Library UniMath.CategoryTheory.Monoidal.ConstructionOfActions
Construction of actions, over monoidal categories:
These modularize the construction of the action induced by a strong monoidal functor U, see U_action.
Author: Ralph Matthes 2021. However, the code is to a good extent copied from the construction of U_action.
- the monoidal category acting on itself
- lifting an action from the target of a strong monoidal functor to its source
Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.Monoidal.MonoidalCategories.
Require Import UniMath.CategoryTheory.Monoidal.MonoidalFunctors.
Require Import UniMath.CategoryTheory.Monoidal.Actions.
Local Open Scope cat.
Section A.
Context (Mon_V : monoidal_cat).
Local Definition V := monoidal_cat_cat Mon_V.
Local Definition I := monoidal_cat_unit Mon_V.
Local Definition tensor := monoidal_cat_tensor Mon_V.
Notation "X ⊗ Y" := (tensor (X , Y)).
Notation "f #⊗ g" := (#tensor (f #, g)) (at level 31).
Local Definition α' := monoidal_cat_associator Mon_V.
Local Definition λ' := monoidal_cat_left_unitor Mon_V.
Local Definition ρ' := monoidal_cat_right_unitor Mon_V.
Definition action_on_itself: action Mon_V V.
Proof.
∃ tensor.
∃ ρ'.
∃ α'.
apply monoidal_cat_eq.
Defined.
Section Action_Lifting_Through_Strong_Monoidal_Functor.
Context {Mon_A : monoidal_cat}.
Local Definition A := monoidal_cat_cat Mon_A.
Local Definition I_A := monoidal_cat_unit Mon_A.
Local Definition tensor_A := monoidal_cat_tensor Mon_A.
Notation "X ⊗_A Y" := (tensor_A (X , Y)) (at level 31).
Notation "f #⊗_A g" := (#tensor_A (f #, g)) (at level 31).
Local Definition α_A := monoidal_cat_associator Mon_A.
Local Definition λ_A := monoidal_cat_left_unitor Mon_A.
Local Definition ρ_A := monoidal_cat_right_unitor Mon_A.
Local Definition triangle_eq_A := pr1 (monoidal_cat_eq Mon_A).
Local Definition pentagon_eq_A := pr2 (monoidal_cat_eq Mon_A).
Context (U : strong_monoidal_functor Mon_V Mon_A).
Context {C : category} (actA : action Mon_A C).
Local Definition odotA := act_odot actA.
Definition lifted_odot : C ⊠ V ⟶ C :=
functor_composite (pair_functor (functor_identity _) U) odotA.
Definition lifted_action_right_unitor_nat_trans:
odot_I_functor Mon_V C lifted_odot ⟹ functor_identity C.
Proof.
cbn.
refine (nat_trans_comp _ _ _ _ (act_ϱ actA)).
set (aux := nat_trans_from_functor_fix_snd_morphism_arg _ _ _ odotA _ _ (strong_monoidal_functor_ϵ_inv U)).
use tpair.
- intro a.
apply (aux a).
- cbn; red.
intros a a' f.
cbn.
rewrite functor_id.
exact (pr2 aux a a' f).
Defined.
Definition lifted_action_right_unitor: action_right_unitor Mon_V C lifted_odot.
Proof.
∃ lifted_action_right_unitor_nat_trans.
intro.
cbn.
use is_z_iso_comp_of_is_z_isos.
2: { exact (pr2 (act_ϱ actA) c). }
- use is_z_iso_odot_z_iso.
+ exact (identity_is_z_iso _ ).
+ apply (is_z_iso_inv_from_z_iso _ _ (strong_monoidal_functor_ϵ U)).
Defined.
Definition lifted_action_convertor_nat_trans :
odot_x_odot_y_functor _ C lifted_odot ⟹ odot_x_otimes_y_functor _ C lifted_odot.
Proof.
apply (nat_trans_comp _ _ _ (pre_whisker (pair_functor (pair_functor (functor_identity _) U) U) (act_χ actA))).
exact (pre_whisker (precategory_binproduct_unassoc _ _ _) (post_whisker_fst_param (lax_monoidal_functor_μ U) odotA)).
Defined.
Definition lifted_action_convertor : action_convertor Mon_V C lifted_odot.
Proof.
∃ lifted_action_convertor_nat_trans.
intro x.
pose (k := ob1 (ob1 x)); pose (k' := ob2 (ob1 x)); pose (k'' := ob2 x).
use is_z_iso_comp_of_is_z_isos.
- exact (pr2 (act_χ actA) ((k, U k'), U k'')).
- use is_z_iso_odot_z_iso.
+ use identity_is_z_iso.
+ exact (strong_monoidal_functor_μ_is_nat_z_iso U (k', k'')).
Defined.
Lemma lifted_action_tlaw : action_triangle_eq Mon_V C
lifted_odot lifted_action_right_unitor lifted_action_convertor.
Proof.
red.
intros a x.
cbn.
unfold nat_trans_from_functor_fix_snd_morphism_arg_data.
unfold nat_trans_data_post_whisker_fst_param.
simpl.
unfold make_dirprod.
rewrite functor_id.
apply pathsinv0.
etrans.
{ rewrite assoc'. apply maponpaths. apply pathsinv0. apply functor_comp. }
unfold compose at 2. simpl. unfold make_dirprod. rewrite id_left.
rewrite <- (id_left (id U x)).
apply pathsinv0.
intermediate_path (# odotA ((# odotA (id a #, strong_monoidal_functor_ϵ_inv U)) #, id U x) · # odotA (act_ϱ actA a #, id U x)).
{ rewrite <- functor_comp.
apply idpath. }
pose (f := # odotA (# odotA (id a #, lax_monoidal_functor_ϵ U) #, id U x)).
apply (pre_comp_with_z_iso_is_inj'(f:=f)).
{ use is_z_iso_odot_z_iso.
- use is_z_iso_odot_z_iso.
+ exact (identity_is_z_iso _).
+ exact (strong_monoidal_functor_ϵ_is_z_iso U).
- exact (identity_is_z_iso _ ).
}
rewrite assoc.
intermediate_path (# odotA (act_ϱ actA a #, id U x)).
{ apply pathsinv0. etrans.
- apply (!(id_left _)).
- apply cancel_postcomposition.
unfold f.
rewrite <- functor_comp.
apply pathsinv0. apply functor_id_id.
apply pathsdirprod; simpl.
+ etrans.
× apply pathsinv0. apply functor_comp.
× apply functor_id_id.
apply pathsdirprod; simpl.
-- apply id_left.
-- apply pathsinv0. apply z_iso_inv_on_left.
rewrite id_left. apply idpath.
+ apply id_left.
}
rewrite assoc.
apply pathsinv0. etrans.
{ apply cancel_postcomposition.
apply (nat_trans_ax (act_χ actA) ((a, I_A), U x) ((a, U I), U x) ((id a ,, lax_monoidal_functor_ϵ U) ,, id U x)). }
simpl.
etrans.
{ rewrite assoc'. apply maponpaths. apply pathsinv0.
apply functor_comp. }
unfold compose at 2. simpl. unfold make_dirprod. rewrite id_left.
rewrite assoc.
etrans.
- apply maponpaths.
eapply (maponpaths (fun u: Mon_A ⟦I_A ⊗_A (U x), U x⟧ ⇒ # odotA (id a #, u))).
apply pathsinv0.
apply (lax_monoidal_functor_unital U x).
- fold λ_A.
apply pathsinv0.
apply (act_triangle actA).
Qed.
Lemma lifted_action_plaw : action_pentagon_eq Mon_V C
lifted_odot lifted_action_convertor.
Proof.
red.
intros a x y z.
cbn.
unfold nat_trans_data_post_whisker_fst_param.
unfold ob1, ob2.
cbn.
rewrite functor_id.
apply pathsinv0. etrans.
{ repeat rewrite assoc'.
apply maponpaths.
apply maponpaths.
apply pathsinv0.
apply functor_comp.
}
unfold compose at 4. cbn. unfold make_dirprod.
rewrite id_left.
etrans.
{ rewrite assoc.
apply cancel_postcomposition.
apply cancel_postcomposition.
rewrite <- (id_left (id U z)).
intermediate_path (# odotA ((act_χ actA ((a, U x), U y) #, id U z) · (# odotA (id a #, lax_monoidal_functor_μ U (x, y)) #, id U z))).
- apply idpath.
- apply functor_comp.
}
etrans.
{ apply cancel_postcomposition.
rewrite assoc'.
apply maponpaths.
apply (nat_trans_ax (act_χ actA) ((a, U x ⊗_A U y), U z) ((a, U (x ⊗ y)), U z) ((id a ,, lax_monoidal_functor_μ U (x, y)) ,, id U z)).
}
etrans.
{ unfold assoc_right. cbn.
rewrite assoc'.
apply maponpaths.
rewrite assoc'.
apply maponpaths.
apply pathsinv0.
apply functor_comp.
}
unfold compose at 3. cbn. unfold make_dirprod.
rewrite id_left.
etrans.
{ do 2 apply maponpaths.
rewrite assoc.
eapply (maponpaths (fun u: A ⟦(U x ⊗_A U y) ⊗_A U z, U (x ⊗ (y ⊗ z))⟧ ⇒ # odotA (id a #, u))).
apply (lax_monoidal_functor_assoc U).
}
etrans.
{ rewrite assoc. apply maponpaths.
rewrite assoc'.
rewrite <- (id_left (id a)).
intermediate_path (# odotA ((id a #, α_A ((U x, U y), U z)) · (id a #, # tensor_A (id U x #, lax_monoidal_functor_μ U (y, z)) · lax_monoidal_functor_μ U (x, y ⊗ z)))).
2: { apply functor_comp. }
apply idpath.
}
etrans.
{ do 2 apply maponpaths.
rewrite <- (id_left (id a)).
intermediate_path (# odotA ((id a #, # tensor_A (id pr1 (pr1 U) x #, lax_monoidal_functor_μ U (y, z))) · (id a #, lax_monoidal_functor_μ U (x, y ⊗ z)))).
2: { apply functor_comp. }
apply idpath.
}
repeat rewrite assoc.
apply cancel_postcomposition.
etrans.
{ apply cancel_postcomposition.
apply pathsinv0.
apply (act_pentagon actA).
}
fold odotA.
change (act_χ actA ((odotA (a, U x), U y), U z) · act_χ actA ((a, U x), tensor_A (U y, U z))
· # odotA (id a #, # tensor_A (id U x #, lax_monoidal_functor_μ U (y, z))) =
act_χ actA ((odotA (a , U x), U y), U z) · # odotA (id (odotA (a , U x)) #, lax_monoidal_functor_μ U (y, z))
· act_χ actA ((a, U x), U (y ⊗ z))).
repeat rewrite assoc'.
apply maponpaths.
etrans.
{ apply pathsinv0.
apply (nat_trans_ax (act_χ actA) ((a, U x), U y ⊗_A U z) ((a, U x), U (y ⊗ z)) ((id a ,, id U x) ,, lax_monoidal_functor_μ U (y, z))).
}
cbn.
apply cancel_postcomposition.
change (# odotA (# odotA (id (a, U x)) #, (lax_monoidal_functor_μ U) (y, z)) = # odotA (id (odotA (a, U x)) #, lax_monoidal_functor_μ U (y, z))).
rewrite functor_id.
apply idpath.
Qed.
Definition lifted_action: action Mon_V C.
Proof.
∃ lifted_odot.
∃ lifted_action_right_unitor.
∃ lifted_action_convertor.
split.
- exact lifted_action_tlaw.
- exact lifted_action_plaw.
Defined.
End Action_Lifting_Through_Strong_Monoidal_Functor.
End A.
Section Strong_Monoidal_Functor_Action_Reloaded.
Context {Mon_V Mon_A : monoidal_cat}.
Context (U : strong_monoidal_functor Mon_V Mon_A).
Context (C : precategory).
Definition U_action_alt : action Mon_V (monoidal_cat_cat Mon_A) := lifted_action Mon_V U (action_on_itself Mon_A).
Lemma U_action_alt_ok1: pr1 U_action_alt = pr1(U_action _ U).
Proof.
apply idpath.
Qed.
Lemma U_action_alt_ok2: pr1(pr2 U_action_alt) = pr1(pr2(U_action _ U)).
Proof.
apply idpath.
Qed.
Lemma U_action_alt_ok3: pr1(pr22 U_action_alt) = pr1(pr22(U_action _ U)).
Proof.
apply idpath.
Qed.
End Strong_Monoidal_Functor_Action_Reloaded.