Library UniMath.CategoryTheory.slicecat
**********************************************************
Anders Mörtberg, Benedikt Ahrens, 2015-2016
**********************************************************
Contents:
- Definition of slice precategories, C/x (assumes that C has homsets)
- Proof that the forgetful functor slicecat_to_cat : C/x → C is
a left adjoint if C has binary products (is_left_adjoint_slicecat_to_cat)
- Proof that C/x is a univalent_category if C is
- Proof that any morphism Cx,y induces a functor from C/x to C/y
(slicecat_functor)
- Colimits in slice categories (slice_precat_colims)
- Binary products in slice categories of categories with pullbacks
(BinProducts_slice_precat)
- Binary coproducts in slice categories of categories with binary
coproducts (BinCoproducts_slice_precat)
- Coproducts in slice categories of categories with coproducts
(Coproducts_slice_precat)
- Initial object in slice categories with initial object
(Initial_slice_precat)
- Terminal object in slice categories (Terminal_slice_precat)
- Base change functor (base_change_functor) and proof that it is right adjoint to slicecat_functor
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.MoreFoundations.Univalence.
Require Import UniMath.CategoryTheory.Categories.
Require Import UniMath.CategoryTheory.functor_categories.
Require Import UniMath.CategoryTheory.limits.graphs.limits.
Require Import UniMath.CategoryTheory.limits.graphs.colimits.
Require Import UniMath.CategoryTheory.limits.pullbacks.
Require Import UniMath.CategoryTheory.limits.binproducts.
Require Import UniMath.CategoryTheory.limits.bincoproducts.
Require Import UniMath.CategoryTheory.limits.coproducts.
Require Import UniMath.CategoryTheory.limits.initial.
Require Import UniMath.CategoryTheory.limits.terminal.
Require Import UniMath.CategoryTheory.Adjunctions.
Require Import UniMath.CategoryTheory.exponentials.
Local Open Scope cat.
Definition of slice categories
Given a category C and x : obj C. The slice category C/x is given by:- obj C/x: pairs (a,f) where f : a -> x
- morphism (a,f) -> (b,g): morphism h : a -> b with
h a - - -> b | / | / f | / g | / v x
where h · g = f
Section slice_precat_def.
Context (C : precategory) (x : C).
Definition slicecat_ob := total2 (λ a, C⟦a,x⟧).
Definition slicecat_mor (f g : slicecat_ob) := total2 (λ h, pr2 f = h · pr2 g).
Definition slicecat_ob_object (f : slicecat_ob) : ob C := pr1 f.
Definition slicecat_ob_morphism (f : slicecat_ob) : C⟦slicecat_ob_object f, x⟧ := pr2 f.
Definition slicecat_mor_morphism {f g : slicecat_ob} (h : slicecat_mor f g) :
C⟦slicecat_ob_object f, slicecat_ob_object g⟧ := pr1 h.
Definition slicecat_mor_comm {f g : slicecat_ob} (h : slicecat_mor f g) :
(slicecat_ob_morphism f) = (slicecat_mor_morphism h) · (slicecat_ob_morphism g) := pr2 h.
Definition slice_precat_ob_mor : precategory_ob_mor := (slicecat_ob,,slicecat_mor).
Definition id_slice_precat (c : slice_precat_ob_mor) : c --> c :=
tpair _ _ (!(id_left (pr2 c))).
Definition comp_slice_precat_subproof {a b c : slice_precat_ob_mor}
(f : a --> b) (g : b --> c) : pr2 a = (pr1 f · pr1 g) · pr2 c.
Proof.
rewrite <- assoc, (!(pr2 g)).
exact (pr2 f).
Qed.
Definition comp_slice_precat (a b c : slice_precat_ob_mor)
(f : a --> b) (g : b --> c) : a --> c :=
(pr1 f · pr1 g,,comp_slice_precat_subproof _ _).
Definition slice_precat_data : precategory_data :=
precategory_data_pair _ id_slice_precat comp_slice_precat.
Lemma is_precategory_slice_precat_data (hsC : has_homsets C) :
is_precategory slice_precat_data.
Proof.
repeat split; simpl.
× intros a b f.
induction f as [h hP].
apply subtypePairEquality; [ intro; apply hsC | apply id_left ].
× intros a b f.
induction f as [h hP].
apply subtypePairEquality; [ intro; apply hsC | apply id_right ].
× intros a b c d f g h.
apply subtypePairEquality; [ intro; apply hsC | apply assoc ].
× intros a b c d f g h.
apply subtypePairEquality; [ intro; apply hsC | apply assoc' ].
Defined.
Definition slice_precat (hsC : has_homsets C) : precategory :=
(_,,is_precategory_slice_precat_data hsC).
End slice_precat_def.
Section slice_precat_theory.
Context {C : precategory} (hsC : has_homsets C) (x : C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma has_homsets_slice_precat : has_homsets (C / x).
Proof.
intros a b.
induction a as [a f]; induction b as [b g]; simpl.
apply (isofhleveltotal2 2); [ apply hsC | intro h].
apply isasetaprop; apply hsC.
Qed.
Lemma eq_mor_slicecat (af bg : C / x) (f g : C/x⟦af,bg⟧) : pr1 f = pr1 g → f = g.
Proof.
intro heq; apply (total2_paths_f heq); apply hsC.
Qed.
Lemma eq_iso_slicecat (af bg : C / x) (f g : iso af bg) : pr1 f = pr1 g → f = g.
Proof.
induction f as [f fP]; induction g as [g gP]; intro eq.
use (subtypePairEquality _ eq).
intro; apply isaprop_is_iso.
Qed.
Context (C : precategory) (x : C).
Definition slicecat_ob := total2 (λ a, C⟦a,x⟧).
Definition slicecat_mor (f g : slicecat_ob) := total2 (λ h, pr2 f = h · pr2 g).
Definition slicecat_ob_object (f : slicecat_ob) : ob C := pr1 f.
Definition slicecat_ob_morphism (f : slicecat_ob) : C⟦slicecat_ob_object f, x⟧ := pr2 f.
Definition slicecat_mor_morphism {f g : slicecat_ob} (h : slicecat_mor f g) :
C⟦slicecat_ob_object f, slicecat_ob_object g⟧ := pr1 h.
Definition slicecat_mor_comm {f g : slicecat_ob} (h : slicecat_mor f g) :
(slicecat_ob_morphism f) = (slicecat_mor_morphism h) · (slicecat_ob_morphism g) := pr2 h.
Definition slice_precat_ob_mor : precategory_ob_mor := (slicecat_ob,,slicecat_mor).
Definition id_slice_precat (c : slice_precat_ob_mor) : c --> c :=
tpair _ _ (!(id_left (pr2 c))).
Definition comp_slice_precat_subproof {a b c : slice_precat_ob_mor}
(f : a --> b) (g : b --> c) : pr2 a = (pr1 f · pr1 g) · pr2 c.
Proof.
rewrite <- assoc, (!(pr2 g)).
exact (pr2 f).
Qed.
Definition comp_slice_precat (a b c : slice_precat_ob_mor)
(f : a --> b) (g : b --> c) : a --> c :=
(pr1 f · pr1 g,,comp_slice_precat_subproof _ _).
Definition slice_precat_data : precategory_data :=
precategory_data_pair _ id_slice_precat comp_slice_precat.
Lemma is_precategory_slice_precat_data (hsC : has_homsets C) :
is_precategory slice_precat_data.
Proof.
repeat split; simpl.
× intros a b f.
induction f as [h hP].
apply subtypePairEquality; [ intro; apply hsC | apply id_left ].
× intros a b f.
induction f as [h hP].
apply subtypePairEquality; [ intro; apply hsC | apply id_right ].
× intros a b c d f g h.
apply subtypePairEquality; [ intro; apply hsC | apply assoc ].
× intros a b c d f g h.
apply subtypePairEquality; [ intro; apply hsC | apply assoc' ].
Defined.
Definition slice_precat (hsC : has_homsets C) : precategory :=
(_,,is_precategory_slice_precat_data hsC).
End slice_precat_def.
Section slice_precat_theory.
Context {C : precategory} (hsC : has_homsets C) (x : C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma has_homsets_slice_precat : has_homsets (C / x).
Proof.
intros a b.
induction a as [a f]; induction b as [b g]; simpl.
apply (isofhleveltotal2 2); [ apply hsC | intro h].
apply isasetaprop; apply hsC.
Qed.
Lemma eq_mor_slicecat (af bg : C / x) (f g : C/x⟦af,bg⟧) : pr1 f = pr1 g → f = g.
Proof.
intro heq; apply (total2_paths_f heq); apply hsC.
Qed.
Lemma eq_iso_slicecat (af bg : C / x) (f g : iso af bg) : pr1 f = pr1 g → f = g.
Proof.
induction f as [f fP]; induction g as [g gP]; intro eq.
use (subtypePairEquality _ eq).
intro; apply isaprop_is_iso.
Qed.
It suffices that the underlying morphism is an iso to get an iso in
the slice category
Lemma iso_to_slice_precat_iso (af bg : C / x) (h : af --> bg)
(isoh : is_iso (pr1 h)) : is_iso h.
Proof.
induction (is_z_iso_from_is_iso _ isoh) as [hinv [h1 h2]].
assert (pinv : hinv · pr2 af = pr2 bg).
{ rewrite <- id_left, <- h2, <- assoc, (!(pr2 h)); apply idpath. }
apply is_iso_from_is_z_iso.
∃ (hinv,,!pinv).
split; (apply subtypePairEquality; [ intro; apply hsC |]); assumption.
Qed.
(isoh : is_iso (pr1 h)) : is_iso h.
Proof.
induction (is_z_iso_from_is_iso _ isoh) as [hinv [h1 h2]].
assert (pinv : hinv · pr2 af = pr2 bg).
{ rewrite <- id_left, <- h2, <- assoc, (!(pr2 h)); apply idpath. }
apply is_iso_from_is_z_iso.
∃ (hinv,,!pinv).
split; (apply subtypePairEquality; [ intro; apply hsC |]); assumption.
Qed.
An iso in the slice category gives an iso in the base category
Lemma slice_precat_iso_to_iso (af bg : C / x) (h : af --> bg)
(p : is_iso h) : is_iso (pr1 h).
Proof.
induction (is_z_iso_from_is_iso _ p) as [hinv [h1 h2]].
apply is_iso_from_is_z_iso.
∃ (pr1 hinv); split.
- apply (maponpaths pr1 h1).
- apply (maponpaths pr1 h2).
Qed.
Lemma weq_iso (af bg : C / x) :
weq (iso af bg) (total2 (fun h : iso (pr1 af) (pr1 bg) ⇒ pr2 af = h · pr2 bg)).
Proof.
apply (weqcomp (weqtotal2asstor _ _)).
apply invweq.
apply (weqcomp (weqtotal2asstor _ _)).
apply weqfibtototal; intro h; simpl.
apply (weqcomp (weqdirprodcomm _ _)).
apply weqfibtototal; intro p.
apply weqimplimpl; try apply isaprop_is_iso.
- intro hp; apply iso_to_slice_precat_iso; assumption.
- intro hp; apply (slice_precat_iso_to_iso _ _ _ hp).
Defined.
(p : is_iso h) : is_iso (pr1 h).
Proof.
induction (is_z_iso_from_is_iso _ p) as [hinv [h1 h2]].
apply is_iso_from_is_z_iso.
∃ (pr1 hinv); split.
- apply (maponpaths pr1 h1).
- apply (maponpaths pr1 h2).
Qed.
Lemma weq_iso (af bg : C / x) :
weq (iso af bg) (total2 (fun h : iso (pr1 af) (pr1 bg) ⇒ pr2 af = h · pr2 bg)).
Proof.
apply (weqcomp (weqtotal2asstor _ _)).
apply invweq.
apply (weqcomp (weqtotal2asstor _ _)).
apply weqfibtototal; intro h; simpl.
apply (weqcomp (weqdirprodcomm _ _)).
apply weqfibtototal; intro p.
apply weqimplimpl; try apply isaprop_is_iso.
- intro hp; apply iso_to_slice_precat_iso; assumption.
- intro hp; apply (slice_precat_iso_to_iso _ _ _ hp).
Defined.
The forgetful functor from C/x to C
Definition slicecat_to_cat : functor (C / x) C.
Proof.
use mk_functor.
+ use tpair.
- apply pr1.
- intros a b; apply pr1.
+ split.
- intro; apply idpath.
- red; intros; apply idpath.
Defined.
Proof.
use mk_functor.
+ use tpair.
- apply pr1.
- intros a b; apply pr1.
+ split.
- intro; apply idpath.
- red; intros; apply idpath.
Defined.
Right adjoint to slicecat_to_cat
Definition cat_to_slicecat (BPC : BinProducts C) : functor C (C / x).
Proof.
use mk_functor.
+ use tpair.
× intro y.
∃ (BinProductObject _ (BPC x y)).
apply BinProductPr1.
× intros A B f; cbn.
use tpair.
- apply (BinProductOfArrows _ _ _ (identity x) f).
- abstract (cbn; rewrite BinProductOfArrowsPr1, id_right; apply idpath).
+ split.
× intros A; apply eq_mor_slicecat;
apply pathsinv0, BinProductArrowUnique; rewrite id_left, id_right; apply idpath.
× intros a1 a2 a3 f1 f2; apply eq_mor_slicecat; simpl;
rewrite BinProductOfArrows_comp, id_right; apply idpath.
Defined.
Lemma is_left_adjoint_slicecat_to_cat (BPC : BinProducts C) :
is_left_adjoint slicecat_to_cat.
Proof.
∃ (cat_to_slicecat BPC).
use mk_are_adjoints.
+ use mk_nat_trans.
× simpl; intros F.
∃ (BinProductArrow _ _ (pr2 F) (identity _)); simpl.
abstract (rewrite BinProductPr1Commutes; apply idpath).
× intros Y Z F; apply eq_mor_slicecat; simpl.
rewrite postcompWithBinProductArrow.
apply BinProductArrowUnique.
- rewrite <- assoc, BinProductPr1Commutes, id_right, (pr2 F); apply idpath.
- rewrite <- assoc, BinProductPr2Commutes, id_left, id_right; apply idpath.
+ use mk_nat_trans.
× intros Y.
apply BinProductPr2.
× intros Y Z f; apply BinProductOfArrowsPr2.
+ split.
× intros Y; cbn.
rewrite BinProductPr2Commutes; apply idpath.
× intros Y; apply eq_mor_slicecat; cbn.
rewrite postcompWithBinProductArrow.
apply pathsinv0, BinProductArrowUnique; trivial.
rewrite id_right, id_left; apply idpath.
Defined.
End slice_precat_theory.
Proof.
use mk_functor.
+ use tpair.
× intro y.
∃ (BinProductObject _ (BPC x y)).
apply BinProductPr1.
× intros A B f; cbn.
use tpair.
- apply (BinProductOfArrows _ _ _ (identity x) f).
- abstract (cbn; rewrite BinProductOfArrowsPr1, id_right; apply idpath).
+ split.
× intros A; apply eq_mor_slicecat;
apply pathsinv0, BinProductArrowUnique; rewrite id_left, id_right; apply idpath.
× intros a1 a2 a3 f1 f2; apply eq_mor_slicecat; simpl;
rewrite BinProductOfArrows_comp, id_right; apply idpath.
Defined.
Lemma is_left_adjoint_slicecat_to_cat (BPC : BinProducts C) :
is_left_adjoint slicecat_to_cat.
Proof.
∃ (cat_to_slicecat BPC).
use mk_are_adjoints.
+ use mk_nat_trans.
× simpl; intros F.
∃ (BinProductArrow _ _ (pr2 F) (identity _)); simpl.
abstract (rewrite BinProductPr1Commutes; apply idpath).
× intros Y Z F; apply eq_mor_slicecat; simpl.
rewrite postcompWithBinProductArrow.
apply BinProductArrowUnique.
- rewrite <- assoc, BinProductPr1Commutes, id_right, (pr2 F); apply idpath.
- rewrite <- assoc, BinProductPr2Commutes, id_left, id_right; apply idpath.
+ use mk_nat_trans.
× intros Y.
apply BinProductPr2.
× intros Y Z f; apply BinProductOfArrowsPr2.
+ split.
× intros Y; cbn.
rewrite BinProductPr2Commutes; apply idpath.
× intros Y; apply eq_mor_slicecat; cbn.
rewrite postcompWithBinProductArrow.
apply pathsinv0, BinProductArrowUnique; trivial.
rewrite id_right, id_left; apply idpath.
Defined.
End slice_precat_theory.
Section slicecat_theory.
Context {C : precategory} (is_catC : is_univalent C) (x : C).
Local Notation "C / x" := (slice_precat C x (pr2 is_catC)).
Lemma id_weq_iso_slicecat (af bg : C / x) : (af = bg) ≃ (iso af bg).
Proof.
set (a := pr1 af); set (f := pr2 af); set (b := pr1 bg); set (g := pr2 bg).
assert (weq1 : weq (af = bg)
(total2 (fun (p : a = b) ⇒ transportf _ p (pr2 af) = g))).
apply (total2_paths_equiv _ af bg).
assert (weq2 : weq (total2 (fun (p : a = b) ⇒ transportf _ p (pr2 af) = g))
(total2 (fun (p : a = b) ⇒ idtoiso (! p) · f = g))).
apply weqfibtototal; intro p.
rewrite idtoiso_precompose.
apply idweq.
assert (weq3 : weq (total2 (fun (p : a = b) ⇒ idtoiso (! p) · f = g))
(total2 (λ h : iso a b, f = h · g))).
apply (weqbandf (weqpair _ ((pr1 is_catC) a b))); intro p.
rewrite idtoiso_inv; simpl.
apply weqimplimpl; simpl; try apply (pr2 is_catC); intro Hp.
rewrite <- Hp, assoc, iso_inv_after_iso, id_left; apply idpath.
rewrite Hp, assoc, iso_after_iso_inv, id_left; apply idpath.
assert (weq4 : weq (total2 (λ h : iso a b, f = h · g)) (iso af bg)).
apply invweq; apply weq_iso.
apply (weqcomp weq1 (weqcomp weq2 (weqcomp weq3 weq4))).
Defined.
Lemma is_univalent_slicecat : is_univalent (C / x).
Proof.
split; [| apply has_homsets_slice_precat]; simpl; intros a b.
set (h := id_weq_iso_slicecat a b).
apply (isweqhomot h); [intro p|induction h; trivial].
induction p.
apply eq_iso, eq_mor_slicecat, idpath.
Qed.
End slicecat_theory.
Context {C : precategory} (is_catC : is_univalent C) (x : C).
Local Notation "C / x" := (slice_precat C x (pr2 is_catC)).
Lemma id_weq_iso_slicecat (af bg : C / x) : (af = bg) ≃ (iso af bg).
Proof.
set (a := pr1 af); set (f := pr2 af); set (b := pr1 bg); set (g := pr2 bg).
assert (weq1 : weq (af = bg)
(total2 (fun (p : a = b) ⇒ transportf _ p (pr2 af) = g))).
apply (total2_paths_equiv _ af bg).
assert (weq2 : weq (total2 (fun (p : a = b) ⇒ transportf _ p (pr2 af) = g))
(total2 (fun (p : a = b) ⇒ idtoiso (! p) · f = g))).
apply weqfibtototal; intro p.
rewrite idtoiso_precompose.
apply idweq.
assert (weq3 : weq (total2 (fun (p : a = b) ⇒ idtoiso (! p) · f = g))
(total2 (λ h : iso a b, f = h · g))).
apply (weqbandf (weqpair _ ((pr1 is_catC) a b))); intro p.
rewrite idtoiso_inv; simpl.
apply weqimplimpl; simpl; try apply (pr2 is_catC); intro Hp.
rewrite <- Hp, assoc, iso_inv_after_iso, id_left; apply idpath.
rewrite Hp, assoc, iso_after_iso_inv, id_left; apply idpath.
assert (weq4 : weq (total2 (λ h : iso a b, f = h · g)) (iso af bg)).
apply invweq; apply weq_iso.
apply (weqcomp weq1 (weqcomp weq2 (weqcomp weq3 weq4))).
Defined.
Lemma is_univalent_slicecat : is_univalent (C / x).
Proof.
split; [| apply has_homsets_slice_precat]; simpl; intros a b.
set (h := id_weq_iso_slicecat a b).
apply (isweqhomot h); [intro p|induction h; trivial].
induction p.
apply eq_iso, eq_mor_slicecat, idpath.
Qed.
End slicecat_theory.
Section slicecat_functor_def.
Context {C : precategory} (hsC : has_homsets C) {x y : C} (f : C⟦x,y⟧).
Local Notation "C / X" := (slice_precat C X hsC).
Definition slicecat_functor_ob (af : C / x) : C / y :=
(pr1 af,,pr2 af · f).
Lemma slicecat_functor_subproof (af bg : C / x) (h : C/x⟦af,bg⟧) :
pr2 af · f = pr1 h · (pr2 bg · f).
Proof.
rewrite assoc, <- (pr2 h); apply idpath.
Qed.
Definition slicecat_functor_data : functor_data (C / x) (C / y) :=
tpair (λ F, ∏ a b, C/x⟦a,b⟧ → C/y⟦F a,F b⟧) slicecat_functor_ob
(λ a b h, (pr1 h,,slicecat_functor_subproof _ _ h)).
Lemma is_functor_slicecat_functor : is_functor slicecat_functor_data.
Proof.
split.
- intros a; apply eq_mor_slicecat, idpath.
- intros a b c g h; apply eq_mor_slicecat, idpath.
Qed.
Definition slicecat_functor : functor (C / x) (C / y) :=
(slicecat_functor_data,,is_functor_slicecat_functor).
End slicecat_functor_def.
Section slicecat_functor_theory.
Context {C : precategory} (hsC : has_homsets C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma slicecat_functor_identity_ob (x : C) :
slicecat_functor_ob hsC (identity x) = functor_identity (C / x).
Proof.
apply funextsec; intro af.
unfold slicecat_functor_ob.
rewrite id_right.
apply idpath.
Defined.
Lemma slicecat_functor_identity (x : C) :
slicecat_functor _ (identity x) = functor_identity (C / x).
Proof.
apply (functor_eq _ _ (has_homsets_slice_precat _ _)); simpl.
apply (two_arg_paths_f (slicecat_functor_identity_ob _)).
apply funextsec; intros [a f].
apply funextsec; intros [b g].
apply funextsec; intros [h hh].
rewrite transport_of_functor_map_is_pointwise; simpl in ×.
unfold double_transport. unfold slicecat_mor, slice_precat_ob_mor, slicecat_mor.
simpl.
rewrite transportf_total2.
apply subtypePairEquality; [intro; apply hsC | ].
rewrite transportf_total2; simpl.
unfold slicecat_functor_identity_ob.
rewrite toforallpaths_funextsec; simpl.
induction (id_right f).
induction (id_right g).
apply idpath.
Qed.
Lemma slicecat_functor_comp_ob {x y z : C} (f : C⟦x,y⟧) (g : C⟦y,z⟧) :
slicecat_functor_ob hsC (f · g) =
(λ a, slicecat_functor_ob hsC g (slicecat_functor_ob hsC f a)).
Proof.
apply funextsec; intro af.
unfold slicecat_functor_ob; rewrite assoc; apply idpath.
Defined.
Lemma slicecat_functor_comp {x y z : C} (f : C⟦x,y⟧) (g : C⟦y,z⟧) :
slicecat_functor hsC (f · g) =
functor_composite (slicecat_functor _ f) (slicecat_functor _ g).
Proof.
apply (functor_eq _ _ (has_homsets_slice_precat _ _)); simpl.
unfold slicecat_functor_data; simpl.
unfold functor_composite_data; simpl.
apply (two_arg_paths_f (slicecat_functor_comp_ob _ _)).
apply funextsec; intros [a fax].
apply funextsec; intros [b fbx].
apply funextsec; intros [h hh].
rewrite transport_of_functor_map_is_pointwise; simpl in ×.
unfold double_transport. unfold slicecat_mor, slice_precat_ob_mor, slicecat_mor.
simpl.
rewrite transportf_total2.
apply subtypePairEquality; [intro; apply hsC | ].
rewrite transportf_total2; simpl.
unfold slicecat_functor_comp_ob.
rewrite toforallpaths_funextsec; simpl.
assert (H1 : transportf (fun x : C / z ⇒ pr1 x --> b)
(Foundations.PartA.internal_paths_rew_r _ _ _
(λ p, tpair _ a p = tpair _ a _) (idpath (tpair _ a _))
(assoc fax f g)) h = h).
induction (assoc fax f g); apply idpath.
assert (H2 : ∏ h', h' = h →
transportf (fun x : C / z ⇒ a --> pr1 x)
(Foundations.PartA.internal_paths_rew_r _ _ _
(λ p, tpair _ b p = tpair _ b _) (idpath _)
(assoc fbx f g)) h' = h).
intros h' eq.
induction (assoc fbx f g); rewrite eq; apply idpath.
apply H2. exact H1.
Qed.
End slicecat_functor_theory.
Context {C : precategory} (hsC : has_homsets C) {x y : C} (f : C⟦x,y⟧).
Local Notation "C / X" := (slice_precat C X hsC).
Definition slicecat_functor_ob (af : C / x) : C / y :=
(pr1 af,,pr2 af · f).
Lemma slicecat_functor_subproof (af bg : C / x) (h : C/x⟦af,bg⟧) :
pr2 af · f = pr1 h · (pr2 bg · f).
Proof.
rewrite assoc, <- (pr2 h); apply idpath.
Qed.
Definition slicecat_functor_data : functor_data (C / x) (C / y) :=
tpair (λ F, ∏ a b, C/x⟦a,b⟧ → C/y⟦F a,F b⟧) slicecat_functor_ob
(λ a b h, (pr1 h,,slicecat_functor_subproof _ _ h)).
Lemma is_functor_slicecat_functor : is_functor slicecat_functor_data.
Proof.
split.
- intros a; apply eq_mor_slicecat, idpath.
- intros a b c g h; apply eq_mor_slicecat, idpath.
Qed.
Definition slicecat_functor : functor (C / x) (C / y) :=
(slicecat_functor_data,,is_functor_slicecat_functor).
End slicecat_functor_def.
Section slicecat_functor_theory.
Context {C : precategory} (hsC : has_homsets C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma slicecat_functor_identity_ob (x : C) :
slicecat_functor_ob hsC (identity x) = functor_identity (C / x).
Proof.
apply funextsec; intro af.
unfold slicecat_functor_ob.
rewrite id_right.
apply idpath.
Defined.
Lemma slicecat_functor_identity (x : C) :
slicecat_functor _ (identity x) = functor_identity (C / x).
Proof.
apply (functor_eq _ _ (has_homsets_slice_precat _ _)); simpl.
apply (two_arg_paths_f (slicecat_functor_identity_ob _)).
apply funextsec; intros [a f].
apply funextsec; intros [b g].
apply funextsec; intros [h hh].
rewrite transport_of_functor_map_is_pointwise; simpl in ×.
unfold double_transport. unfold slicecat_mor, slice_precat_ob_mor, slicecat_mor.
simpl.
rewrite transportf_total2.
apply subtypePairEquality; [intro; apply hsC | ].
rewrite transportf_total2; simpl.
unfold slicecat_functor_identity_ob.
rewrite toforallpaths_funextsec; simpl.
induction (id_right f).
induction (id_right g).
apply idpath.
Qed.
Lemma slicecat_functor_comp_ob {x y z : C} (f : C⟦x,y⟧) (g : C⟦y,z⟧) :
slicecat_functor_ob hsC (f · g) =
(λ a, slicecat_functor_ob hsC g (slicecat_functor_ob hsC f a)).
Proof.
apply funextsec; intro af.
unfold slicecat_functor_ob; rewrite assoc; apply idpath.
Defined.
Lemma slicecat_functor_comp {x y z : C} (f : C⟦x,y⟧) (g : C⟦y,z⟧) :
slicecat_functor hsC (f · g) =
functor_composite (slicecat_functor _ f) (slicecat_functor _ g).
Proof.
apply (functor_eq _ _ (has_homsets_slice_precat _ _)); simpl.
unfold slicecat_functor_data; simpl.
unfold functor_composite_data; simpl.
apply (two_arg_paths_f (slicecat_functor_comp_ob _ _)).
apply funextsec; intros [a fax].
apply funextsec; intros [b fbx].
apply funextsec; intros [h hh].
rewrite transport_of_functor_map_is_pointwise; simpl in ×.
unfold double_transport. unfold slicecat_mor, slice_precat_ob_mor, slicecat_mor.
simpl.
rewrite transportf_total2.
apply subtypePairEquality; [intro; apply hsC | ].
rewrite transportf_total2; simpl.
unfold slicecat_functor_comp_ob.
rewrite toforallpaths_funextsec; simpl.
assert (H1 : transportf (fun x : C / z ⇒ pr1 x --> b)
(Foundations.PartA.internal_paths_rew_r _ _ _
(λ p, tpair _ a p = tpair _ a _) (idpath (tpair _ a _))
(assoc fax f g)) h = h).
induction (assoc fax f g); apply idpath.
assert (H2 : ∏ h', h' = h →
transportf (fun x : C / z ⇒ a --> pr1 x)
(Foundations.PartA.internal_paths_rew_r _ _ _
(λ p, tpair _ b p = tpair _ b _) (idpath _)
(assoc fbx f g)) h' = h).
intros h' eq.
induction (assoc fbx f g); rewrite eq; apply idpath.
apply H2. exact H1.
Qed.
End slicecat_functor_theory.
Section slicecat_colimits.
Context (g : graph) {C : precategory} (hsC : has_homsets C) (x : C).
Local Notation "C / X" := (slice_precat C X hsC).
Let U : functor (C / x) C := slicecat_to_cat hsC x.
Lemma slice_precat_isColimCocone (d : diagram g (C / x)) (a : C / x)
(cc : cocone d a)
(H : isColimCocone (mapdiagram U d) (U a) (mapcocone U d cc)) :
isColimCocone d a cc.
Proof.
set (CC := mk_ColimCocone _ _ _ H).
intros y ccy.
use unique_exists.
+ use tpair; simpl.
× apply (colimArrow CC), (mapcocone U _ ccy).
× abstract (apply pathsinv0;
eapply pathscomp0; [apply (postcompWithColimArrow _ CC (pr1 y) (mapcocone U d ccy))|];
apply pathsinv0, (colimArrowUnique CC); intros u; simpl;
eapply pathscomp0; [apply (!(pr2 (coconeIn cc u)))|];
apply (pr2 (coconeIn ccy u))).
+ abstract (intros u; apply subtypeEquality; [intros xx; apply hsC|]; simpl;
apply (colimArrowCommutes CC)).
+ abstract (intros f; simpl; apply impred; intro u; apply has_homsets_slice_precat).
+ abstract (intros f; simpl; intros Hf;
apply eq_mor_slicecat; simpl;
apply (colimArrowUnique CC); intro u; cbn;
rewrite <- (Hf u); apply idpath).
Defined.
Lemma slice_precat_ColimCocone (d : diagram g (C / x))
(H : ColimCocone (mapdiagram U d)) :
ColimCocone d.
Proof.
use mk_ColimCocone.
- use tpair.
+ apply (colim H).
+ apply colimArrow.
use mk_cocone.
× intro v; apply (pr2 (dob d v)).
× abstract (intros u v e; apply (! pr2 (dmor d e))).
- use mk_cocone.
+ intro v; simpl.
use tpair; simpl.
× apply (colimIn H v).
× abstract (apply pathsinv0, (colimArrowCommutes H)).
+ abstract (intros u v e; apply eq_mor_slicecat, (coconeInCommutes (colimCocone H))).
- intros y ccy.
use unique_exists.
+ use tpair; simpl.
× apply colimArrow, (mapcocone U _ ccy).
× abstract (apply pathsinv0, colimArrowUnique; intros v; simpl; rewrite assoc;
eapply pathscomp0;
[apply cancel_postcomposition,
(colimArrowCommutes H _ (mapcocone U _ ccy) v)|];
induction ccy as [f Hf]; simpl; apply (! pr2 (f v))).
+ abstract (intro v; apply eq_mor_slicecat; simpl;
apply (colimArrowCommutes _ _ (mapcocone U d ccy))).
+ abstract (simpl; intros f; apply impred; intro v; apply has_homsets_slice_precat).
+ abstract (intros f Hf; apply eq_mor_slicecat; simpl in *; apply colimArrowUnique;
intros v; apply (maponpaths pr1 (Hf v))).
Defined.
End slicecat_colimits.
Lemma slice_precat_colims_of_shape {C : precategory} (hsC : has_homsets C)
{g : graph} (x : C) (CC : Colims_of_shape g C) :
Colims_of_shape g (slice_precat C x hsC).
Proof.
intros y; apply slice_precat_ColimCocone, CC.
Defined.
Lemma slice_precat_colims {C : precategory} (hsC : has_homsets C) (x : C) (CC : Colims C) :
Colims (slice_precat C x hsC).
Proof.
intros g d; apply slice_precat_ColimCocone, CC.
Defined.
Context (g : graph) {C : precategory} (hsC : has_homsets C) (x : C).
Local Notation "C / X" := (slice_precat C X hsC).
Let U : functor (C / x) C := slicecat_to_cat hsC x.
Lemma slice_precat_isColimCocone (d : diagram g (C / x)) (a : C / x)
(cc : cocone d a)
(H : isColimCocone (mapdiagram U d) (U a) (mapcocone U d cc)) :
isColimCocone d a cc.
Proof.
set (CC := mk_ColimCocone _ _ _ H).
intros y ccy.
use unique_exists.
+ use tpair; simpl.
× apply (colimArrow CC), (mapcocone U _ ccy).
× abstract (apply pathsinv0;
eapply pathscomp0; [apply (postcompWithColimArrow _ CC (pr1 y) (mapcocone U d ccy))|];
apply pathsinv0, (colimArrowUnique CC); intros u; simpl;
eapply pathscomp0; [apply (!(pr2 (coconeIn cc u)))|];
apply (pr2 (coconeIn ccy u))).
+ abstract (intros u; apply subtypeEquality; [intros xx; apply hsC|]; simpl;
apply (colimArrowCommutes CC)).
+ abstract (intros f; simpl; apply impred; intro u; apply has_homsets_slice_precat).
+ abstract (intros f; simpl; intros Hf;
apply eq_mor_slicecat; simpl;
apply (colimArrowUnique CC); intro u; cbn;
rewrite <- (Hf u); apply idpath).
Defined.
Lemma slice_precat_ColimCocone (d : diagram g (C / x))
(H : ColimCocone (mapdiagram U d)) :
ColimCocone d.
Proof.
use mk_ColimCocone.
- use tpair.
+ apply (colim H).
+ apply colimArrow.
use mk_cocone.
× intro v; apply (pr2 (dob d v)).
× abstract (intros u v e; apply (! pr2 (dmor d e))).
- use mk_cocone.
+ intro v; simpl.
use tpair; simpl.
× apply (colimIn H v).
× abstract (apply pathsinv0, (colimArrowCommutes H)).
+ abstract (intros u v e; apply eq_mor_slicecat, (coconeInCommutes (colimCocone H))).
- intros y ccy.
use unique_exists.
+ use tpair; simpl.
× apply colimArrow, (mapcocone U _ ccy).
× abstract (apply pathsinv0, colimArrowUnique; intros v; simpl; rewrite assoc;
eapply pathscomp0;
[apply cancel_postcomposition,
(colimArrowCommutes H _ (mapcocone U _ ccy) v)|];
induction ccy as [f Hf]; simpl; apply (! pr2 (f v))).
+ abstract (intro v; apply eq_mor_slicecat; simpl;
apply (colimArrowCommutes _ _ (mapcocone U d ccy))).
+ abstract (simpl; intros f; apply impred; intro v; apply has_homsets_slice_precat).
+ abstract (intros f Hf; apply eq_mor_slicecat; simpl in *; apply colimArrowUnique;
intros v; apply (maponpaths pr1 (Hf v))).
Defined.
End slicecat_colimits.
Lemma slice_precat_colims_of_shape {C : precategory} (hsC : has_homsets C)
{g : graph} (x : C) (CC : Colims_of_shape g C) :
Colims_of_shape g (slice_precat C x hsC).
Proof.
intros y; apply slice_precat_ColimCocone, CC.
Defined.
Lemma slice_precat_colims {C : precategory} (hsC : has_homsets C) (x : C) (CC : Colims C) :
Colims (slice_precat C x hsC).
Proof.
intros g d; apply slice_precat_ColimCocone, CC.
Defined.
Section slicecat_binproducts.
Context {C : precategory} (hsC : has_homsets C).
Local Notation "C / X" := (slice_precat C X hsC).
Definition pullback_to_slice_binprod {A B Z : C} {f : A --> Z} {g : B --> Z} :
Pullback f g → BinProduct (C / Z) (A ,, f) (B ,, g).
Proof.
intros P.
use (((PullbackObject P ,, (PullbackPr1 P) · f) ,, (((PullbackPr1 P) ,, idpath _) ,, (((PullbackPr2 P) ,, (PullbackSqrCommutes P))))) ,, _).
intros Y [j jeq] [k keq]; simpl in jeq , keq.
use unique_exists.
+ use tpair.
- apply (PullbackArrow P _ j k).
abstract (rewrite <- jeq , keq; apply idpath).
- abstract (cbn; rewrite assoc, PullbackArrow_PullbackPr1, <- jeq; apply idpath).
+ abstract (split; apply eq_mor_slicecat; simpl;
[ apply PullbackArrow_PullbackPr1 | apply PullbackArrow_PullbackPr2 ]).
+ abstract (intros h; apply isapropdirprod; apply has_homsets_slice_precat).
+ abstract (intros h [H1 H2]; apply eq_mor_slicecat, PullbackArrowUnique;
[ apply (maponpaths pr1 H1) | apply (maponpaths pr1 H2) ]).
Defined.
Definition BinProducts_slice_precat (PC : Pullbacks C) : ∏ x, BinProducts (C / x) :=
λ x a b, pullback_to_slice_binprod (PC _ _ _ (pr2 a) (pr2 b)).
Definition slice_binprod_to_pullback {Z : C} {AZ BZ : C / Z} :
BinProduct (C / Z) AZ BZ → Pullback (pr2 AZ) (pr2 BZ).
Proof.
induction AZ as [A f].
induction BZ as [B g].
intros [[[P h] [[l leq] [r req]]] PisProd].
use ((P ,, l ,, r) ,, (! leq @ req) ,, _).
intros Y j k Yeq. simpl in ×.
use unique_exists.
+ exact (pr1 (pr1 (pr1 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq))))).
+ abstract (exact (maponpaths pr1 (pr1 (pr2 (pr1 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq))))) ,,
maponpaths pr1 (pr2 (pr2 (pr1 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq))))))).
+ abstract (intros x; apply isofhleveldirprod; apply (hsC _ _)).
+ intros t teqs.
use (maponpaths pr1 (maponpaths pr1 (pr2 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq)) ((t ,, (maponpaths (λ x, x · f) (!(pr1 teqs)) @ !(assoc _ _ _) @ maponpaths (λ x, t · x) (!leq))) ,, _)))).
abstract (split; apply eq_mor_slicecat; [exact (pr1 teqs) | exact (pr2 teqs)]).
Defined.
Definition Pullbacks_from_slice_BinProducts (BP : ∏ x, BinProducts (C / x)) : Pullbacks C :=
λ x a b f g, slice_binprod_to_pullback (BP x (a ,, f) (b ,, g)).
End slicecat_binproducts.
Context {C : precategory} (hsC : has_homsets C).
Local Notation "C / X" := (slice_precat C X hsC).
Definition pullback_to_slice_binprod {A B Z : C} {f : A --> Z} {g : B --> Z} :
Pullback f g → BinProduct (C / Z) (A ,, f) (B ,, g).
Proof.
intros P.
use (((PullbackObject P ,, (PullbackPr1 P) · f) ,, (((PullbackPr1 P) ,, idpath _) ,, (((PullbackPr2 P) ,, (PullbackSqrCommutes P))))) ,, _).
intros Y [j jeq] [k keq]; simpl in jeq , keq.
use unique_exists.
+ use tpair.
- apply (PullbackArrow P _ j k).
abstract (rewrite <- jeq , keq; apply idpath).
- abstract (cbn; rewrite assoc, PullbackArrow_PullbackPr1, <- jeq; apply idpath).
+ abstract (split; apply eq_mor_slicecat; simpl;
[ apply PullbackArrow_PullbackPr1 | apply PullbackArrow_PullbackPr2 ]).
+ abstract (intros h; apply isapropdirprod; apply has_homsets_slice_precat).
+ abstract (intros h [H1 H2]; apply eq_mor_slicecat, PullbackArrowUnique;
[ apply (maponpaths pr1 H1) | apply (maponpaths pr1 H2) ]).
Defined.
Definition BinProducts_slice_precat (PC : Pullbacks C) : ∏ x, BinProducts (C / x) :=
λ x a b, pullback_to_slice_binprod (PC _ _ _ (pr2 a) (pr2 b)).
Definition slice_binprod_to_pullback {Z : C} {AZ BZ : C / Z} :
BinProduct (C / Z) AZ BZ → Pullback (pr2 AZ) (pr2 BZ).
Proof.
induction AZ as [A f].
induction BZ as [B g].
intros [[[P h] [[l leq] [r req]]] PisProd].
use ((P ,, l ,, r) ,, (! leq @ req) ,, _).
intros Y j k Yeq. simpl in ×.
use unique_exists.
+ exact (pr1 (pr1 (pr1 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq))))).
+ abstract (exact (maponpaths pr1 (pr1 (pr2 (pr1 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq))))) ,,
maponpaths pr1 (pr2 (pr2 (pr1 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq))))))).
+ abstract (intros x; apply isofhleveldirprod; apply (hsC _ _)).
+ intros t teqs.
use (maponpaths pr1 (maponpaths pr1 (pr2 (PisProd (Y ,, j · f) (j ,, idpath _) (k ,, Yeq)) ((t ,, (maponpaths (λ x, x · f) (!(pr1 teqs)) @ !(assoc _ _ _) @ maponpaths (λ x, t · x) (!leq))) ,, _)))).
abstract (split; apply eq_mor_slicecat; [exact (pr1 teqs) | exact (pr2 teqs)]).
Defined.
Definition Pullbacks_from_slice_BinProducts (BP : ∏ x, BinProducts (C / x)) : Pullbacks C :=
λ x a b f g, slice_binprod_to_pullback (BP x (a ,, f) (b ,, g)).
End slicecat_binproducts.
Section slicecat_bincoproducts.
Context {C : precategory} (hsC : has_homsets C) (BC : BinCoproducts C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma BinCoproducts_slice_precat (x : C) : BinCoproducts (C / x).
Proof.
intros a b.
use mk_BinCoproduct.
+ ∃ (BinCoproductObject _ (BC (pr1 a) (pr1 b))).
apply (BinCoproductArrow _ _ (pr2 a) (pr2 b)).
+ use tpair.
- apply BinCoproductIn1.
- abstract (cbn; rewrite BinCoproductIn1Commutes; apply idpath).
+ use tpair.
- apply BinCoproductIn2.
- abstract (cbn; rewrite BinCoproductIn2Commutes; apply idpath).
+ intros c f g.
use unique_exists.
- ∃ (BinCoproductArrow _ _ (pr1 f) (pr1 g)).
abstract (apply pathsinv0, BinCoproductArrowUnique;
[ rewrite assoc, (BinCoproductIn1Commutes C _ _ (BC (pr1 a) (pr1 b))), (pr2 f); apply idpath
| rewrite assoc, (BinCoproductIn2Commutes C _ _ (BC (pr1 a) (pr1 b))), (pr2 g)]; apply idpath).
- abstract (split; apply eq_mor_slicecat; simpl;
[ apply BinCoproductIn1Commutes | apply BinCoproductIn2Commutes ]).
- abstract (intros y; apply isapropdirprod; apply has_homsets_slice_precat).
- abstract (intros y [<- <-]; apply eq_mor_slicecat, BinCoproductArrowUnique; apply idpath).
Defined.
End slicecat_bincoproducts.
Context {C : precategory} (hsC : has_homsets C) (BC : BinCoproducts C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma BinCoproducts_slice_precat (x : C) : BinCoproducts (C / x).
Proof.
intros a b.
use mk_BinCoproduct.
+ ∃ (BinCoproductObject _ (BC (pr1 a) (pr1 b))).
apply (BinCoproductArrow _ _ (pr2 a) (pr2 b)).
+ use tpair.
- apply BinCoproductIn1.
- abstract (cbn; rewrite BinCoproductIn1Commutes; apply idpath).
+ use tpair.
- apply BinCoproductIn2.
- abstract (cbn; rewrite BinCoproductIn2Commutes; apply idpath).
+ intros c f g.
use unique_exists.
- ∃ (BinCoproductArrow _ _ (pr1 f) (pr1 g)).
abstract (apply pathsinv0, BinCoproductArrowUnique;
[ rewrite assoc, (BinCoproductIn1Commutes C _ _ (BC (pr1 a) (pr1 b))), (pr2 f); apply idpath
| rewrite assoc, (BinCoproductIn2Commutes C _ _ (BC (pr1 a) (pr1 b))), (pr2 g)]; apply idpath).
- abstract (split; apply eq_mor_slicecat; simpl;
[ apply BinCoproductIn1Commutes | apply BinCoproductIn2Commutes ]).
- abstract (intros y; apply isapropdirprod; apply has_homsets_slice_precat).
- abstract (intros y [<- <-]; apply eq_mor_slicecat, BinCoproductArrowUnique; apply idpath).
Defined.
End slicecat_bincoproducts.
Section slicecat_coproducts.
Context {C : precategory} (hsC : has_homsets C) (I : UU) (BC : Coproducts I C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma Coproducts_slice_precat (x : C) : Coproducts I (C / x).
Proof.
intros a.
use mk_Coproduct.
+ ∃ (CoproductObject _ _ (BC (λ i, pr1 (a i)))).
apply CoproductArrow; intro i; apply (pr2 (a i)).
+ intro i; use tpair; simpl.
- apply (CoproductIn I C (BC (λ i, pr1 (a i))) i).
- abstract (rewrite (CoproductInCommutes I C _ (BC (λ i, pr1 (a i)))); apply idpath).
+ intros c f.
use unique_exists.
- ∃ (CoproductArrow _ _ _ (λ i, pr1 (f i))).
abstract (simpl; apply pathsinv0, CoproductArrowUnique; intro i;
rewrite assoc, (CoproductInCommutes _ _ _ (BC (λ i, pr1 (a i)))), (pr2 (f i)); apply idpath).
- abstract (intros i;
apply eq_mor_slicecat, (CoproductInCommutes _ _ _ (BC (λ i0 : I, pr1 (a i0))))).
- abstract (intros y; apply impred; intro i; apply has_homsets_slice_precat).
- abstract (simpl; intros y Hy;
apply eq_mor_slicecat, CoproductArrowUnique;
intros i; apply (maponpaths pr1 (Hy i))).
Defined.
End slicecat_coproducts.
Section slicecat_initial.
Context {C : precategory} (hsC : has_homsets C) (IC : Initial C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma Initial_slice_precat (x : C) : Initial (C / x).
Proof.
use mk_Initial.
- use tpair.
+ apply (InitialObject IC).
+ apply InitialArrow.
- intros y.
use unique_exists; simpl.
× apply InitialArrow.
× abstract (apply pathsinv0, InitialArrowUnique).
× abstract (intros f; apply hsC).
× abstract (intros f Hf; apply InitialArrowUnique).
Defined.
End slicecat_initial.
Section slicecat_terminal.
Context {C : precategory} (hsC : has_homsets C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma Terminal_slice_precat (x : C) : Terminal (C / x).
Proof.
use mk_Terminal.
- use tpair.
+ apply x.
+ apply (identity x).
- intros y.
use unique_exists; simpl.
× apply (pr2 y).
× abstract (rewrite id_right; apply idpath).
× abstract (intros f; apply hsC).
× abstract (intros f ->; rewrite id_right; apply idpath).
Defined.
End slicecat_terminal.
Context {C : precategory} (hsC : has_homsets C) (I : UU) (BC : Coproducts I C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma Coproducts_slice_precat (x : C) : Coproducts I (C / x).
Proof.
intros a.
use mk_Coproduct.
+ ∃ (CoproductObject _ _ (BC (λ i, pr1 (a i)))).
apply CoproductArrow; intro i; apply (pr2 (a i)).
+ intro i; use tpair; simpl.
- apply (CoproductIn I C (BC (λ i, pr1 (a i))) i).
- abstract (rewrite (CoproductInCommutes I C _ (BC (λ i, pr1 (a i)))); apply idpath).
+ intros c f.
use unique_exists.
- ∃ (CoproductArrow _ _ _ (λ i, pr1 (f i))).
abstract (simpl; apply pathsinv0, CoproductArrowUnique; intro i;
rewrite assoc, (CoproductInCommutes _ _ _ (BC (λ i, pr1 (a i)))), (pr2 (f i)); apply idpath).
- abstract (intros i;
apply eq_mor_slicecat, (CoproductInCommutes _ _ _ (BC (λ i0 : I, pr1 (a i0))))).
- abstract (intros y; apply impred; intro i; apply has_homsets_slice_precat).
- abstract (simpl; intros y Hy;
apply eq_mor_slicecat, CoproductArrowUnique;
intros i; apply (maponpaths pr1 (Hy i))).
Defined.
End slicecat_coproducts.
Section slicecat_initial.
Context {C : precategory} (hsC : has_homsets C) (IC : Initial C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma Initial_slice_precat (x : C) : Initial (C / x).
Proof.
use mk_Initial.
- use tpair.
+ apply (InitialObject IC).
+ apply InitialArrow.
- intros y.
use unique_exists; simpl.
× apply InitialArrow.
× abstract (apply pathsinv0, InitialArrowUnique).
× abstract (intros f; apply hsC).
× abstract (intros f Hf; apply InitialArrowUnique).
Defined.
End slicecat_initial.
Section slicecat_terminal.
Context {C : precategory} (hsC : has_homsets C).
Local Notation "C / X" := (slice_precat C X hsC).
Lemma Terminal_slice_precat (x : C) : Terminal (C / x).
Proof.
use mk_Terminal.
- use tpair.
+ apply x.
+ apply (identity x).
- intros y.
use unique_exists; simpl.
× apply (pr2 y).
× abstract (rewrite id_right; apply idpath).
× abstract (intros f; apply hsC).
× abstract (intros f ->; rewrite id_right; apply idpath).
Defined.
End slicecat_terminal.
Base change functor: https://ncatlab.org/nlab/show/base+change
Section base_change.
Context {C : precategory} (hsC : has_homsets C) (PC : Pullbacks C).
Local Notation "C / X" := (slice_precat C X hsC).
Definition base_change_functor_data {c c' : C} (g : C⟦c,c'⟧) : functor_data (C / c') (C / c).
Proof.
use tpair.
- intros Af'.
∃ (PullbackObject (PC _ _ _ g (pr2 Af'))).
apply PullbackPr1.
- intros a b f.
use tpair; simpl.
+ use PullbackArrow.
× apply PullbackPr1.
× apply (PullbackPr2 _ · pr1 f).
× abstract (rewrite <- assoc, <- (pr2 f), PullbackSqrCommutes; apply idpath).
+ abstract (rewrite PullbackArrow_PullbackPr1; apply idpath).
Defined.
Lemma is_functor_base_change_functor {c c' : C} (g : C⟦c,c'⟧) :
is_functor (base_change_functor_data g).
Proof.
split.
- intros x; apply (eq_mor_slicecat hsC); simpl.
apply pathsinv0, PullbackArrowUnique; rewrite id_left, ?id_right; apply idpath.
- intros x y z f1 f2; apply (eq_mor_slicecat hsC); simpl.
apply pathsinv0, PullbackArrowUnique.
+ rewrite <- assoc, !PullbackArrow_PullbackPr1; apply idpath.
+ rewrite <- assoc, PullbackArrow_PullbackPr2, !assoc,
PullbackArrow_PullbackPr2; apply idpath.
Qed.
Definition base_change_functor {c c' : C} (g : C⟦c,c'⟧) : functor (C / c') (C / c) :=
(base_change_functor_data g,,is_functor_base_change_functor g).
Local Definition eta {c c' : C} (g : C⟦c,c'⟧) :
nat_trans (functor_identity (C / c))
(functor_composite (slicecat_functor hsC g) (base_change_functor g)).
Proof.
use mk_nat_trans.
- intros x.
use tpair; simpl.
+ use (PullbackArrow _ _ (pr2 x) (identity _)).
abstract (rewrite id_left; apply idpath).
+ abstract (rewrite PullbackArrow_PullbackPr1; apply idpath).
- intros x y f; apply eq_mor_slicecat; simpl.
eapply pathscomp0; [apply postCompWithPullbackArrow|].
apply pathsinv0, PullbackArrowUnique.
+ rewrite <- assoc, !PullbackArrow_PullbackPr1, <- (pr2 f); apply idpath.
+ rewrite <- assoc, PullbackArrow_PullbackPr2, assoc,
PullbackArrow_PullbackPr2, id_right, id_left; apply idpath.
Defined.
Local Definition eps {c c' : C} (g : C⟦c,c'⟧) :
nat_trans (functor_composite (base_change_functor g) (slicecat_functor hsC g))
(functor_identity (C / c')).
Proof.
use mk_nat_trans.
- intros x.
∃ (PullbackPr2 _); simpl.
abstract (apply PullbackSqrCommutes).
- intros x y f; apply eq_mor_slicecat; simpl.
rewrite PullbackArrow_PullbackPr2; apply idpath.
Defined.
Local Lemma form_adjunction_eta_eps {c c' : C} (g : C⟦c,c'⟧) :
form_adjunction (slicecat_functor hsC g) (base_change_functor g) (eta g) (eps g).
Proof.
use tpair.
- intros x; apply eq_mor_slicecat; simpl; rewrite PullbackArrow_PullbackPr2; apply idpath.
- intros x; apply (eq_mor_slicecat hsC); simpl.
apply pathsinv0, PullbackEndo_is_identity.
+ rewrite <- assoc, !PullbackArrow_PullbackPr1; apply idpath.
+ rewrite <- assoc, PullbackArrow_PullbackPr2, assoc,
PullbackArrow_PullbackPr2, id_left; apply idpath.
Qed.
Lemma are_adjoints_slicecat_functor_base_change {c c' : C} (g : C⟦c,c'⟧) :
are_adjoints (slicecat_functor hsC g) (base_change_functor g).
Proof.
∃ (eta g,,eps g).
exact (form_adjunction_eta_eps g).
Defined.
Context {C : precategory} (hsC : has_homsets C) (PC : Pullbacks C).
Local Notation "C / X" := (slice_precat C X hsC).
Definition base_change_functor_data {c c' : C} (g : C⟦c,c'⟧) : functor_data (C / c') (C / c).
Proof.
use tpair.
- intros Af'.
∃ (PullbackObject (PC _ _ _ g (pr2 Af'))).
apply PullbackPr1.
- intros a b f.
use tpair; simpl.
+ use PullbackArrow.
× apply PullbackPr1.
× apply (PullbackPr2 _ · pr1 f).
× abstract (rewrite <- assoc, <- (pr2 f), PullbackSqrCommutes; apply idpath).
+ abstract (rewrite PullbackArrow_PullbackPr1; apply idpath).
Defined.
Lemma is_functor_base_change_functor {c c' : C} (g : C⟦c,c'⟧) :
is_functor (base_change_functor_data g).
Proof.
split.
- intros x; apply (eq_mor_slicecat hsC); simpl.
apply pathsinv0, PullbackArrowUnique; rewrite id_left, ?id_right; apply idpath.
- intros x y z f1 f2; apply (eq_mor_slicecat hsC); simpl.
apply pathsinv0, PullbackArrowUnique.
+ rewrite <- assoc, !PullbackArrow_PullbackPr1; apply idpath.
+ rewrite <- assoc, PullbackArrow_PullbackPr2, !assoc,
PullbackArrow_PullbackPr2; apply idpath.
Qed.
Definition base_change_functor {c c' : C} (g : C⟦c,c'⟧) : functor (C / c') (C / c) :=
(base_change_functor_data g,,is_functor_base_change_functor g).
Local Definition eta {c c' : C} (g : C⟦c,c'⟧) :
nat_trans (functor_identity (C / c))
(functor_composite (slicecat_functor hsC g) (base_change_functor g)).
Proof.
use mk_nat_trans.
- intros x.
use tpair; simpl.
+ use (PullbackArrow _ _ (pr2 x) (identity _)).
abstract (rewrite id_left; apply idpath).
+ abstract (rewrite PullbackArrow_PullbackPr1; apply idpath).
- intros x y f; apply eq_mor_slicecat; simpl.
eapply pathscomp0; [apply postCompWithPullbackArrow|].
apply pathsinv0, PullbackArrowUnique.
+ rewrite <- assoc, !PullbackArrow_PullbackPr1, <- (pr2 f); apply idpath.
+ rewrite <- assoc, PullbackArrow_PullbackPr2, assoc,
PullbackArrow_PullbackPr2, id_right, id_left; apply idpath.
Defined.
Local Definition eps {c c' : C} (g : C⟦c,c'⟧) :
nat_trans (functor_composite (base_change_functor g) (slicecat_functor hsC g))
(functor_identity (C / c')).
Proof.
use mk_nat_trans.
- intros x.
∃ (PullbackPr2 _); simpl.
abstract (apply PullbackSqrCommutes).
- intros x y f; apply eq_mor_slicecat; simpl.
rewrite PullbackArrow_PullbackPr2; apply idpath.
Defined.
Local Lemma form_adjunction_eta_eps {c c' : C} (g : C⟦c,c'⟧) :
form_adjunction (slicecat_functor hsC g) (base_change_functor g) (eta g) (eps g).
Proof.
use tpair.
- intros x; apply eq_mor_slicecat; simpl; rewrite PullbackArrow_PullbackPr2; apply idpath.
- intros x; apply (eq_mor_slicecat hsC); simpl.
apply pathsinv0, PullbackEndo_is_identity.
+ rewrite <- assoc, !PullbackArrow_PullbackPr1; apply idpath.
+ rewrite <- assoc, PullbackArrow_PullbackPr2, assoc,
PullbackArrow_PullbackPr2, id_left; apply idpath.
Qed.
Lemma are_adjoints_slicecat_functor_base_change {c c' : C} (g : C⟦c,c'⟧) :
are_adjoints (slicecat_functor hsC g) (base_change_functor g).
Proof.
∃ (eta g,,eps g).
exact (form_adjunction_eta_eps g).
Defined.
If the base change functor has a right adjoint, called dependent product, then C / c has
exponentials. The formal proof is inspired by Proposition 2.1 from:
https://ncatlab.org/nlab/show/locally+cartesian+closed+categoryin_category_theory
Section dependent_product.
Context (H : ∏ {c c' : C} (g : C⟦c,c'⟧), is_left_adjoint (base_change_functor g)).
Let dependent_product_functor {c c' : C} (g : C⟦c,c'⟧) :
functor (C / c) (C / c') := right_adjoint (H c c' g).
Let BPC c : BinProducts (C / c) := @BinProducts_slice_precat C hsC PC c.
Lemma const_prod_functor1_slicecat c (Af : C / c) :
constprod_functor1 (BPC c) Af =
functor_composite (base_change_functor (pr2 Af)) (slicecat_functor hsC (pr2 Af)).
Proof.
apply functor_eq; try apply has_homsets_slice_precat.
use functor_data_eq.
- intro x; apply idpath.
- intros x y f; apply (eq_mor_slicecat hsC); simpl.
apply PullbackArrowUnique.
+ rewrite PullbackArrow_PullbackPr1, id_right; apply idpath.
+ rewrite PullbackArrow_PullbackPr2; apply idpath.
Defined.
Lemma dependent_product_to_exponentials c : Exponentials (BPC c).
Proof.
intros Af.
use tpair.
+ apply (functor_composite (base_change_functor (pr2 Af))
(dependent_product_functor (pr2 Af))).
+ rewrite const_prod_functor1_slicecat.
apply are_adjoints_functor_composite.
- apply (pr2 (H _ _ _)).
- apply are_adjoints_slicecat_functor_base_change.
Defined.
End dependent_product.
End base_change.
Context (H : ∏ {c c' : C} (g : C⟦c,c'⟧), is_left_adjoint (base_change_functor g)).
Let dependent_product_functor {c c' : C} (g : C⟦c,c'⟧) :
functor (C / c) (C / c') := right_adjoint (H c c' g).
Let BPC c : BinProducts (C / c) := @BinProducts_slice_precat C hsC PC c.
Lemma const_prod_functor1_slicecat c (Af : C / c) :
constprod_functor1 (BPC c) Af =
functor_composite (base_change_functor (pr2 Af)) (slicecat_functor hsC (pr2 Af)).
Proof.
apply functor_eq; try apply has_homsets_slice_precat.
use functor_data_eq.
- intro x; apply idpath.
- intros x y f; apply (eq_mor_slicecat hsC); simpl.
apply PullbackArrowUnique.
+ rewrite PullbackArrow_PullbackPr1, id_right; apply idpath.
+ rewrite PullbackArrow_PullbackPr2; apply idpath.
Defined.
Lemma dependent_product_to_exponentials c : Exponentials (BPC c).
Proof.
intros Af.
use tpair.
+ apply (functor_composite (base_change_functor (pr2 Af))
(dependent_product_functor (pr2 Af))).
+ rewrite const_prod_functor1_slicecat.
apply are_adjoints_functor_composite.
- apply (pr2 (H _ _ _)).
- apply are_adjoints_slicecat_functor_base_change.
Defined.
End dependent_product.
End base_change.