Library UniMath.CategoryTheory.limits.graphs.bincoproducts

******************************************
Binary coproducts defined as a colimit
Written by: Benedikt Ahrens, March 2015

Definition of binary coproduct of objects in a precategory


Definition two_graph : graph.
Proof.
   bool.
  exact (λ _ _, empty).
Defined.

Definition bincoproduct_diagram {C : precategory} (a b : C) : diagram two_graph C.
Proof.
   (λ x : bool, if x then a else b).
  intros u v F.
  induction F.
Defined.

Definition CopCocone {C : precategory} {a b : C} {c : C} (ac : a --> c) (bc : b --> c) :
   cocone (bincoproduct_diagram a b) c.
Proof.
  use tpair.
+ intro v.
  induction v; simpl.
  - exact ac.
  - exact bc.
+ intros u v e; induction e.
Defined.

Section bincoproduct_def.

Variable C : precategory.

Definition isBinCoproductCocone (a b co : C) (ia : a --> co) (ib : b --> co) :=
  isColimCocone (bincoproduct_diagram a b) co (CopCocone ia ib).

Definition mk_isBinCoproductCocone (hsC : has_homsets C)(a b co : C) (ia : a --> co) (ib : b --> co) :
   ( (c : C) (f : a --> c) (g : b --> c),
    ∃! k : C co, c,
      ia · k = f ×
      ib · k = g)
   
   isBinCoproductCocone a b co ia ib.
Proof.
  intros H c cc.
  set (H':= H c (coconeIn cc true) (coconeIn cc false)).
  use tpair.
  - (pr1 (pr1 H')).
    set (T := pr2 (pr1 H')). simpl in T.
    abstract (intro u; induction u;
              [ apply (pr1 T) | apply (pr2 T)]).
  - simpl. intros. abstract (intros;
              apply subtypeEquality;
              [ intro; apply impred; intro; apply hsC
              | apply path_to_ctr; split; [ apply (pr2 t true) | apply (pr2 t false)] ]).
Defined.

Definition BinCoproductCocone (a b : C) :=
  ColimCocone (bincoproduct_diagram a b).

Definition mk_BinCoproductCocone (a b : C) :
   (c : C) (f : a --> c) (g : b --> c),
   isBinCoproductCocone _ _ _ f g BinCoproductCocone a b.
Proof.
  intros.
  use tpair.
  - c.
    apply (CopCocone f g).
  - apply X.
Defined.

Definition BinCoproducts := (a b : C), BinCoproductCocone a b.
Definition hasBinCoproducts := (a b : C), BinCoproductCocone a b .

Definition BinCoproductObject {a b : C} (CC : BinCoproductCocone a b) : C := colim CC.
Definition BinCoproductIn1 {a b : C} (CC : BinCoproductCocone a b): a --> BinCoproductObject CC
  := colimIn CC true.

Definition BinCoproductIn2 {a b : C} (CC : BinCoproductCocone a b) : b --> BinCoproductObject CC
  := colimIn CC false.

Definition BinCoproductArrow {a b : C} (CC : BinCoproductCocone a b) {c : C} (f : a --> c) (g : b --> c) :
      BinCoproductObject CC --> c.
Proof.
  apply (colimArrow CC).
  use mk_cocone.
  + intro v. induction v.
    - apply f.
    - apply g.
  + simpl. intros ? ? e; induction e.
Defined.

Lemma BinCoproductIn1Commutes (a b : C) (CC : BinCoproductCocone a b):
      (c : C) (f : a --> c) g, BinCoproductIn1 CC · BinCoproductArrow CC f g = f.
Proof.
  intros c f g.
  unfold BinCoproductIn1.
  set (H:=colimArrowCommutes CC _ (CopCocone f g) true).
  apply H.
Qed.

Lemma BinCoproductIn2Commutes (a b : C) (CC : BinCoproductCocone a b):
      (c : C) (f : a --> c) g, BinCoproductIn2 CC · BinCoproductArrow CC f g = g.
Proof.
  intros c f g.
  unfold BinCoproductIn1.
  set (H:=colimArrowCommutes CC _ (CopCocone f g) false).
  apply H.
Qed.

Lemma BinCoproductArrowUnique (a b : C) (CC : BinCoproductCocone a b) (x : C)
    (f : a --> x) (g : b --> x) (k : BinCoproductObject CC --> x) :
    BinCoproductIn1 CC · k = f BinCoproductIn2 CC · k = g
      k = BinCoproductArrow CC f g.
Proof.
  intros H1 H2.
  use colimArrowUnique.
  simpl. intro u; induction u; simpl.
  - apply H1.
  - apply H2.
Qed.

Lemma BinCoproductArrowEta (a b : C) (CC : BinCoproductCocone a b) (x : C)
    (f : BinCoproductObject CC --> x) :
    f = BinCoproductArrow CC (BinCoproductIn1 CC · f) (BinCoproductIn2 CC · f).
Proof.
  apply BinCoproductArrowUnique;
  apply idpath.
Qed.

Definition BinCoproductOfArrows {a b : C} (CCab : BinCoproductCocone a b) {c d : C}
    (CCcd : BinCoproductCocone c d) (f : a --> c) (g : b --> d) :
          BinCoproductObject CCab --> BinCoproductObject CCcd :=
    BinCoproductArrow CCab (f · BinCoproductIn1 CCcd) (g · BinCoproductIn2 CCcd).

Lemma BinCoproductOfArrowsIn1 {a b : C} (CCab : BinCoproductCocone a b) {c d : C}
    (CCcd : BinCoproductCocone c d) (f : a --> c) (g : b --> d) :
    BinCoproductIn1 CCab · BinCoproductOfArrows CCab CCcd f g = f · BinCoproductIn1 CCcd.
Proof.
  unfold BinCoproductOfArrows.
  apply BinCoproductIn1Commutes.
Qed.

Lemma BinCoproductOfArrowsIn2 {a b : C} (CCab : BinCoproductCocone a b) {c d : C}
    (CCcd : BinCoproductCocone c d) (f : a --> c) (g : b --> d) :
    BinCoproductIn2 CCab · BinCoproductOfArrows CCab CCcd f g = g · BinCoproductIn2 CCcd.
Proof.
  unfold BinCoproductOfArrows.
  apply BinCoproductIn2Commutes.
Qed.

Lemma precompWithBinCoproductArrow {a b : C} (CCab : BinCoproductCocone a b) {c d : C}
    (CCcd : BinCoproductCocone c d) (f : a --> c) (g : b --> d)
    {x : C} (k : c --> x) (h : d --> x) :
        BinCoproductOfArrows CCab CCcd f g · BinCoproductArrow CCcd k h =
         BinCoproductArrow CCab (f · k) (g · h).
Proof.
  apply BinCoproductArrowUnique.
  - rewrite assoc. rewrite BinCoproductOfArrowsIn1.
    rewrite <- assoc, BinCoproductIn1Commutes.
    apply idpath.
  - rewrite assoc, BinCoproductOfArrowsIn2.
    rewrite <- assoc, BinCoproductIn2Commutes.
    apply idpath.
Qed.

Lemma postcompWithBinCoproductArrow {a b : C} (CCab : BinCoproductCocone a b) {c : C}
    (f : a --> c) (g : b --> c) {x : C} (k : c --> x) :
       BinCoproductArrow CCab f g · k = BinCoproductArrow CCab (f · k) (g · k).
Proof.
  apply BinCoproductArrowUnique.
  - rewrite assoc, BinCoproductIn1Commutes;
     apply idpath.
  - rewrite assoc, BinCoproductIn2Commutes;
     apply idpath.
Qed.

Proof that coproducts are unique when the precategory C is a univalent_category


Section coproduct_unique.

Hypothesis H : is_univalent C.

Variables a b : C.

Definition from_BinCoproduct_to_BinCoproduct (CC CC' : BinCoproductCocone a b)
  : BinCoproductObject CC --> BinCoproductObject CC'.
Proof.
  apply (BinCoproductArrow CC (BinCoproductIn1 _ ) (BinCoproductIn2 _ )).
Defined.

Lemma BinCoproduct_endo_is_identity (CC : BinCoproductCocone a b)
  (k : BinCoproductObject CC --> BinCoproductObject CC)
  (H1 : BinCoproductIn1 CC · k = BinCoproductIn1 CC)
  (H2 : BinCoproductIn2 CC · k = BinCoproductIn2 CC)
  : identity _ = k.
Proof.
  use colim_endo_is_identity.
  intro u; induction u; simpl; assumption.
Defined.

Lemma is_iso_from_BinCoproduct_to_BinCoproduct (CC CC' : BinCoproductCocone a b)
  : is_iso (from_BinCoproduct_to_BinCoproduct CC CC').
Proof.
  apply is_iso_from_is_z_iso.
   (from_BinCoproduct_to_BinCoproduct CC' CC).
  split; simpl.
  - apply pathsinv0.
    apply BinCoproduct_endo_is_identity.
    + rewrite assoc. unfold from_BinCoproduct_to_BinCoproduct.
      rewrite BinCoproductIn1Commutes.
      rewrite BinCoproductIn1Commutes.
      apply idpath.
    + rewrite assoc. unfold from_BinCoproduct_to_BinCoproduct.
      rewrite BinCoproductIn2Commutes.
      rewrite BinCoproductIn2Commutes.
      apply idpath.
  - apply pathsinv0.
    apply BinCoproduct_endo_is_identity.
    + rewrite assoc; unfold from_BinCoproduct_to_BinCoproduct.
      repeat rewrite BinCoproductIn1Commutes; apply idpath.
    + rewrite assoc; unfold from_BinCoproduct_to_BinCoproduct.
      repeat rewrite BinCoproductIn2Commutes; apply idpath.
Defined.

Definition iso_from_BinCoproduct_to_BinCoproduct (CC CC' : BinCoproductCocone a b)
  : iso (BinCoproductObject CC) (BinCoproductObject CC')
  := isopair _ (is_iso_from_BinCoproduct_to_BinCoproduct CC CC').

Lemma transportf_isotoid' (c d d': C) (p : iso d d') (f : c --> d) :
  transportf (λ a0 : C, c --> a0) (isotoid C H p) f = f · p .
Proof.
  rewrite <- idtoiso_postcompose.
  rewrite idtoiso_isotoid.
  apply idpath.
Defined.


End coproduct_unique.
End bincoproduct_def.

Lemma BinCoproducts_from_Colims (C : precategory) :
  Colims_of_shape two_graph C BinCoproducts C.
Proof.
now intros H a b; apply H.
Defined.