Library UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOfDispCats
Bicategories
Benedikt Ahrens, Marco Maggesi February 2018Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
Require Import UniMath.CategoryTheory.DisplayedCats.Fibrations.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.DisplayedCats.Auxiliary.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.FullSub.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sigma.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.
Local Open Scope cat.
Local Open Scope mor_disp_scope.
Definition disp_bicat_of_univ_disp_cats_disp_cat_data
: disp_cat_data bicat_of_univ_cats.
Proof.
use tpair.
- use tpair.
+ exact (λ C : univalent_category, disp_univalent_category C).
+ intros C C' D D' F.
exact (disp_functor F D D').
- use tpair; cbn.
+ intros C D.
apply disp_functor_identity.
+ cbn. intros C C' C'' F F' D D' D'' G G'.
apply (disp_functor_composite G G').
Defined.
Definition disp_bicat_of_univ_disp_cats_1_id_comp_cells
: disp_prebicat_1_id_comp_cells bicat_of_univ_cats.
Proof.
∃ disp_bicat_of_univ_disp_cats_disp_cat_data.
cbn. intros C C' F F' a D D' G G'. cbn in ×.
apply (disp_nat_trans a G G').
Defined.
Definition disp_prebicat_of_univ_disp_cats_data : disp_prebicat_data bicat_of_univ_cats.
Proof.
∃ disp_bicat_of_univ_disp_cats_1_id_comp_cells.
repeat split.
- intros ? ? ? ? ? F' ; cbn in ×.
exact (disp_nat_trans_id F').
- intros ? ? ? ? ? F' ; cbn in ×.
exact (disp_nat_trans_id F').
- intros ? ? ? ? ? F' ; cbn in ×.
exact (disp_nat_trans_id F').
- intros ? ? ? ? ? F' ; cbn in ×.
exact (disp_nat_trans_id F').
- intros ? ? ? ? ? F' ; cbn in ×.
exact (disp_nat_trans_id F').
- intros ? ? ? ? ? ? ? ? ? ? ? ? ? F' ; cbn in ×.
exact (disp_nat_trans_id (disp_functor_composite_data (disp_functor_composite ff gg) F')).
- intros ? ? ? ? ? ? ? ? ? ? ? ? ? F' ; cbn in ×.
exact (disp_nat_trans_id (disp_functor_composite_data (disp_functor_composite ff gg) F')).
- intros C D ? ? ? ? ? ? ? ? ? ? rr ss ; cbn in ×.
exact (@disp_nat_trans_comp C _ _ _ _ _ _ _ _ _ _ _ rr ss).
- intros C₁ C₂ C₃ f g₁ g₂ r D₁ D₂ D₃ ff gg₁ gg₂ rr ; cbn in ×.
exact (@pre_whisker_disp_nat_trans C₁ C₂ _ _ _ _ _ _ _ _ _ _ _ rr).
- intros C₁ C₂ C₃ ? ? ? ? ? ? ? ? ? ? rr ; cbn in ×.
exact (@post_whisker_disp_nat_trans C₁ C₂ _ _ _ _ _ _ _ _ _ _ rr _).
Defined.
Lemma disp_prebicat_of_univ_disp_cats_laws
: disp_prebicat_laws disp_prebicat_of_univ_disp_cats_data.
Proof.
repeat split ; red
; intros; intros
; apply (@disp_nat_trans_eq)
; intros ; apply pathsinv0
; unfold transportb
; (etrans ; [ apply disp_nat_trans_transportf | ]).
- apply pathsinv0.
etrans. apply id_left_disp.
apply pathsinv0; unfold transportb.
apply maponpaths_2. apply homset_property.
- apply pathsinv0.
etrans. apply id_right_disp.
apply pathsinv0; unfold transportb.
apply maponpaths_2. apply homset_property.
- apply pathsinv0.
etrans. apply assoc_disp.
apply pathsinv0; unfold transportb.
apply maponpaths_2. apply homset_property.
- apply transportf_set. apply homset_property.
- apply pathsinv0.
etrans.
{
cbn.
apply disp_functor_id.
}
unfold transportb.
apply maponpaths_2. apply homset_property.
- apply transportf_set. apply homset_property.
- cbn.
etrans.
{
apply maponpaths.
apply disp_functor_comp.
}
etrans. apply transport_f_f.
apply transportf_set. apply homset_property.
- cbn.
etrans.
{
apply maponpaths.
apply id_left_disp.
}
etrans. apply transport_f_f.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
etrans. apply maponpaths. apply id_left_disp.
etrans. apply transport_f_f.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
etrans.
{
apply maponpaths.
apply id_left_disp.
}
etrans. apply transport_f_f.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
etrans. apply maponpaths. apply id_left_disp.
etrans. apply transport_f_f.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
etrans. apply maponpaths. apply id_right_disp.
etrans. apply transport_f_f.
apply pathsinv0.
etrans. apply id_left_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
set (RR := @disp_nat_trans_ax_var _ _ _ _ _ _ _ _ _ φφ).
etrans. apply maponpaths. apply RR.
etrans. apply transport_f_f.
apply transportf_set. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply id_right_disp.
unfold transportb. apply maponpaths_2. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply id_left_disp.
etrans. apply maponpaths. apply disp_functor_id.
etrans. apply transport_f_f.
apply maponpaths_2. apply homset_property.
- cbn.
apply pathsinv0.
etrans. apply assoc_disp_var.
etrans. apply maponpaths. apply id_left_disp.
etrans. apply transport_f_f.
etrans. apply maponpaths. apply id_left_disp.
etrans. apply transport_f_f.
etrans. apply maponpaths. apply disp_functor_id.
etrans. apply transport_f_f.
apply pathsinv0.
etrans. apply maponpaths. apply id_left_disp.
etrans. apply transport_f_f.
apply maponpaths_2. apply homset_property.
Qed.
Definition disp_prebicat_of_univ_disp_cats
: disp_prebicat bicat_of_univ_cats
:= _ ,, disp_prebicat_of_univ_disp_cats_laws.
Definition disp_bicat_of_univ_disp_cats : disp_bicat bicat_of_univ_cats.
Proof.
use tpair.
- exact disp_prebicat_of_univ_disp_cats.
- abstract
(intros C₁ C₂ F₁ F₂ n D₁ D₂ FF₁ FF₂ ;
simpl in × ;
cbn ;
exact (isaset_disp_nat_trans C₁ C₂ D₁ D₂ F₁ F₂ n FF₁ FF₂)).
Defined.
Condition for displayed invertible 2-cells in this bicategory
Definition disp_bicat_of_univ_disp_cats_is_disp_invertible_2cell_natural
{C C' : category}
{F : C ⟶ C'}
{D : disp_cat C} {D' : disp_cat C'}
{FF : disp_functor F D D'} {GG : disp_functor F D D'}
(αα : disp_nat_trans (nat_trans_id F) FF GG)
(Hαα : ∏ (x : C) (xx : D x),
is_iso_disp
(identity_iso (pr1 F x))
(pr1 αα x xx))
{x y : pr1 C}
{f : x --> y}
{xx : D x} {yy : D y}
(ff : xx -->[ f ] yy)
: # GG ff;; inv_mor_disp_from_iso (Hαα y yy)
=
transportb
(mor_disp (GG x xx) (FF y yy))
(is_nat_trans_id F x y f)
(inv_mor_disp_from_iso (Hαα x xx);; # FF ff).
Proof.
use (precomp_with_iso_disp_is_inj (make_iso_disp _ (Hαα x xx))).
simpl.
refine (assoc_disp _ _ _ @ _).
unfold transportb.
rewrite mor_disp_transportf_prewhisker.
rewrite assoc_disp.
refine (!_).
refine (transport_f_f _ _ _ _ @ _).
etrans.
{
apply maponpaths.
apply maponpaths_2.
apply (inv_mor_after_iso_disp (Hαα x xx)).
}
etrans.
{
apply maponpaths.
etrans.
{
apply mor_disp_transportf_postwhisker.
}
etrans.
{
apply maponpaths.
apply id_left_disp.
}
apply transport_f_f.
}
etrans.
{
apply transport_f_f.
}
assert (transportf
(mor_disp (FF x xx) (GG y yy)) (nat_trans_ax (nat_trans_id F) x y f)
(# FF ff;; pr1 αα y yy) =
pr1 αα x xx;; # GG ff)
as X.
{
apply transportf_transpose_left.
exact (pr2 αα x y f xx yy ff).
}
refine (!_).
apply transportf_transpose_left.
etrans.
{
apply maponpaths_2.
exact (!X).
}
rewrite mor_disp_transportf_postwhisker.
etrans.
{
etrans.
{
apply maponpaths.
etrans.
{
apply assoc_disp_var.
}
etrans.
{
apply maponpaths.
etrans.
{
apply maponpaths.
apply (inv_mor_after_iso_disp (Hαα y yy)).
}
etrans.
{
apply mor_disp_transportf_prewhisker.
}
etrans.
{
apply maponpaths.
apply id_right_disp.
}
apply transport_f_f.
}
apply transport_f_f.
}
apply transport_f_f.
}
refine (!_).
etrans.
{
apply transport_f_f.
}
apply transportf_paths.
apply C'.
Qed.
Definition disp_bicat_of_univ_disp_cats_is_disp_invertible_2cell
{C C' : bicat_of_univ_cats}
{F : C --> C'}
{D : disp_bicat_of_univ_disp_cats C}
{D' : disp_bicat_of_univ_disp_cats C'}
{FF : D -->[ F ] D'} {GG : D -->[ F ] D'}
(αα : FF ==>[ id₂ F ] GG)
(Hαα : ∏ (x : (C : univalent_category)) (xx : pr1 D x),
is_iso_disp
(identity_iso (pr1 F x))
(pr1 αα x xx))
: is_disp_invertible_2cell (id2_invertible_2cell F) αα.
Proof.
use tpair.
- use tpair.
+ intros x xx ; cbn.
exact (inv_mor_disp_from_iso (Hαα x xx)).
+ intros x xx y yy f ff ; cbn in ×.
apply (@disp_bicat_of_univ_disp_cats_is_disp_invertible_2cell_natural
C C').
- split.
+ abstract
(cbn ;
simpl in × ;
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (inv_mor_after_iso_disp (Hαα x xx) @ _) ;
refine (!_) ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
+ abstract
(cbn ;
simpl in × ;
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (iso_disp_after_inv_mor (Hαα x xx) @ _) ;
refine (!_) ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
Defined.
Definition disp_bicat_of_fibs_ob_mor
: disp_cat_ob_mor (total_bicat disp_bicat_of_univ_disp_cats).
Proof.
use tpair.
- exact (λ X, cleaving (pr12 X)).
- exact (λ X Y fibX fibY F, is_cartesian_disp_functor (pr2 F)).
Defined.
Definition disp_bicat_of_fibs_id_comp
: disp_cat_id_comp (total_bicat disp_bicat_of_univ_disp_cats) disp_bicat_of_fibs_ob_mor.
Proof.
use tpair.
- intros X fibX x y f xx yy ff p.
exact p.
- intros X Y Z F G fibX fibY fibZ cartF cartG x y f xx yy ff p ; simpl.
apply cartG.
apply cartF.
exact p.
Qed.
Definition disp_bicat_of_fibs_cat_data
: disp_cat_data (total_bicat disp_bicat_of_univ_disp_cats).
Proof.
use tpair.
- exact disp_bicat_of_fibs_ob_mor.
- exact disp_bicat_of_fibs_id_comp.
Defined.
Definition disp_bicat_of_fibs_help
: disp_bicat (total_bicat disp_bicat_of_univ_disp_cats).
Proof.
use disp_cell_unit_bicat.
exact disp_bicat_of_fibs_cat_data.
Defined.
Definition disp_bicat_of_fibs
: disp_bicat bicat_of_univ_cats
:= sigma_bicat
bicat_of_univ_cats
disp_bicat_of_univ_disp_cats
disp_bicat_of_fibs_help.
Definition disp_bicat_of_fibs_is_disp_invertible_2cell
{C C' : bicat_of_univ_cats}
{F : C --> C'}
{D : disp_bicat_of_fibs C} {D' : disp_bicat_of_fibs C'}
{FF : D -->[ F ] D'} {GG : D -->[ F ] D'}
(αα : FF ==>[ id₂ F ] GG)
(Hαα : ∏ (x : (C : univalent_category)) (xx : pr11 D x),
is_iso_disp
(identity_iso (pr1 F x))
(pr11 αα x xx))
: is_disp_invertible_2cell (id2_invertible_2cell F) αα.
Proof.
use tpair.
- refine (_ ,, tt).
use tpair.
+ intros x xx ; cbn.
exact (inv_mor_disp_from_iso (Hαα x xx)).
+ intros x xx y yy f ff ; cbn in ×.
apply (@disp_bicat_of_univ_disp_cats_is_disp_invertible_2cell_natural
C C').
- split.
+ abstract
(cbn ;
simpl in × ;
use subtypePath ; [intro ; apply isapropunit | ];
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (inv_mor_after_iso_disp (Hαα x xx) @ _) ;
refine (!_) ;
unfold transportb ;
rewrite pr1_transportf ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
+ abstract
(cbn ;
simpl in × ;
use subtypePath ; [intro ; apply isapropunit | ];
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (iso_disp_after_inv_mor (Hαα x xx) @ _) ;
refine (!_) ;
unfold transportb ;
rewrite pr1_transportf ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
Defined.
Definition disp_bicat_of_fibs_disp_invertible_2cell_pointwise_inv
{C C' : bicat_of_univ_cats}
{F G : C --> C'}
{α : F ==> G}
(Hα : is_invertible_2cell α)
{D : disp_bicat_of_fibs C} {D' : disp_bicat_of_fibs C'}
{FF : D -->[ F ] D'} {GG : D -->[ G ] D'}
(αα : FF ==>[ α ] GG)
(Hαα : is_disp_invertible_2cell Hα αα)
{x : (C : univalent_category)}
(xx : (pr1 D : disp_univalent_category _) x)
: is_iso_disp
(make_iso
(pr1 α x)
(is_invertible_2cell_to_is_nat_iso _ Hα x))
(pr11 αα x xx).
Proof.
simple refine (_ ,, _).
- exact (transportf
(λ z, _ -->[ z ] _)
(!(id_right _))
(pr111 Hαα x xx)).
- split.
+ abstract
(unfold transportb ;
etrans ; [ apply mor_disp_transportf_postwhisker | ] ;
etrans ; [ apply maponpaths ; apply (maponpaths (λ z, pr11 z x xx) (pr22 Hαα)) |] ;
unfold transportb ;
etrans ;
[ apply maponpaths ;
refine (maponpaths (λ z, pr1 z x xx) _) ;
exact (pr1_transportf
(!(vcomp_linv Hα))
(disp_nat_trans_id (pr11 GG),, tt))
| ];
etrans ;
[ apply maponpaths ;
exact (disp_nat_trans_transportf
_ _ _ _ _ _ _ _
(!(vcomp_linv Hα))
_ _
(disp_nat_trans_id (pr11 GG))
x xx)
| ] ;
etrans ; [ apply transport_f_f | ] ;
apply maponpaths_2 ;
apply homset_property).
+ abstract
(unfold transportb ;
etrans ; [ apply mor_disp_transportf_prewhisker | ] ;
etrans ; [ apply maponpaths ; apply (maponpaths (λ z, pr11 z x xx) (pr12 Hαα)) |] ;
unfold transportb ;
etrans ;
[ apply maponpaths ;
refine (maponpaths (λ z, pr1 z x xx) _) ;
exact (pr1_transportf
(!(vcomp_rinv Hα))
(disp_nat_trans_id (pr11 FF),, tt))
| ] ;
etrans ;
[ apply maponpaths ;
exact (disp_nat_trans_transportf
_ _ _ _ _ _ _ _
(!(vcomp_rinv Hα))
_ _
(disp_nat_trans_id (pr11 FF))
x xx)
| ] ;
etrans ; [ apply transport_f_f | ] ;
apply maponpaths_2 ;
apply homset_property).
Defined.
{C C' : category}
{F : C ⟶ C'}
{D : disp_cat C} {D' : disp_cat C'}
{FF : disp_functor F D D'} {GG : disp_functor F D D'}
(αα : disp_nat_trans (nat_trans_id F) FF GG)
(Hαα : ∏ (x : C) (xx : D x),
is_iso_disp
(identity_iso (pr1 F x))
(pr1 αα x xx))
{x y : pr1 C}
{f : x --> y}
{xx : D x} {yy : D y}
(ff : xx -->[ f ] yy)
: # GG ff;; inv_mor_disp_from_iso (Hαα y yy)
=
transportb
(mor_disp (GG x xx) (FF y yy))
(is_nat_trans_id F x y f)
(inv_mor_disp_from_iso (Hαα x xx);; # FF ff).
Proof.
use (precomp_with_iso_disp_is_inj (make_iso_disp _ (Hαα x xx))).
simpl.
refine (assoc_disp _ _ _ @ _).
unfold transportb.
rewrite mor_disp_transportf_prewhisker.
rewrite assoc_disp.
refine (!_).
refine (transport_f_f _ _ _ _ @ _).
etrans.
{
apply maponpaths.
apply maponpaths_2.
apply (inv_mor_after_iso_disp (Hαα x xx)).
}
etrans.
{
apply maponpaths.
etrans.
{
apply mor_disp_transportf_postwhisker.
}
etrans.
{
apply maponpaths.
apply id_left_disp.
}
apply transport_f_f.
}
etrans.
{
apply transport_f_f.
}
assert (transportf
(mor_disp (FF x xx) (GG y yy)) (nat_trans_ax (nat_trans_id F) x y f)
(# FF ff;; pr1 αα y yy) =
pr1 αα x xx;; # GG ff)
as X.
{
apply transportf_transpose_left.
exact (pr2 αα x y f xx yy ff).
}
refine (!_).
apply transportf_transpose_left.
etrans.
{
apply maponpaths_2.
exact (!X).
}
rewrite mor_disp_transportf_postwhisker.
etrans.
{
etrans.
{
apply maponpaths.
etrans.
{
apply assoc_disp_var.
}
etrans.
{
apply maponpaths.
etrans.
{
apply maponpaths.
apply (inv_mor_after_iso_disp (Hαα y yy)).
}
etrans.
{
apply mor_disp_transportf_prewhisker.
}
etrans.
{
apply maponpaths.
apply id_right_disp.
}
apply transport_f_f.
}
apply transport_f_f.
}
apply transport_f_f.
}
refine (!_).
etrans.
{
apply transport_f_f.
}
apply transportf_paths.
apply C'.
Qed.
Definition disp_bicat_of_univ_disp_cats_is_disp_invertible_2cell
{C C' : bicat_of_univ_cats}
{F : C --> C'}
{D : disp_bicat_of_univ_disp_cats C}
{D' : disp_bicat_of_univ_disp_cats C'}
{FF : D -->[ F ] D'} {GG : D -->[ F ] D'}
(αα : FF ==>[ id₂ F ] GG)
(Hαα : ∏ (x : (C : univalent_category)) (xx : pr1 D x),
is_iso_disp
(identity_iso (pr1 F x))
(pr1 αα x xx))
: is_disp_invertible_2cell (id2_invertible_2cell F) αα.
Proof.
use tpair.
- use tpair.
+ intros x xx ; cbn.
exact (inv_mor_disp_from_iso (Hαα x xx)).
+ intros x xx y yy f ff ; cbn in ×.
apply (@disp_bicat_of_univ_disp_cats_is_disp_invertible_2cell_natural
C C').
- split.
+ abstract
(cbn ;
simpl in × ;
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (inv_mor_after_iso_disp (Hαα x xx) @ _) ;
refine (!_) ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
+ abstract
(cbn ;
simpl in × ;
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (iso_disp_after_inv_mor (Hαα x xx) @ _) ;
refine (!_) ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
Defined.
Definition disp_bicat_of_fibs_ob_mor
: disp_cat_ob_mor (total_bicat disp_bicat_of_univ_disp_cats).
Proof.
use tpair.
- exact (λ X, cleaving (pr12 X)).
- exact (λ X Y fibX fibY F, is_cartesian_disp_functor (pr2 F)).
Defined.
Definition disp_bicat_of_fibs_id_comp
: disp_cat_id_comp (total_bicat disp_bicat_of_univ_disp_cats) disp_bicat_of_fibs_ob_mor.
Proof.
use tpair.
- intros X fibX x y f xx yy ff p.
exact p.
- intros X Y Z F G fibX fibY fibZ cartF cartG x y f xx yy ff p ; simpl.
apply cartG.
apply cartF.
exact p.
Qed.
Definition disp_bicat_of_fibs_cat_data
: disp_cat_data (total_bicat disp_bicat_of_univ_disp_cats).
Proof.
use tpair.
- exact disp_bicat_of_fibs_ob_mor.
- exact disp_bicat_of_fibs_id_comp.
Defined.
Definition disp_bicat_of_fibs_help
: disp_bicat (total_bicat disp_bicat_of_univ_disp_cats).
Proof.
use disp_cell_unit_bicat.
exact disp_bicat_of_fibs_cat_data.
Defined.
Definition disp_bicat_of_fibs
: disp_bicat bicat_of_univ_cats
:= sigma_bicat
bicat_of_univ_cats
disp_bicat_of_univ_disp_cats
disp_bicat_of_fibs_help.
Definition disp_bicat_of_fibs_is_disp_invertible_2cell
{C C' : bicat_of_univ_cats}
{F : C --> C'}
{D : disp_bicat_of_fibs C} {D' : disp_bicat_of_fibs C'}
{FF : D -->[ F ] D'} {GG : D -->[ F ] D'}
(αα : FF ==>[ id₂ F ] GG)
(Hαα : ∏ (x : (C : univalent_category)) (xx : pr11 D x),
is_iso_disp
(identity_iso (pr1 F x))
(pr11 αα x xx))
: is_disp_invertible_2cell (id2_invertible_2cell F) αα.
Proof.
use tpair.
- refine (_ ,, tt).
use tpair.
+ intros x xx ; cbn.
exact (inv_mor_disp_from_iso (Hαα x xx)).
+ intros x xx y yy f ff ; cbn in ×.
apply (@disp_bicat_of_univ_disp_cats_is_disp_invertible_2cell_natural
C C').
- split.
+ abstract
(cbn ;
simpl in × ;
use subtypePath ; [intro ; apply isapropunit | ];
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (inv_mor_after_iso_disp (Hαα x xx) @ _) ;
refine (!_) ;
unfold transportb ;
rewrite pr1_transportf ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
+ abstract
(cbn ;
simpl in × ;
use subtypePath ; [intro ; apply isapropunit | ];
use (@disp_nat_trans_eq C C') ;
intros x xx ; cbn ;
refine (iso_disp_after_inv_mor (Hαα x xx) @ _) ;
refine (!_) ;
unfold transportb ;
rewrite pr1_transportf ;
refine (disp_nat_trans_transportf
_ _ _ _ _ _
_ _
(!(@id2_left bicat_of_univ_cats _ _ _ _ (nat_trans_id F)))
_ _ _ _ _
@ _) ;
apply transportf_paths ;
apply homset_property).
Defined.
Definition disp_bicat_of_fibs_disp_invertible_2cell_pointwise_inv
{C C' : bicat_of_univ_cats}
{F G : C --> C'}
{α : F ==> G}
(Hα : is_invertible_2cell α)
{D : disp_bicat_of_fibs C} {D' : disp_bicat_of_fibs C'}
{FF : D -->[ F ] D'} {GG : D -->[ G ] D'}
(αα : FF ==>[ α ] GG)
(Hαα : is_disp_invertible_2cell Hα αα)
{x : (C : univalent_category)}
(xx : (pr1 D : disp_univalent_category _) x)
: is_iso_disp
(make_iso
(pr1 α x)
(is_invertible_2cell_to_is_nat_iso _ Hα x))
(pr11 αα x xx).
Proof.
simple refine (_ ,, _).
- exact (transportf
(λ z, _ -->[ z ] _)
(!(id_right _))
(pr111 Hαα x xx)).
- split.
+ abstract
(unfold transportb ;
etrans ; [ apply mor_disp_transportf_postwhisker | ] ;
etrans ; [ apply maponpaths ; apply (maponpaths (λ z, pr11 z x xx) (pr22 Hαα)) |] ;
unfold transportb ;
etrans ;
[ apply maponpaths ;
refine (maponpaths (λ z, pr1 z x xx) _) ;
exact (pr1_transportf
(!(vcomp_linv Hα))
(disp_nat_trans_id (pr11 GG),, tt))
| ];
etrans ;
[ apply maponpaths ;
exact (disp_nat_trans_transportf
_ _ _ _ _ _ _ _
(!(vcomp_linv Hα))
_ _
(disp_nat_trans_id (pr11 GG))
x xx)
| ] ;
etrans ; [ apply transport_f_f | ] ;
apply maponpaths_2 ;
apply homset_property).
+ abstract
(unfold transportb ;
etrans ; [ apply mor_disp_transportf_prewhisker | ] ;
etrans ; [ apply maponpaths ; apply (maponpaths (λ z, pr11 z x xx) (pr12 Hαα)) |] ;
unfold transportb ;
etrans ;
[ apply maponpaths ;
refine (maponpaths (λ z, pr1 z x xx) _) ;
exact (pr1_transportf
(!(vcomp_rinv Hα))
(disp_nat_trans_id (pr11 FF),, tt))
| ] ;
etrans ;
[ apply maponpaths ;
exact (disp_nat_trans_transportf
_ _ _ _ _ _ _ _
(!(vcomp_rinv Hα))
_ _
(disp_nat_trans_id (pr11 FF))
x xx)
| ] ;
etrans ; [ apply transport_f_f | ] ;
apply maponpaths_2 ;
apply homset_property).
Defined.