Library UniMath.CategoryTheory.Monoidal.Actions
Generalisation of the concept of actions, over monoidal categories.
Originally introduced under the name C-categories (for C a monoidal category) by Bodo Pareigis (1977).
This notion is found in G. Janelidze and G.M. Kelly: A Note on Actions of a Monoidal Category, Theory and Applications of Categories, Vol. 9, 2001, No. 4, pp 61-91, who remark that one triangle equation of Pareigis is redundant.
The presentation is close to the definitions in the paper "Second-Order and Dependently-Sorted Abstract Syntax" by Marcelo Fiore (2008). The order of the arguments of the action functor has been chosen differently from Janelidze & Kelly, but as in Pareigis.
Author of nearly all of the proof lines: Ralph Matthes 2021
Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.Monoidal.MonoidalCategories.
Require Import UniMath.CategoryTheory.Monoidal.MonoidalFunctors.
Require Import UniMath.CategoryTheory.Monoidal.EndofunctorsMonoidal.
Local Open Scope cat.
Section A.
Context (Mon_V : monoidal_cat).
Local Definition I : Mon_V := monoidal_cat_unit Mon_V.
Local Definition tensor : Mon_V ⊠ Mon_V ⟶ Mon_V := monoidal_cat_tensor Mon_V.
Notation "X ⊗ Y" := (tensor (X , Y)).
Notation "f #⊗ g" := (#tensor (f #, g)) (at level 31).
Local Definition α' : associator tensor := monoidal_cat_associator Mon_V.
Local Definition λ' : left_unitor tensor I := monoidal_cat_left_unitor Mon_V.
Local Definition ρ' : right_unitor tensor I := monoidal_cat_right_unitor Mon_V.
Section Actions_Definition.
Context (A : category).
Section Actions_Natural_Transformations.
Context (odot : functor (category_binproduct A Mon_V) A).
Notation "X ⊙ Y" := (odot (X , Y)) (at level 31).
Notation "f #⊙ g" := (# odot (f #, g)) (at level 31).
Definition is_z_iso_odot_z_iso {X Y : A} { X' Y' : Mon_V} {f : X --> Y} {g : X' --> Y'}
(f_is_z_iso : is_z_isomorphism f) (g_is_z_iso : is_z_isomorphism g) : is_z_isomorphism (f #⊙ g).
Proof.
exact (functor_on_is_z_isomorphism _ (is_z_iso_binprod_z_iso f_is_z_iso g_is_z_iso)).
Defined.
Definition odot_I_functor : functor A A := functor_fix_snd_arg _ _ _ odot I.
Lemma odot_I_functor_ok: functor_on_objects odot_I_functor =
λ a, a ⊙ I.
Proof.
apply idpath.
Qed.
Definition action_right_unitor : UU := nat_z_iso odot_I_functor (functor_identity A).
Definition action_right_unitor_funclass (μ : action_right_unitor):
∏ x : ob A, odot_I_functor x --> x
:= pr1 (nat_z_iso_to_trans μ).
Coercion action_right_unitor_funclass : action_right_unitor >-> Funclass.
Definition action_right_unitor_to_nat_trans (μ : action_right_unitor) : nat_trans odot_I_functor (functor_identity A)
:= nat_z_iso_to_trans μ.
Coercion action_right_unitor_to_nat_trans: action_right_unitor >-> nat_trans.
Definition odot_x_odot_y_functor : (A ⊠ Mon_V) ⊠ Mon_V ⟶ A :=
functor_composite (pair_functor odot (functor_identity _)) odot.
Lemma odot_x_odot_y_functor_ok: functor_on_objects odot_x_odot_y_functor =
λ a, (ob1 (ob1 a) ⊙ ob2 (ob1 a)) ⊙ ob2 a.
Proof.
apply idpath.
Qed.
Definition odot_x_otimes_y_functor : (A ⊠ Mon_V) ⊠ Mon_V ⟶ A :=
functor_composite (precategory_binproduct_unassoc _ _ _)
(functor_composite (pair_functor (functor_identity _) tensor) odot).
Lemma odot_x_otimes_y_functor_ok: functor_on_objects odot_x_otimes_y_functor =
λ a, ob1 (ob1 a) ⊙ (ob2 (ob1 a) ⊗ ob2 a).
Proof.
apply idpath.
Qed.
Definition action_convertor : UU := nat_z_iso odot_x_odot_y_functor odot_x_otimes_y_functor.
Definition action_convertor_funclass (χ : action_convertor):
∏ x : ob ((A ⊠ Mon_V) ⊠ Mon_V), odot_x_odot_y_functor x --> odot_x_otimes_y_functor x
:= pr1 (nat_z_iso_to_trans χ).
Coercion action_convertor_funclass : action_convertor >-> Funclass.
Definition action_convertor_to_nat_trans (χ : action_convertor) :
nat_trans odot_x_odot_y_functor odot_x_otimes_y_functor
:= nat_z_iso_to_trans χ.
Coercion action_convertor_to_nat_trans: action_convertor >-> nat_trans.
Definition action_triangle_eq (ϱ : action_right_unitor) (χ : action_convertor) := ∏ (a : A), ∏ (v : Mon_V),
(ϱ a) #⊙ (id v) = (χ ((a, I), v)) · (id a) #⊙ (λ' v).
the original definition by Pareigis has a second triangle equation that is redundant in the
context of action_triangle_eq and action_pentagon_eq (see Janelidze and Kelly 2001 for this claim)
Definition action_second_triangle_eq (ϱ : action_right_unitor) (χ : action_convertor) :=
∏ (a : A), ∏ (v : Mon_V), ϱ (a ⊙ v) = (χ ((a, v), I)) · (id a) #⊙ (ρ' v).
Definition action_pentagon_eq (χ : action_convertor) := ∏ (a : A), ∏ (u v w : Mon_V),
(χ ((a ⊙ u, v), w)) · (χ ((a, u), v ⊗ w)) =
(χ ((a, u), v)) #⊙ (id w) · (χ ((a, u ⊗ v), w)) · (id a) #⊙ (α' ((u, v), w)).
End Actions_Natural_Transformations.
Definition action : UU := ∑ (odot : A ⊠ Mon_V ⟶ A), ∑ (ϱ : action_right_unitor odot), ∑ (χ : action_convertor odot), (action_triangle_eq odot ϱ χ) × (action_pentagon_eq odot χ).
Section Projections.
Context (actn : action).
Definition act_odot : A ⊠ Mon_V ⟶ A := pr1 actn.
Definition act_ϱ : action_right_unitor act_odot := pr1 (pr2 actn).
Definition act_χ : action_convertor act_odot := pr1 (pr2 (pr2 actn)).
Definition act_triangle : action_triangle_eq act_odot act_ϱ act_χ := pr1 (pr2 (pr2 (pr2 actn))).
Definition act_pentagon : action_pentagon_eq act_odot act_χ := pr2 (pr2 (pr2 (pr2 actn))).
End Projections.
Section Alternative_Definition.
∏ (a : A), ∏ (v : Mon_V), ϱ (a ⊙ v) = (χ ((a, v), I)) · (id a) #⊙ (ρ' v).
Definition action_pentagon_eq (χ : action_convertor) := ∏ (a : A), ∏ (u v w : Mon_V),
(χ ((a ⊙ u, v), w)) · (χ ((a, u), v ⊗ w)) =
(χ ((a, u), v)) #⊙ (id w) · (χ ((a, u ⊗ v), w)) · (id a) #⊙ (α' ((u, v), w)).
End Actions_Natural_Transformations.
Definition action : UU := ∑ (odot : A ⊠ Mon_V ⟶ A), ∑ (ϱ : action_right_unitor odot), ∑ (χ : action_convertor odot), (action_triangle_eq odot ϱ χ) × (action_pentagon_eq odot χ).
Section Projections.
Context (actn : action).
Definition act_odot : A ⊠ Mon_V ⟶ A := pr1 actn.
Definition act_ϱ : action_right_unitor act_odot := pr1 (pr2 actn).
Definition act_χ : action_convertor act_odot := pr1 (pr2 (pr2 actn)).
Definition act_triangle : action_triangle_eq act_odot act_ϱ act_χ := pr1 (pr2 (pr2 (pr2 actn))).
Definition act_pentagon : action_pentagon_eq act_odot act_χ := pr2 (pr2 (pr2 (pr2 actn))).
End Projections.
Section Alternative_Definition.
we are following the introductory pages of Janelidze and Kelly,
A note on actions of a monoidal category, Theory and Applications of Categories, Vol. 9, No. 4, 2001, pp. 61–91.
Let Mon_EndA : monoidal_cat := monoidal_cat_of_endofunctors A.
Context (FF: strong_monoidal_functor Mon_V Mon_EndA).
Let ϵ : functor_identity A ⟹ (FF I: functor A A)
:= lax_monoidal_functor_ϵ FF.
Let ϵ_inv : (FF I: functor A A) ⟹ functor_identity A := strong_monoidal_functor_ϵ_inv FF.
Let μ := lax_monoidal_functor_μ FF.
Let ϵ_is_z_iso := strong_monoidal_functor_ϵ_is_z_iso FF.
Let μ_is_nat_z_iso := strong_monoidal_functor_μ_is_nat_z_iso FF.
Let FFunital := lax_monoidal_functor_unital FF.
Let FFassoc := lax_monoidal_functor_assoc FF.
Local Definition odot : functor (category_binproduct A Mon_V) A := uncurry_functor _ _ _ FF.
Local Definition auxρ : nat_z_iso (odot_I_functor odot) (FF I: functor A A).
Proof.
use make_nat_z_iso.
- use tpair.
+ intro F. apply identity.
+ cbn. intros F F' α.
unfold functor_fix_snd_arg_data. cbn.
rewrite id_left, id_right.
assert (H := functor_id FF I).
apply (maponpaths (fun f ⇒ pr1 f F')) in H.
etrans.
{ apply maponpaths. exact H. }
apply id_right.
- intro F.
use make_is_z_isomorphism.
+ apply identity.
+ split; apply id_left.
Defined.
Local Definition ϱ : action_right_unitor odot.
Proof.
eapply nat_z_iso_comp.
- exact auxρ.
- use make_nat_z_iso.
+ exact ϵ_inv.
+ use nat_trafo_pointwise_z_iso_if_z_iso; [apply A |].
apply is_z_isomorphism_inv.
Defined.
Local Definition auxχ_dom : nat_z_iso (odot_x_odot_y_functor odot) (functor_composite (precategory_binproduct_unassoc A Mon_V Mon_V) (uncurry_functor _ _ _ (monoidal_functor_map_dom Mon_V Mon_EndA FF))).
Proof.
use make_nat_z_iso.
- use make_nat_trans.
+ intro auv.
apply identity.
+ intros auv auv' fgg'.
rewrite id_left, id_right.
cbn.
rewrite functor_comp.
rewrite <- assoc.
apply idpath.
- intro auv.
use make_is_z_isomorphism.
+ apply identity.
+ split; apply id_left.
Defined.
Local Definition auxχ_codom : nat_z_iso (functor_composite (precategory_binproduct_unassoc A Mon_V Mon_V)
(uncurry_functor _ _ _ (monoidal_functor_map_codom Mon_V Mon_EndA FF))) (odot_x_otimes_y_functor odot).
Proof.
use make_nat_z_iso.
- use make_nat_trans.
+ intro auv.
apply identity.
+ intros auv auv' fgg'.
rewrite id_left, id_right.
apply idpath.
- intro auv.
use make_is_z_isomorphism.
+ apply identity.
+ split; apply id_left.
Defined.
Local Definition χ : action_convertor odot.
Proof.
refine (nat_z_iso_comp auxχ_dom _).
refine (nat_z_iso_comp _ auxχ_codom).
use make_nat_z_iso.
- exact (pre_whisker (precategory_binproduct_unassoc _ _ _) (uncurry_nattrans _ _ _ μ)).
- intro auv. induction auv as [[a u] v].
unfold pre_whisker. cbn.
exact (nat_trafo_pointwise_z_iso_if_z_iso A _ (μ_is_nat_z_iso (u,,v)) a).
Defined.
Lemma action_triangle_eq_from_alt: action_triangle_eq odot ϱ χ.
Proof.
intros a v.
cbn.
unfold functor_fix_fst_arg_ob.
rewrite id_left.
rewrite functor_id.
do 2 rewrite id_left.
rewrite id_right.
assert (Hunital1 := pr1 (FFunital v)).
apply (maponpaths pr1) in Hunital1.
apply toforallpaths in Hunital1.
assert (Hunital1inst := Hunital1 a).
cbn in Hunital1inst.
rewrite id_right in Hunital1inst.
unfold MonoidalFunctors.λ_C in Hunital1inst.
apply pathsinv0.
transparent assert (aux: (is_z_isomorphism (# (FF v: functor A A) (ϵ_inv a)))).
{ apply functor_on_is_z_isomorphism.
transparent assert (aux1: (is_nat_z_iso ϵ_inv)).
{ use nat_trafo_pointwise_z_iso_if_z_iso; [apply A |].
apply is_z_iso_inv_from_z_iso. }
apply aux1.
}
apply (z_iso_inv_to_left(C:=A) _ _ _ (# (FF v: functor A A) (ϵ_inv a),,aux)).
unfold inv_from_z_iso.
cbn.
rewrite assoc.
apply pathsinv0.
etrans.
2: { exact Hunital1inst. }
assert (aux2 := functor_id FF v).
apply (maponpaths pr1) in aux2.
apply toforallpaths in aux2.
exact (aux2 a).
Qed.
Lemma action_pentagon_eq_from_alt: action_pentagon_eq odot χ.
Proof.
intros a x y z.
cbn.
rewrite functor_id.
do 5 rewrite id_left.
do 4 rewrite id_right.
assert (aux := functor_id FF z).
apply (maponpaths pr1) in aux.
apply toforallpaths in aux.
rewrite aux.
cbn.
rewrite id_right.
assert (Hassoc := FFassoc x y z).
apply (maponpaths pr1) in Hassoc.
apply toforallpaths in Hassoc.
assert (Hassocinst := Hassoc a).
clear Hassoc.
cbn in Hassocinst.
rewrite id_right, id_left in Hassocinst.
do 2 rewrite functor_id in Hassocinst.
rewrite id_left in Hassocinst.
apply pathsinv0.
exact Hassocinst.
Qed.
Definition action_from_alt: action.
Proof.
∃ odot. ∃ ϱ. ∃ χ. exact (action_triangle_eq_from_alt ,, action_pentagon_eq_from_alt).
Defined.
one might also consider the other direction: that an action gives rise to a strong
monoidal functor from Mon_V to Mon_EndA, showing that the "concrete" action definition
adhered to in the further development is also complete w.r.t. that "generic" definition
End Alternative_Definition.
End Actions_Definition.
Definition tensorial_action : action Mon_V.
Proof.
∃ tensor.
∃ ρ'.
∃ α'.
exact (monoidal_cat_eq Mon_V).
Defined.
Section Strong_Monoidal_Functor_Action.
Context {Mon_A : monoidal_cat}.
Local Definition I_A : Mon_A := monoidal_cat_unit Mon_A.
Local Definition tensor_A : Mon_A ⊠ Mon_A ⟶ Mon_A := monoidal_cat_tensor Mon_A.
Notation "X ⊗_A Y" := (tensor_A (X , Y)) (at level 31).
Notation "f #⊗_A g" := (#tensor_A (f #, g)) (at level 31).
Local Definition α_A : associator tensor_A := monoidal_cat_associator Mon_A.
Local Definition λ_A : left_unitor tensor_A I_A := monoidal_cat_left_unitor Mon_A.
Local Definition ρ_A : right_unitor tensor_A I_A := monoidal_cat_right_unitor Mon_A.
Local Definition triangle_eq_A : triangle_eq tensor_A I_A λ_A ρ_A α_A := pr1 (monoidal_cat_eq Mon_A).
Local Definition pentagon_eq_A : pentagon_eq tensor_A α_A := pr2 (monoidal_cat_eq Mon_A).
Context (U : strong_monoidal_functor Mon_V Mon_A).
Definition otimes_U_functor : Mon_A ⊠ Mon_V ⟶ Mon_A := functor_composite (pair_functor (functor_identity _) U) tensor_A.
Lemma otimes_U_functor_ok: functor_on_objects otimes_U_functor =
λ av, ob1 av ⊗_A U (ob2 av).
Proof.
apply idpath.
Qed.
Definition U_action_ρ_nat_trans : odot_I_functor Mon_A otimes_U_functor ⟹ functor_identity Mon_A.
refine (nat_trans_comp _ _ _ _ ρ_A).
unfold odot_I_functor.
set (aux := nat_trans_from_functor_fix_snd_morphism_arg _ _ _ tensor_A _ _ (strong_monoidal_functor_ϵ_inv U)).
use tpair.
- intro a.
apply (aux a).
- cbn; red.
intros a a' f.
cbn.
rewrite functor_id.
exact (pr2 aux a a' f).
Defined.
Lemma U_action_ρ_nat_trans_ok: nat_trans_data_from_nat_trans U_action_ρ_nat_trans = λ x, id x #⊗_A (strong_monoidal_functor_ϵ_inv U) · ρ_A x.
Proof.
apply idpath.
Qed.
Definition U_action_ρ_is_nat_z_iso : is_nat_z_iso U_action_ρ_nat_trans.
Proof.
intro.
cbn.
use is_z_iso_comp_of_is_z_isos.
- use is_z_iso_tensor_z_iso.
+ exact (identity_is_z_iso _ ).
+ apply (is_z_iso_inv_from_z_iso _ _ (make_z_iso _ _ (strong_monoidal_functor_ϵ_is_z_iso U))).
- exact (pr2 ρ_A c).
Defined.
Definition U_action_ρ : action_right_unitor Mon_A otimes_U_functor := make_nat_z_iso _ _ U_action_ρ_nat_trans U_action_ρ_is_nat_z_iso.
Definition U_action_χ_nat_trans : odot_x_odot_y_functor Mon_A otimes_U_functor ⟹ odot_x_otimes_y_functor Mon_A otimes_U_functor.
Proof.
apply (nat_trans_comp _ _ _ (pre_whisker (pair_functor (pair_functor (functor_identity _) U) U) α_A)).
exact (pre_whisker (precategory_binproduct_unassoc _ _ _) (post_whisker_fst_param (lax_monoidal_functor_μ U) tensor_A)).
Defined.
Lemma U_action_χ_nat_trans_ok: nat_trans_data_from_nat_trans U_action_χ_nat_trans =
λ x, let k := ob1 (ob1 x) in
let k' := ob2 (ob1 x) in
let k'' := ob2 x in
α_A ((k, U k'), U k'') · id k #⊗_A (lax_monoidal_functor_μ U (k', k'')).
Proof.
apply idpath.
Qed.
Lemma U_action_χ_is_nat_z_iso : is_nat_z_iso U_action_χ_nat_trans.
Proof.
intro x.
pose (k := ob1 (ob1 x)); pose (k' := ob2 (ob1 x)); pose (k'' := ob2 x).
use is_z_iso_comp_of_is_z_isos.
- exact (pr2 α_A ((k, U k'), U k'')).
- use is_z_iso_tensor_z_iso.
+ use identity_is_z_iso.
+ exact (strong_monoidal_functor_μ_is_nat_z_iso U (k', k'')).
Defined.
Definition U_action_χ : action_convertor Mon_A otimes_U_functor :=
make_nat_z_iso _ _ U_action_χ_nat_trans U_action_χ_is_nat_z_iso.
Lemma U_action_tlaw : action_triangle_eq Mon_A otimes_U_functor U_action_ρ U_action_χ.
Proof.
red.
intros a x.
cbn.
unfold nat_trans_from_functor_fix_snd_morphism_arg_data.
unfold nat_trans_data_post_whisker_fst_param.
cbn.
unfold make_dirprod.
rewrite functor_id.
apply pathsinv0.
etrans.
{ rewrite assoc'. apply maponpaths. apply pathsinv0. apply functor_comp. }
unfold compose at 2. simpl. unfold make_dirprod. rewrite id_left.
rewrite <- (id_left (id U x)).
apply pathsinv0.
intermediate_path (# tensor_A ((# tensor_A (id a #, strong_monoidal_functor_ϵ_inv U)) #, id U x) · # tensor_A (ρ_A a #, id U x)).
{ rewrite <- functor_comp.
apply idpath. }
pose (f := # tensor_A (# tensor_A (id a #, lax_monoidal_functor_ϵ U) #, id U x)).
apply (pre_comp_with_z_iso_is_inj'(f:=f)).
{ use is_z_iso_tensor_z_iso.
- use is_z_iso_tensor_z_iso.
+ exact (identity_is_z_iso _).
+ exact (strong_monoidal_functor_ϵ_is_z_iso U).
- exact (identity_is_z_iso _ ).
}
rewrite assoc.
intermediate_path (# tensor_A (ρ_A a #, id U x)).
{ apply pathsinv0. etrans.
- apply (!(id_left _)).
- apply cancel_postcomposition.
unfold f.
rewrite <- functor_comp.
apply pathsinv0. apply functor_id_id.
apply pathsdirprod; simpl.
+ etrans.
× apply pathsinv0. apply functor_comp.
× apply functor_id_id.
apply pathsdirprod; simpl.
-- apply id_left.
-- apply pathsinv0. apply z_iso_inv_on_left.
rewrite id_left. apply idpath.
+ apply id_left.
}
rewrite assoc.
apply pathsinv0. etrans.
{ apply cancel_postcomposition.
apply (nat_trans_ax α_A ((a, I_A), U x) ((a, U I), U x) ((id a ,, lax_monoidal_functor_ϵ U) ,, id U x)). }
simpl.
etrans.
{ rewrite assoc'. apply maponpaths. apply pathsinv0.
apply functor_comp. }
unfold compose at 2. simpl. unfold make_dirprod. rewrite id_left.
rewrite assoc.
etrans.
- apply maponpaths.
eapply (maponpaths (fun u: Mon_A ⟦I_A ⊗_A (U x), U x⟧ ⇒ # tensor_A (id a #, u))).
apply pathsinv0.
apply (lax_monoidal_functor_unital U x).
- fold λ_A.
apply pathsinv0.
apply triangle_eq_A.
Qed.
Lemma U_action_plaw : action_pentagon_eq Mon_A otimes_U_functor U_action_χ.
Proof.
red.
intros a x y z.
cbn.
unfold nat_trans_data_post_whisker_fst_param.
unfold ob1, ob2.
cbn.
rewrite functor_id.
apply pathsinv0. etrans.
{ repeat rewrite assoc'.
apply maponpaths.
apply maponpaths.
apply pathsinv0.
apply functor_comp.
}
unfold compose at 4. cbn. unfold make_dirprod.
rewrite id_left.
etrans.
{ rewrite assoc.
apply cancel_postcomposition.
apply cancel_postcomposition.
rewrite <- (id_left (id U z)).
intermediate_path (# tensor_A ((α_A ((a, U x), U y) #, id U z) · (# tensor_A (id a #, lax_monoidal_functor_μ U (x, y)) #, id U z))).
- apply idpath.
- apply functor_comp.
}
etrans.
{ apply cancel_postcomposition.
rewrite assoc'.
apply maponpaths.
apply (nat_trans_ax α_A ((a, U x ⊗_A U y), U z) ((a, U (x ⊗ y)), U z) ((id a ,, lax_monoidal_functor_μ U (x, y)) ,, id U z)).
}
etrans.
{ unfold assoc_right. cbn.
rewrite assoc'.
apply maponpaths.
rewrite assoc'.
apply maponpaths.
apply pathsinv0.
apply functor_comp.
}
unfold compose at 3. cbn. unfold make_dirprod.
rewrite id_left.
etrans.
{ do 2 apply maponpaths.
rewrite assoc.
eapply (maponpaths (fun u: Mon_A ⟦(U x ⊗_A U y) ⊗_A U z, U (x ⊗ (y ⊗ z))⟧ ⇒ id a #⊗_A u)).
apply (lax_monoidal_functor_assoc U).
}
fold α_A. fold tensor_A. fold tensor.
etrans.
{ rewrite assoc. apply maponpaths.
rewrite assoc'.
rewrite <- (id_left (id a)).
intermediate_path (# tensor_A ((id a #, α_A ((U x, U y), U z)) · (id a #, # tensor_A (id U x #, lax_monoidal_functor_μ U (y, z)) · lax_monoidal_functor_μ U (x, y ⊗ z)))).
2: { apply functor_comp. }
apply idpath.
}
etrans.
{ do 2 apply maponpaths.
rewrite <- (id_left (id a)).
intermediate_path (# tensor_A ((id a #, # tensor_A (id U x #, lax_monoidal_functor_μ U (y, z))) · (id a #, lax_monoidal_functor_μ U (x, y ⊗ z)))).
2: { apply functor_comp. }
apply idpath.
}
repeat rewrite assoc.
apply cancel_postcomposition.
etrans.
{ apply cancel_postcomposition.
apply pathsinv0.
apply pentagon_eq_A.
}
repeat rewrite assoc'.
apply maponpaths.
etrans.
{ apply pathsinv0.
apply (nat_trans_ax α_A ((a, U x), U y ⊗_A U z) ((a, U x), U (y ⊗ z)) ((id a ,, id U x) ,, lax_monoidal_functor_μ U (y, z))).
}
cbn. unfold make_dirprod.
apply cancel_postcomposition.
change (# tensor_A (# tensor_A (id (a, U x)) #, lax_monoidal_functor_μ U (y, z)) = # tensor_A (id (a ⊗_A U x) #, lax_monoidal_functor_μ U (y, z))).
rewrite functor_id.
apply idpath.
Qed.
Definition U_action : action Mon_A.
∃ otimes_U_functor.
∃ U_action_ρ.
∃ U_action_χ.
split.
- exact U_action_tlaw.
- exact U_action_plaw.
Defined.
End Strong_Monoidal_Functor_Action.
End A.
Arguments act_odot {_ _} _.
Arguments act_ϱ {_ _} _.
Arguments act_χ {_ _} _.
Arguments act_triangle {_ _} _.
Arguments act_pentagon {_ _} _.