P : Pushout f g) :
isPushout f g (PushoutIn1 P) (PushoutIn2 P) (PushoutSqrCommutes P).
Proof.
apply make_isPushout.
intros e h k HK.
use tpair.
- use tpair.
+ apply (PushoutArrow P _ h k HK).
+ split.
× apply PushoutArrow_PushoutIn1.
× apply PushoutArrow_PushoutIn2.
- intro t.
apply subtypePath.
+ intro. apply isapropdirprod; apply C.
+ destruct t as [t p]. simpl.
use (PushoutArrowUnique _ _ P).
× apply e.
× apply (pr1 p).
× apply (pr2 p).
Qed.
Variable C : category.
Local Open Scope stn.
Definition One : three := ● 0.
Definition Two : three := ● 1.
Definition Three : three := ● 2.
Definition pushout_graph : graph.
Proof.
∃ three.
use three_rec.
- apply three_rec.
+ apply empty.
+ apply unit.
+ apply unit.
- apply (λ _, empty).
- apply three_rec.
+ apply empty.
+ apply empty.
+ apply empty.
Defined.
Definition pushout_diagram {a b c : C} (f : C ⟦a, b⟧) (g : C⟦a, c⟧) :
diagram pushout_graph C.
Proof.
∃ (three_rec a b c).
use three_rec_dep; cbn.
- use three_rec_dep; cbn.
+ apply fromempty.
+ intros _; exact f.
+ intros _; exact g.
- intros x; apply fromempty.
- use three_rec_dep; cbn; apply fromempty.
Defined.
Definition PushoutCocone {a b c : C} (f : C ⟦a, b⟧) (g : C⟦a, c⟧) (d : C)
(f' : C ⟦b, d⟧) (g' : C ⟦c, d⟧) (H : f · f' = g · g') :
cocone (pushout_diagram f g) d.
Proof.
use make_cocone.
- use three_rec_dep; try assumption.
apply (f · f').
- use three_rec_dep; use three_rec_dep.
+ exact (empty_rect _).
+ intros x; apply idpath.
+ intros x; apply (! H).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
+ exact (empty_rect _).
Defined.
Definition isPushout {a b c d : C} (f : C ⟦a, b⟧) (g : C ⟦a, c⟧)
(i1 : C⟦b, d⟧) (i2 : C⟦c, d⟧) (H : f · i1 = g · i2) : UU :=
isColimCocone (pushout_diagram f g) d (PushoutCocone f g d i1 i2 H).
Definition make_isPushout {a b c d : C} (f : C ⟦a, b⟧) (g : C ⟦a, c⟧)
(i1 : C⟦b, d⟧) (i2 : C⟦c, d⟧) (H : f · i1 = g · i2) :
(∏ e (h : C ⟦b, e⟧) (k : C⟦c, e⟧)(Hk : f · h = g · k ),
iscontr (total2 (fun hk : C⟦d, e⟧ ⇒ dirprod (i1 · hk = h)(i2 · hk = k)))) →
isPushout f g i1 i2 H.
Proof.
intros H' x cx. unfold is_cocone_mor; simpl in ×.
set (H1 := H' x (coconeIn cx Two) (coconeIn cx Three)).
use (let p : f · coconeIn cx Two = g · coconeIn cx Three
:= _ in _ ).
{ eapply pathscomp0; [apply (coconeInCommutes cx One Two tt)|].
apply pathsinv0, (coconeInCommutes cx One Three tt). }
set (H2 := H1 p).
use tpair.
+ ∃ (pr1 (pr1 H2)).
use three_rec_dep.
× abstract (use (pathscomp0 _ (coconeInCommutes cx One Two tt));
change (three_rec_dep _ _ _ _ _) with (f · i1);
change (dmor _ _) with f; rewrite <- assoc;
apply cancel_precomposition, (pr1 (pr2 (pr1 H2)))).
× abstract ( apply (pr1 (pr2 (pr1 H2)))).
× abstract (now use (pathscomp0 _ (pr2 (pr2 (pr1 H2))))).
+ abstract (intro t; apply subtypePath;
[ intro; apply impred; intro; apply C
| destruct t as [t p0];
apply path_to_ctr; split; [ apply (p0 Two) | apply (p0 Three) ]]).
Defined.
Definition Pushout {a b c : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) : UU :=
ColimCocone (pushout_diagram f g).
Definition make_Pushout {a b c : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) (d : C)
(i1 : C⟦b,d⟧) (i2 : C ⟦c,d⟧) (H : f · i1 = g · i2)
(ispo : isPushout f g i1 i2 H) : Pushout f g.
Proof.
use tpair.
- ∃ d.
use PushoutCocone; assumption.
- apply ispo.
Defined.
Definition Pushouts : UU := ∏ (a b c : C) (f : C⟦a, b⟧)(g : C⟦a, c⟧), Pushout f g.
Definition hasPushouts : UU := ∏ (a b c : C) (f : C⟦a, b⟧) (g : C⟦a, c⟧), ishinh (Pushout f g).
Definition PushoutObject {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧}:
Pushout f g → C := λ H, colim H.
Definition PushoutIn1 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) :
C⟦b, colim Po⟧ := colimIn Po Two.
Definition PushoutIn2 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) :
C⟦c, colim Po⟧ := colimIn Po Three.
Definition PushoutSqrCommutes {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) :
f · PushoutIn1 Po = g · PushoutIn2 Po.
Proof.
eapply pathscomp0; [apply (colimInCommutes Po One Two tt) |].
apply (!colimInCommutes Po One Three tt).
Qed.
Definition PushoutArrow {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) (e : C)
(h : C⟦b, e⟧) (k : C⟦c, e⟧) (H : f · h = g · k) : C⟦colim Po, e⟧.
Proof.
now use colimArrow; use PushoutCocone.
Defined.
Lemma PushoutArrow_PushoutIn1 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g)
(e : C) (h : C⟦b , e⟧) (k : C⟦c, e⟧) (H : f · h = g · k) :
PushoutIn1 Po · PushoutArrow Po e h k H = h.
Proof.
exact (colimArrowCommutes Po e _ Two).
Qed.
Lemma PushoutArrow_PushoutIn2 {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g)
(e : C) (h : C⟦b, e⟧) (k : C⟦c, e⟧) (H : f · h = g · k) :
PushoutIn2 Po · PushoutArrow Po e h k H = k.
Proof.
exact (colimArrowCommutes Po e _ Three).
Qed.
Lemma PushoutArrowUnique {a b c d : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) (Po : Pushout f g) (e : C)
(h : C⟦b, e⟧) (k : C⟦c, e⟧) (Hcomm : f · h = g · k) (w : C⟦PushoutObject Po, e⟧)
(H1 : PushoutIn1 Po · w = h) (H2 : PushoutIn2 Po · w = k) :
w = PushoutArrow Po _ h k Hcomm.
Proof.
apply path_to_ctr.
use three_rec_dep; try assumption.
set (X := colimInCommutes Po One Two tt).
use (pathscomp0 (! (maponpaths (λ h' : _, h' · w) X))).
now rewrite <- assoc; simpl; rewrite <- H1.
Qed.
Definition isPushout_Pushout {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (P : Pushout f g) :
isPushout f g (PushoutIn1 P) (PushoutIn2 P) (PushoutSqrCommutes P).
Proof.
apply make_isPushout.
intros e h k HK.
use tpair.
- use tpair.
+ apply (PushoutArrow P _ h k HK).
+ split.
× apply PushoutArrow_PushoutIn1.
× apply PushoutArrow_PushoutIn2.
- intro t.
apply subtypePath.
+ intro. apply isapropdirprod; apply C.
+ destruct t as [t p]. simpl.
use (PushoutArrowUnique _ _ P).
× apply e.
× apply (pr1 p).
× apply (pr2 p).
Qed.
Definition identity_is_Pushout_input {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g) :
total2 (fun hk : C⟦colim Po, colim Po⟧ ⇒ dirprod (PushoutIn1 Po · hk = PushoutIn1 Po)
(PushoutIn2 Po · hk = PushoutIn2 Po)).
Proof.
∃ (identity (colim Po)).
apply make_dirprod; apply id_right.
Defined.
Lemma PushoutArrowUnique' {a b c d : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) (i1 : C⟦b, d⟧) (i2 : C⟦c, d⟧)
(H : f · i1 = g · i2) (P : isPushout f g i1 i2 H) e (h : C⟦b, e⟧) (k : C⟦c, e⟧)
(Hcomm : f · h = g · k) (w : C⟦d, e⟧) (H1 : i1 · w = h) (H2 : i2 · w = k) :
w = (pr1 (pr1 (P e (PushoutCocone f g _ h k Hcomm)))).
Proof.
apply path_to_ctr.
use three_rec_dep; try assumption; simpl.
change (three_rec_dep (λ n, C⟦three_rec a b c n, d⟧) _ _ _ _) with (f · i1).
change (three_rec_dep (λ n, C⟦three_rec a b c n, e⟧) _ _ _ _) with (f · h).
now rewrite <- assoc, H1.
Qed.
Lemma PushoutEndo_is_identity {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧} (Po : Pushout f g)
(k : C⟦colim Po , colim Po⟧)
(kH1 : PushoutIn1 Po · k = PushoutIn1 Po) (kH2 : PushoutIn2 Po · k = PushoutIn2 Po) :
identity (colim Po) = k.
Proof.
apply colim_endo_is_identity.
use three_rec_dep; cbn.
- unfold colimIn.
set (T := (coconeInCommutes (colimCocone Po) One Three tt)).
use (pathscomp0 (! (maponpaths (λ h' : _, h' · k) T))).
use (pathscomp0 _ (coconeInCommutes (colimCocone Po) One Three tt)).
rewrite <- assoc. apply cancel_precomposition.
apply kH2.
- apply kH1.
- apply kH2.
Qed.
Definition from_Pushout_to_Pushout {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧}
(Po Po': Pushout f g) : C⟦colim Po , colim Po'⟧.
Proof.
apply (PushoutArrow Po (colim Po') (PushoutIn1 _ ) (PushoutIn2 _)).
exact (PushoutSqrCommutes _ ).
Defined.
Lemma are_inverses_from_Pushout_to_Pushout {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧}
(Po Po': Pushout f g) :
is_inverse_in_precat (from_Pushout_to_Pushout Po Po') (from_Pushout_to_Pushout Po' Po).
Proof.
split; apply pathsinv0;
apply PushoutEndo_is_identity;
rewrite assoc;
unfold from_Pushout_to_Pushout;
repeat rewrite PushoutArrow_PushoutIn1;
repeat rewrite PushoutArrow_PushoutIn2;
auto.
Qed.
Lemma isiso_from_Pushout_to_Pushout {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧}
(Po Po': Pushout f g) : is_iso (from_Pushout_to_Pushout Po Po').
Proof.
apply (is_iso_qinv _ (from_Pushout_to_Pushout Po' Po)).
apply are_inverses_from_Pushout_to_Pushout.
Defined.
Definition iso_from_Pushout_to_Pushout {a b c : C} {f : C⟦a, b⟧} {g : C⟦a, c⟧}
(Po Po': Pushout f g) : iso (colim Po) (colim Po') :=
tpair _ _ (isiso_from_Pushout_to_Pushout Po Po').
pushout lemma
Section pushout_lemma.
Variables a b c d e x : C.
Variables (f : C⟦a, b⟧) (g : C⟦a, c⟧) (h : C⟦b, e⟧) (k : C⟦c, e⟧)
(i : C⟦b, d⟧) (j : C⟦e, x⟧) (m : C⟦d, x⟧).
Hypothesis H1 : f · h = g · k.
Hypothesis H2 : i · m = h · j.
Hypothesis P1 : isPushout _ _ _ _ H1.
Hypothesis P2 : isPushout _ _ _ _ H2.
Lemma glueSquares : f · i · m = g · k · j.
Proof.
rewrite <- assoc.
rewrite H2.
rewrite <- H1.
repeat rewrite <- assoc.
apply idpath.
Qed.
TODO: isPushoutGluedSquare : isPushout (f · i) g m (k · j) glueSquares.
End pushout_lemma.
Lemma inv_from_iso_iso_from_Pushout (a b c : C) (f : C⟦a, b⟧) (g : C⟦a, c⟧)
(Po : Pushout f g) (Po' : Pushout f g):
inv_from_iso (iso_from_Pushout_to_Pushout Po Po') = from_Pushout_to_Pushout Po' Po.
Proof.
apply pathsinv0.
apply inv_iso_unique'.
set (T := are_inverses_from_Pushout_to_Pushout Po Po').
apply (pr1 T).
Qed.
Lemma Pushout_from_Colims : Colims C → Pushouts.
Proof.
intros H a b c f g; apply H.
Defined.
End def_po.
Definitions coincide
In this section we show that pushouts defined as special colimits coincide with the direct definition.Lemma equiv_isPushout1 {a b c d : C} (f : C ⟦a, b⟧) (g : C ⟦a, c⟧)
(i1 : C⟦b, d⟧) (i2 : C⟦c, d⟧) (H : f · i1 = g · i2) :
limits.pushouts.isPushout f g i1 i2 H → isPushout C f g i1 i2 H.
Proof.
intros X R cc.
set (XR := limits.pushouts.make_Pushout f g d i1 i2 H X).
use unique_exists.
+ use (limits.pushouts.PushoutArrow XR).
- exact (coconeIn cc Two).
- exact (coconeIn cc Three).
- use (pathscomp0 ((coconeInCommutes cc One Two tt))).
apply (!(coconeInCommutes cc One Three tt)).
+ use three_rec_dep; simpl.
- change (three_rec_dep (λ n, C⟦three_rec a b c n, d⟧) _ _ _ _) with (f · i1).
rewrite <- assoc, (limits.pushouts.PushoutArrow_PushoutIn1 XR).
apply (coconeInCommutes cc One Two tt).
- apply (limits.pushouts.PushoutArrow_PushoutIn1 XR).
- apply (limits.pushouts.PushoutArrow_PushoutIn2 XR).
+ intros y; apply impred_isaprop; intros t; apply C.
+ intros y T.
use limits.pushouts.PushoutArrowUnique.
- apply (T Two).
- apply (T Three).
Qed.
Lemma equiv_isPushout2 {a b c d : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧)
(i1 : C⟦b, d⟧) (i2 : C⟦c, d⟧) (H : f · i1 = g · i2) :
limits.pushouts.isPushout f g i1 i2 H <- isPushout C f g i1 i2 H.
Proof.
intros X R k h HH.
set (XR := make_Pushout C f g d i1 i2 H X).
use unique_exists.
+ use (PushoutArrow C XR).
- exact k.
- exact h.
- exact HH.
+ split.
- exact (PushoutArrow_PushoutIn1 C XR R k h HH).
- exact (PushoutArrow_PushoutIn2 C XR R k h HH).
+ intros y; apply isapropdirprod; apply C.
+ intros y T.
use (PushoutArrowUnique C _ _ XR).
- exact R.
- exact (pr1 T).
- exact (pr2 T).
Qed.
Definition equiv_Pushout1 {a b c : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) :
limits.pushouts.Pushout f g → Pushout C f g.
Proof.
intros X.
exact (make_Pushout
C f g X
(limits.pushouts.PushoutIn1 X)
(limits.pushouts.PushoutIn2 X)
(limits.pushouts.PushoutSqrCommutes X)
(equiv_isPushout1 _ _ _ _ _ (limits.pushouts.isPushout_Pushout X))).
Defined.
Definition equiv_Pushout2 {a b c : C} (f : C⟦a, b⟧) (g : C⟦a, c⟧) :
limits.pushouts.Pushout f g <- Pushout C f g.
Proof.
intros X.
exact (limits.pushouts.make_Pushout
f g
(PushoutObject C X)
(PushoutIn1 C X)
(PushoutIn2 C X)
(PushoutSqrCommutes C X)
(equiv_isPushout2 _ _ _ _ _ (isPushout_Pushout C X))).
Defined.
End pushout_coincide.