Library UniMath.CategoryTheory.CommaCategories

**********************************************************
Benedikt Ahrens March 2016, Anthony Bordg May 2017
**********************************************************
Contents :

Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Local Open Scope cat.

Section const_comma_category_definition.

Context (M C : category) (K : functor M C) (c : C).

Definition ccomma_object : UU := m, Cc, K m.
Definition ccomma_morphism (a b : ccomma_object) : UU
  := f : _ pr1 a, pr1 b, pr2 a · #K f = pr2 b.

Definition isaset_ccomma_morphism a b : isaset (ccomma_morphism a b).
Proof.
  apply (isofhleveltotal2 2).
  - apply homset_property.
  - intro.
    apply hlevelntosn.
    apply homset_property.
Qed.

Definition cComma_mor_eq a b (f f' : ccomma_morphism a b)
  : pr1 f = pr1 f' f = f'.
Proof.
  intro H.
  apply subtypePath.
  intro. apply homset_property.
  exact H.
Qed.

Definition ccomma_id a : ccomma_morphism a a.
Proof.
   (identity _ ).
  abstract (
  intermediate_path (pr2 a · identity _ );
   [ apply maponpaths; apply functor_id |];
  apply id_right
  ).
Defined.

Definition ccomma_comp a b d :
  ccomma_morphism a b ccomma_morphism b d ccomma_morphism a d.
Proof.
  intros f g.
   (pr1 f · pr1 g).
  abstract (
  rewrite functor_comp;
  rewrite assoc;
  rewrite (pr2 f);
  apply (pr2 g)
   ).
Defined.

Definition ccomma_precategory_ob_mor : precategory_ob_mor.
Proof.
   ccomma_object.
  exact ccomma_morphism.
Defined.

Definition ccomma_precategory_data : precategory_data.
Proof.
   ccomma_precategory_ob_mor.
  split.
  - exact ccomma_id.
  - exact ccomma_comp.
Defined.

Definition is_precategory_ccomma_precategory_data
  : is_precategory ccomma_precategory_data.
Proof.
  repeat split.
  - intros. apply cComma_mor_eq.
    simpl. apply id_left.
  - intros. apply cComma_mor_eq.
    simpl. apply id_right.
  - intros. apply cComma_mor_eq.
    simpl. apply assoc.
  - intros. apply cComma_mor_eq.
    simpl. apply assoc'.
Qed.

Definition cComma_precat : precategory.
Proof.
   ccomma_precategory_data.
  exact is_precategory_ccomma_precategory_data.
Defined.

Lemma has_homsets_cComma_precat: has_homsets cComma_precat.
Proof.
  red.
  intros a b.
  apply isaset_total2.
  - apply homset_property.
  - intro.
    apply hlevelntosn.
    apply homset_property.
Qed.

Definition cComma : category := cComma_precat ,, has_homsets_cComma_precat.

Definition ccomma_pr1_functor_data : functor_data cComma M.
Proof.
   pr1.
  intros a b f. exact (pr1 f).
Defined.

Lemma is_functor_ccomma_pr1 : is_functor ccomma_pr1_functor_data.
Proof.
  split.
  - intro a. apply idpath.
  - intros ? ? ? ? ?. apply idpath.
Qed.

Definition cComma_pr1 : cComma M := tpair _ _ is_functor_ccomma_pr1.

End const_comma_category_definition.

Section lemmas_on_const_comma_cats.

Context (M C : category).

Local Notation "c ↓ K" := (cComma _ _ K c) (at level 3).

Context (K : functor M C).
Context {c c' : C}.
Context (h : C c, c').

Definition cComma_mor_ob : c' K c K.
Proof.
  intro af.
   (pr1 af).
  exact (h · pr2 af).
Defined.

Definition cComma_mor_mor (af af' : c' K) (g : c' K af, af')
  : c K cComma_mor_ob af, cComma_mor_ob af'.
Proof.
   (pr1 g).
  abstract (
    simpl;
    rewrite <- assoc;
    rewrite (pr2 g);
    apply idpath
    ).
Defined.

Definition cComma_mor_functor_data : functor_data (c' K) (c K).
Proof.
   cComma_mor_ob.
  exact cComma_mor_mor.
Defined.

Lemma is_functor_cComma_mor_functor_data : is_functor cComma_mor_functor_data.
Proof.
  split.
  - intro. apply cComma_mor_eq.
    apply idpath.
  - intros ? ? ? ? ?. apply cComma_mor_eq.
    apply idpath.
Qed.

Definition functor_cComma_mor : c' K c K := tpair _ _ is_functor_cComma_mor_functor_data.

End lemmas_on_const_comma_cats.

The general comma categories


Section general_comma_categories.

Local Open Scope cat.

Context {C D E: category}.
Variable S : D C.
Variable T : E C.

Local Open Scope type_scope.
Local Open Scope cat.

Definition comma_cat_ob : UU := ed : ob E × ob D, CT (pr1 ed), S (pr2 ed).

Definition comma_cat_mor : comma_cat_ob comma_cat_ob UU :=
  λ abf : comma_cat_ob,
    (λ cdg : comma_cat_ob,
              kh : Epr1 (pr1 abf), pr1 (pr1 cdg) × Dpr2 (pr1 abf), pr2 (pr1 cdg), pr2 (abf) · #S(pr2 kh) = #T(pr1 kh) · pr2 (cdg)).

Definition comma_cat_ob_mor : precategory_ob_mor := make_precategory_ob_mor comma_cat_ob comma_cat_mor.

Definition comma_cat_id : edf : comma_cat_ob_mor, comma_cat_ob_mor edf, edf .
Proof.
  intro edf. cbn.
   (make_dirprod (identity (pr1 (pr1 edf))) (identity (pr2 (pr1 edf)))). cbn.
  abstract (
    rewrite 2 functor_id;
    rewrite id_right;
    rewrite id_left;
    apply idpath
    ).
Defined.

Definition comma_cat_comp : uvf xyg zwh : comma_cat_ob, comma_cat_mor uvf xyg comma_cat_mor xyg zwh comma_cat_mor uvf zwh.
Proof.
  intros uvf xyg zwh ijp klq.
   (make_dirprod (pr1 (pr1 ijp) · pr1 (pr1 klq)) (pr2 (pr1 ijp) · pr2 (pr1 klq))).
  abstract (
    cbn;
    rewrite 2 functor_comp;
    rewrite assoc;
    rewrite (pr2 ijp);
    rewrite <- assoc;
    rewrite (pr2 klq);
    rewrite assoc;
    apply idpath
    ).
Defined.

Definition comma_cat_id_comp : precategory_id_comp comma_cat_ob_mor := make_dirprod comma_cat_id comma_cat_comp.

Definition comma_cat_data : precategory_data := tpair _ comma_cat_ob_mor comma_cat_id_comp.

Definition comma_cat_data_id_left : (abf cdg : comma_cat_data) (hkp : abf --> cdg), identity abf · hkp = hkp .
Proof.
  intros abf cdg hkp.
  use total2_paths2_f.
  - use total2_paths2.
    + cbn. apply id_left.
    + cbn. apply id_left.
  - cbn. apply (homset_property C).
Qed.

Definition comma_cat_data_id_right : (abf cdg : comma_cat_data) (hkp : abf --> cdg), hkp · identity cdg = hkp .
Proof.
  intros abf cdg hkp.
  use total2_paths2_f.
  - use total2_paths2.
    + cbn. apply id_right.
    + cbn. apply id_right.
  - cbn. apply (homset_property C).
Qed.

Definition comma_cat_data_assoc :
   (stf uvg xyh zwi : comma_cat_data) (jkp : stf --> uvg) (lmq : uvg --> xyh) (nor : xyh --> zwi), jkp · (lmq · nor) = (jkp · lmq) · nor .
Proof.
  intros stf uvg xyh zwi jkp lmq nor.
  use total2_paths2_f.
  - use total2_paths2.
    + cbn. apply assoc.
    + cbn. apply assoc.
  - apply (homset_property C).
Qed.

Definition comma_cat_data_assoc' :
   (stf uvg xyh zwi : comma_cat_data) (jkp : stf --> uvg) (lmq : uvg --> xyh) (nor : xyh --> zwi), (jkp · lmq) · nor = jkp · (lmq · nor).
Proof.
  intros stf uvg xyh zwi jkp lmq nor.
  use total2_paths2_f.
  - use total2_paths2.
    + cbn. apply assoc'.
    + cbn. apply assoc'.
  - apply (homset_property C).
Qed.

Definition is_precategory_comma_cat_data : is_precategory comma_cat_data :=
  make_is_precategory comma_cat_data_id_left comma_cat_data_id_right comma_cat_data_assoc comma_cat_data_assoc'.

Definition comma_precategory : precategory := make_precategory comma_cat_data is_precategory_comma_cat_data.

Lemma has_homsets_comma_precat : has_homsets comma_precategory.
Proof.
  unfold has_homsets, comma_precategory.
  cbn; unfold comma_cat_ob, comma_cat_mor; cbn.
  intros ? ?.
  apply isaset_total2.
  - apply isaset_dirprod; apply homset_property.
  - intro.
    apply hlevelntosn.
    apply homset_property.
Qed.

Definition comma_category : category := comma_precategory ,, has_homsets_comma_precat.

Projection functors


Definition comma_domain : comma_category E.
Proof.
  use make_functor.
  - use make_functor_data.
    + intros uvf; exact (dirprod_pr1 (pr1 uvf)).
    + intros ? ? mor; exact (dirprod_pr1 (pr1 mor)).
  - abstract ( use make_dirprod; [intro; apply idpath | intros ? ? ? ? ?; apply idpath] ).
Defined.

Definition comma_codomain : comma_category D.
Proof.
  use make_functor.
  - use make_functor_data.
    + intros uvf; exact (dirprod_pr2 (pr1 uvf)).
    + intros ? ? mor; exact (dirprod_pr2 (pr1 mor)).
  - abstract ( use make_dirprod; [intro; apply idpath | intros ? ? ? ? ?; apply idpath] ).
Defined.

End general_comma_categories.