Library UniMath.CategoryTheory.categories.abgrs

Category of abelian groups

Contents

  • Precategory of abelian groups
  • Category of abelian groups
  • Zero object and Zero arrow
    • Zero object
    • Zero arrow
  • Category of abelian groups is preadditive
  • Category of abelian groups is additive
  • Kernels and Cokernels
    • Kernels
    • Cokernels
  • Monics are inclusions and Epis are surjections
    • Epis are surjections
    • Monics are inclusions
  • Monics are kernels of their cokernels and epis are cokernels of their kernels
    • Monics are Kernels
    • Epis are Cokernels
  • The category of abelian groups is an abelian category
  • Corollaries to additive categories

Precategory of abelian groups

  • Objects are abelian groups, abgr.
  • Morphisms are monoidfuns, monoidfun.

precategory_data


  Definition abgr_fun_space (A B : abgr) : hSet := hSetpair (monoidfun A B) (isasetmonoidfun A B).

  Definition abgr_precategory_ob_mor : precategory_ob_mor :=
    tpair (λ ob : UU, ob ob UU) abgr (λ A B : abgr, abgr_fun_space A B).

  Definition abgr_precategory_data : precategory_data :=
    precategory_data_pair
      abgr_precategory_ob_mor (λ (A : abgr), ((idmonoidiso A) : monoidfun A A))
      (fun (A B C : abgr) (f : monoidfun A B) (g : monoidfun B C) ⇒ monoidfuncomp f g).

is_precategory


  Lemma is_precategory_abgr_precategory_data : is_precategory abgr_precategory_data.
  Proof.
    use mk_is_precategory_one_assoc.
    - intros a b f. use monoidfunidleft.
    - intros a b f. use monoidfunidright.
    - intros a b c d f g h. use monoidfunassoc.
  Qed.

precategory and category

Category of abelian groups

  • (monoidiso X Y) ≃ (iso X Y)
  • Category of abelian groups

(monoidiso X Y) ≃ (iso X Y)


  Lemma abgr_iso_is_equiv (A B : ob abgr_category) (f : iso A B) : isweq (pr1 (pr1 f)).
  Proof.
    use isweq_iso.
    - exact (pr1monoidfun _ _ (inv_from_iso f)).
    - intros x.
      use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_inv_after_iso f)) x).
      intros x0. use isapropismonoidfun.
    - intros x.
      use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (iso_after_iso_inv f)) x).
      intros x0. use isapropismonoidfun.
  Qed.

  Lemma abgr_iso_equiv (X Y : ob abgr_category) : iso X Y monoidiso (X : abgr) (Y : abgr).
  Proof.
    intro f.
    use monoidisopair.
    - exact (weqpair (pr1 (pr1 f)) (abgr_iso_is_equiv X Y f)).
    - exact (pr2 (pr1 f)).
  Defined.

  Lemma abgr_equiv_is_iso (X Y : ob abgr_category) (f : monoidiso (X : abgr) (Y : abgr)) :
    @is_iso abgr_category X Y (monoidfunconstr (pr2 f)).
  Proof.
    use is_iso_qinv.
    - exact (monoidfunconstr (pr2 (invmonoidiso f))).
    - use mk_is_inverse_in_precat.
      + use monoidfun_paths. use funextfun. intros x. use homotinvweqweq.
      + use monoidfun_paths. use funextfun. intros y. use homotweqinvweq.
  Qed.

  Definition abgr_equiv_iso (X Y : ob abgr_category) (f : monoidiso (X : abgr) (Y : abgr)) :
    iso X Y := @isopair abgr_category X Y (monoidfunconstr (pr2 f)) (abgr_equiv_is_iso X Y f).

  Lemma abgr_iso_equiv_is_equiv (X Y : abgr_category) : isweq (abgr_iso_equiv X Y).
  Proof.
    use isweq_iso.
    - exact (abgr_equiv_iso X Y).
    - intros x. use eq_iso. use monoidfun_paths. use idpath.
    - intros y. use monoidiso_paths. use subtypeEquality.
      + intros x0. use isapropisweq.
      + use idpath.
  Qed.

  Definition abgr_iso_equiv_weq (X Y : ob abgr_category) :
    weq (iso X Y) (monoidiso (X : abgr) (Y : abgr)).
  Proof.
    use weqpair.
    - exact (abgr_iso_equiv X Y).
    - exact (abgr_iso_equiv_is_equiv X Y).
  Defined.

  Lemma abgr_equiv_iso_is_equiv (X Y : ob abgr_category) : isweq (abgr_equiv_iso X Y).
  Proof.
    use isweq_iso.
    - exact (abgr_iso_equiv X Y).
    - intros y. use monoidiso_paths. use subtypeEquality.
      + intros x0. use isapropisweq.
      + use idpath.
    - intros x. use eq_iso. use monoidfun_paths. use idpath.
  Qed.

  Definition abgr_equiv_weq_iso (X Y : ob abgr_category) :
    (monoidiso (X : abgr) (Y : abgr)) (iso X Y).
  Proof.
    use weqpair.
    - exact (abgr_equiv_iso X Y).
    - exact (abgr_equiv_iso_is_equiv X Y).
  Defined.

Category of abelian groups


  Definition abgr_category_isweq (a b : ob abgr_category) : isweq (λ p : a = b, idtoiso p).
  Proof.
    use (@isweqhomot
           (a = b) (iso a b)
           (pr1weq (weqcomp (abgr_univalence a b) (abgr_equiv_weq_iso a b)))
           _ _ (weqproperty (weqcomp (abgr_univalence a b) (abgr_equiv_weq_iso a b)))).
    intros e. induction e.
    use (pathscomp0 weqcomp_to_funcomp_app).
    use total2_paths_f.
    - use total2_paths_f.
      + use idpath.
      + use proofirrelevance. use isapropismonoidfun.
    - use proofirrelevance. use isaprop_is_iso.
  Qed.

  Definition abgr_category_is_univalent : is_univalent abgr_category.
  Proof.
    use dirprodpair.
    - intros a b. exact (abgr_category_isweq a b).
    - exact has_homsets_abgr.
  Defined.

  Definition abgr_univalent_category : univalent_category :=
    mk_category abgr_category abgr_category_is_univalent.

End def_abgr_category.

Zero object and Zero arrow

  • Zero object is the abelian group which consists of one element, the unit element.
  • The unique morphism to zero object maps every element to the unit element.
  • The unique morphism from the zero object maps unit to unit.
  • The unique morphisms which factors through zero object maps every element to the unit element.
  • Computations on zero object
Section def_abgr_zero.

Zero in abelian category


  Lemma isconnectedfromunitabgr (a : abgr_category) (t : abgr_category unitabgr, a):
    (t : monoidfun unitabgr (a : abgr)) = abgrfunfromunit (a : abgr).
  Proof.
    use monoidfun_paths. use funextfun. intros x.
    use (pathscomp0 _ (monoidfununel t)). use maponpaths. use isProofIrrelevantUnit.
  Qed.

  Lemma isconnectedtounitabgr (a : abgr_category) (t : abgr_category a, unitabgr):
    (t : monoidfun (a : abgr) unitabgr) = abgrfuntounit a.
  Proof.
    use monoidfun_paths. use funextfun. intros x. use isProofIrrelevantUnit.
  Qed.

  Definition abgr_isZero : isZero abgr_category unitabgr.
  Proof.
    use mk_isZero.
    - intros a. use iscontrpair.
      + exact (abgrfunfromunit a).
      + intros t. exact (isconnectedfromunitabgr a t).
    - intros a. use iscontrpair.
      + exact (abgrfuntounit a).
      + intros t. exact (isconnectedtounitabgr a t).
  Defined.

  Definition abgr_Zero : Zero abgr_category := @mk_Zero abgr_category unitabgr abgr_isZero.

Computations on zero object


  Lemma abgr_Zero_comp : ZeroObject (abgr_Zero) = unitabgr.
  Proof.
    use idpath.
  Qed.

  Lemma abgr_Zero_from_comp (A : abgr) :
    @ZeroArrowFrom abgr_category abgr_Zero A = abgrfunfromunit A.
  Proof.
    use idpath.
  Qed.

  Lemma abgr_Zero_to_comp (A : abgr) :
    @ZeroArrowTo abgr_category abgr_Zero A = abgrfuntounit A.
  Proof.
    use idpath.
  Qed.

  Lemma abgr_Zero_arrow_comp (A B : abgr) :
    @ZeroArrow abgr_category abgr_Zero A B = unelabgrfun A B.
  Proof.
    use monoidfun_paths. use funextfun. intros x. use idpath.
  Qed.

End def_abgr_zero.

Preadditive structure on the category of abelian groups

  • Binary operation on homsets.
  • Abelian group structure on homsets
  • PreAdditive structure on the category of abelian groups
Section abgr_preadditive.

Binary operations on homsets

Let f, g : X --> Y be morphisms in the category of abelian groups. Then f + g is defined to be the morphism (f + g) x = (f x) + (g x). This gives precategoryWithBinOps structure on the category.

  Definition abgr_WithBinOpsData : precategoryWithBinOpsData abgr_category.
  Proof.
    intros X Y. exact (@abmonoidshombinop (X : abgr) (Y : abgr)).
  Defined.

  Definition abgr_WithBinOps : precategoryWithBinOps :=
    mk_precategoryWithBinOps abgr_category abgr_WithBinOpsData.

categoryWithAbgrops structure on the category of abelian groups


  Definition abgr_WithAbGrops : categoryWithAbgrops.
  Proof.
    use mk_categoryWithAbgrops.
    - exact abgr_WithBinOps.
    - use homset_property.
    - use mk_categoryWithAbgropsData.
      intros X Y. exact (@abgrshomabgr_isabgrop X Y).
  Defined.

PreAdditive structure on the category of abelian groups


  Definition abgr_isPreAdditive : isPreAdditive abgr_WithAbGrops.
  Proof.
    use mk_isPreAdditive.
    - intros X Y Z f.
      use mk_ismonoidfun.
      + use mk_isbinopfun. intros g h. use monoidfun_paths. use funextfun. intros x. use idpath.
      + use monoidfun_paths. use funextfun. intros x. use idpath.
    - intros X Y Z f.
      use mk_ismonoidfun.
      + use mk_isbinopfun. intros g h. use monoidfun_paths. use funextfun. intros x.
        use (pathscomp0 ((pr1 (pr2 f)) _ _)). use idpath.
      + use monoidfun_paths. use funextfun. intros x. exact (monoidfununel f).
  Qed.

  Definition abgr_PreAdditive : PreAdditive :=
    mk_PreAdditive abgr_WithAbGrops abgr_isPreAdditive.

End abgr_preadditive.

Additive structure on the category of abelian groups

  • Direct sums
  • Additive category structure
Section abgr_additive.

Direct sums

Direct sum of X and Y is given by the direct product abelian group X × Y. The inclusions and projections are given by
  • In1 : x ↦ (x, 0)
  • In2 : y ↦ (0, y)
  • Pr1 : (x, y) ↦ x
  • Pr2 : (x, y) ↦ y

  Lemma abgr_DirectSumPr1_ismonoidfun (A B : abgr) :
    ismonoidfun (λ X : abgrdirprod A B, dirprod_pr1 X).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'. use idpath.
    - use idpath.
  Qed.

  Definition abgr_DirectSumPr1 (A B : abgr) : abgr_categoryabgrdirprod A B, A :=
    monoidfunconstr (abgr_DirectSumPr1_ismonoidfun A B).

  Lemma abgr_DirectSumPr2_ismonoidfun (A B : abgr) :
    ismonoidfun (λ X : abgrdirprod A B, dirprod_pr2 X).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'. use idpath.
    - use idpath.
  Qed.

  Definition abgr_DirectSumPr2 (A B : abgr) : abgr_categoryabgrdirprod A B, B :=
    monoidfunconstr (abgr_DirectSumPr2_ismonoidfun A B).

  Lemma abgr_DirectSumIn1_ismonoidfun (A B : abgr) :
    @ismonoidfun A (abgrdirprod A B) (λ a : A, dirprodpair a (unel B)).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'. use dirprod_paths.
      + use idpath.
      + use pathsinv0. use (runax B).
    - use dirprod_paths.
      + use idpath.
      + use idpath.
  Qed.

  Definition abgr_DirectSumIn1 (A B : abgr) : abgr_categoryA, abgrdirprod A B :=
    monoidfunconstr (abgr_DirectSumIn1_ismonoidfun A B).

  Lemma abgr_DirectSumIn2_ismonoidfun (A B : abgr) :
    @ismonoidfun B (abgrdirprod A B) (λ b : B, dirprodpair (unel A) b).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'. use dirprod_paths.
      + use pathsinv0. use (runax A).
      + use idpath.
    - use dirprod_paths.
      + use idpath.
      + use idpath.
  Qed.

  Definition abgr_DirectSumIn2 (A B : abgr) : abgr_categoryB, abgrdirprod A B :=
    monoidfunconstr (abgr_DirectSumIn2_ismonoidfun A B).

  Lemma abgr_DirectSumIdIn1 (A B : abgr) :
    abgr_DirectSumIn1 A B · abgr_DirectSumPr1 A B = (idmonoidiso A : monoidfun A A).
  Proof.
    use monoidfun_paths. use funextfun. intros x. use idpath.
  Qed.

  Lemma abgr_DirectSumIdIn2 (A B : abgr) :
    abgr_DirectSumIn2 A B · abgr_DirectSumPr2 A B = (idmonoidiso B : monoidfun B B).
  Proof.
    use monoidfun_paths. use funextfun. intros x. use idpath.
  Qed.

  Lemma abgr_DirectSumUnel1 (A B : abgr) :
    abgr_DirectSumIn1 A B · abgr_DirectSumPr2 A B = @to_unel abgr_PreAdditive A B.
  Proof.
    use monoidfun_paths. use funextfun. intros x. use idpath.
  Qed.

  Lemma abgr_DirectSumUnel2 (A B : abgr) :
    abgr_DirectSumIn2 A B · abgr_DirectSumPr1 A B = @to_unel abgr_PreAdditive B A.
  Proof.
    use monoidfun_paths. use funextfun. intros x. use idpath.
  Qed.

  Lemma abgr_DirectSumId (A B : abgr) :
    @abmonoidshombinop
      (abgrdirprod A B) (abgrdirprod A B)
      (abgr_DirectSumPr1 A B · abgr_DirectSumIn1 A B)
      (abgr_DirectSumPr2 A B · abgr_DirectSumIn2 A B) =
    ((idmonoidiso (abgrdirprod A B)) : monoidfun (abgrdirprod A B) (abgrdirprod A B)) .
  Proof.
    use monoidfun_paths. use funextfun. intros x. use dirprod_paths.
    - use (runax A).
    - use (lunax B).
  Qed.

  Lemma abgr_isBinDirectSum (X Y : abgr) :
    isBinDirectSum
      abgr_PreAdditive X Y (abgrdirprod X Y) (abgr_DirectSumIn1 X Y) (abgr_DirectSumIn2 X Y)
      (abgr_DirectSumPr1 X Y) (abgr_DirectSumPr2 X Y).
  Proof.
    use mk_isBinDirectSum.
    - exact (abgr_DirectSumIdIn1 X Y).
    - exact (abgr_DirectSumIdIn2 X Y).
    - exact (abgr_DirectSumUnel1 X Y).
    - exact (abgr_DirectSumUnel2 X Y).
    - exact (abgr_DirectSumId X Y).
  Defined.

  Definition abgr_AdditiveStructure : AdditiveStructure abgr_PreAdditive.
  Proof.
    use mk_AdditiveStructure.
    - exact abgr_Zero.
    - use mk_BinDirectSums. intros X Y. use mk_BinDirectSum.
      + exact (abgrdirprod X Y).
      + exact (abgr_DirectSumIn1 X Y).
      + exact (abgr_DirectSumIn2 X Y).
      + exact (abgr_DirectSumPr1 X Y).
      + exact (abgr_DirectSumPr2 X Y).
      + exact (abgr_isBinDirectSum X Y).
  Defined.

  Definition abgr_Additive : CategoryWithAdditiveStructure := mk_Additive abgr_PreAdditive abgr_AdditiveStructure.

End abgr_additive.

Kernels and Cokernels

  • Kernels in the category of abelian groups
  • Cokernels in the category of abelian groups
Section abgr_kernels_and_cokernels.

  Definition abgr_Kernel_monoidfun {A B : abgr} (f : monoidfun A B) :
    abgr_categorycarrierofasubabgr (abgr_Kernel_subabgr f), A :=
    monoidincltomonoidfun
      (abgr_Kernel_subabgr f) A
      (@monoidmonopair (abgr_Kernel_subabgr f) A
                       (inclpair (pr1carrier (abgr_kernel_hsubtype f))
                                 (isinclpr1carrier (abgr_kernel_hsubtype f)))
                       (abgr_Kernel_monoidfun_ismonoidfun f)).

Composition Kernel f --> X --> Y is the zero arrow


  Definition abgr_Kernel_eq {A B : abgr} (f : monoidfun A B) :
    abgr_Kernel_monoidfun f · f = ZeroArrow abgr_Zero (carrierofasubabgr (abgr_Kernel_subabgr f)) B.
  Proof.
    apply monoidfun_paths.
    apply funextfun; intro x.
    apply (pr2 x).
  Qed.

KernelIn morphism


  Lemma abgr_KernelArrowIn_map_property {A B C : abgr_category} (h : C --> A) (f : A --> B)
             (H : h · f = ZeroArrow abgr_Zero C B) (c : (C : abgr)) :
    (pr1 f (pr1 h c) = 1%multmonoid).
  Proof.
    use (pathscomp0 (toforallpaths _ _ _ (base_paths _ _ H) c)). use idpath.
  Qed.

  Definition abgr_KernelArrowIn_map {A B C : abgr_category} (h : C --> A) (f : A --> B)
             (H : h · f = ZeroArrow abgr_Zero C B) (c : (C : abgr)) : abgr_Kernel_subabgr f.
  Proof.
    use tpair.
    - exact (pr1 h c).
    - exact (abgr_KernelArrowIn_map_property h f H c).
  Defined.

  Lemma abgr_KernelArrowIn_ismonoidfun {A B C : abgr_category} (h : C --> A)
        (f : A --> B) (H : h · f = ZeroArrow abgr_Zero C B) :
    @ismonoidfun (C : abgr) (@abgr_Kernel_subabgr A B f) (@abgr_KernelArrowIn_map A B C h f H).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'. use total2_paths_f.
      + exact (binopfunisbinopfun (h : monoidfun (C : abgr) (A : abgr)) x x').
      + use proofirrelevance. use propproperty.
    - use total2_paths_f.
      + exact (monoidfununel h).
      + use proofirrelevance. use propproperty.
  Qed.

  Definition abgr_KernelArrowIn {A B C : abgr_category} (h : C --> A) (f : A --> B)
             (H : h · f = ZeroArrow abgr_Zero C B) :
    abgr_categoryC, carrierofasubabgr (abgr_Kernel_subabgr f).
  Proof.
    use monoidfunconstr.
    - exact (abgr_KernelArrowIn_map h f H).
    - exact (abgr_KernelArrowIn_ismonoidfun h f H).
  Defined.

Kernels


  Definition abgr_Kernel_isKernel_KernelArrrow {A B C : abgr} (f : abgr_category A, B)
             (h : abgr_category C, A) (H' : h · f = ZeroArrow abgr_Zero C B) :
     ψ : abgr_category C, carrierofasubabgr (abgr_Kernel_subabgr f),
          ψ · abgr_Kernel_monoidfun f = h.
  Proof.
    use tpair.
    - exact (abgr_KernelArrowIn h f H').
    - use monoidfun_paths. use funextfun. intros x. use idpath.
  Defined.

  Definition abgr_Kernel_isKernel_uniqueness {A B C : abgr} (f : abgr_category A, B)
             (h : abgr_category C, A) (H' : h · f = ZeroArrow abgr_Zero C B)
             (t : (t1 : abgr_category C, carrierofasubabgr (abgr_Kernel_subabgr f)),
                  t1 · abgr_Kernel_monoidfun f = h) :
    t = abgr_Kernel_isKernel_KernelArrrow f h H'.
  Proof.
    use total2_paths_f.
    - use monoidfun_paths. use funextfun. intros x. use total2_paths_f.
      + exact (toforallpaths _ _ _ (base_paths _ _ (pr2 t)) x).
      + use proofirrelevance. use propproperty.
    - use proofirrelevance. use setproperty.
  Qed.

  Definition abgr_Kernel_isKernel {A B : abgr} (f : abgr_categoryA, B) :
    isKernel abgr_Zero (abgr_Kernel_monoidfun f) f (abgr_Kernel_eq f).
  Proof.
    use mk_isKernel.
    - use homset_property.
    - intros w h H'.
      use iscontrpair.
      + exact (abgr_Kernel_isKernel_KernelArrrow f h H').
      + intros t. exact (abgr_Kernel_isKernel_uniqueness f h H' t).
  Defined.

  Definition abgr_Kernel {A B : abgr} (f : monoidfun A B) :
    Kernel abgr_Zero f :=
    mk_Kernel (abgr_Zero) (abgr_Kernel_monoidfun f) f (abgr_Kernel_eq f) (abgr_Kernel_isKernel f).

  Corollary abgr_Kernels : Kernels abgr_Zero.
  Proof.
    intros A B f. exact (abgr_Kernel f).
  Defined.

Cokernels

  • Let f : X --> Y be a morphism of abelian groups. A cokernel for f is given by the quotient quotient group Y/(Im f) together with the canonical morphism Y --> Y/(Im f).

Subgroup gives an equivalence relation.


  Definition abgr_Cokernel_eqrel_istrans {A B : abgr} (f : monoidfun A B) :
    istrans (λ b1 b2 : B, a : A, f a = (b1 × grinv B b2)%multmonoid).
  Proof.
    intros x1 x2 x3 y1 y2.
    use (hinhuniv _ y1). intros y1'.
    use (hinhuniv _ y2). intros y2'.
    use hinhpr.
    use tpair.
    - exact (@op A (pr1 y1') (pr1 y2')).
    - use (pathscomp0 (binopfunisbinopfun f (pr1 y1') (pr1 y2'))).
      rewrite (pr2 y1'). rewrite (pr2 y2').
      rewrite <- assocax. rewrite (assocax _ _ _ x2). rewrite (grlinvax B). rewrite (runax B).
      use idpath.
  Qed.

  Definition abgr_Cokernel_eqrel_isrefl {A B : abgr} (f : monoidfun A B) :
    isrefl (λ b1 b2 : B, a : A, f a = (b1 × grinv B b2)%multmonoid).
  Proof.
    intros x1 P X. use X. clear P X.
    use tpair.
    - exact (unel A).
    - cbn. rewrite (grrinvax B). use (monoidfununel f).
  Qed.

  Definition abgr_Cokernel_eqrel_issymm {A B : abgr} (f : monoidfun A B) :
    issymm (λ b1 b2 : B, a : A, f a = (b1 × grinv B b2)%multmonoid).
  Proof.
    intros x1 x2 x3.
    use (hinhuniv _ x3). intros x3'.
    intros P X. use X. clear P X.
    use tpair.
    - exact (grinv A (pr1 x3')).
    - use (pathscomp0 (monoidfuninvtoinv f (pr1 x3'))).
      rewrite (pr2 x3'). rewrite grinvop. use two_arg_paths.
      + use grinvinv.
      + use idpath.
  Qed.

  Definition abgr_Cokernel_eqrel {A B : abgr} (f : monoidfun A B) : eqrel B :=
    @eqrelconstr B (λ b1 : B, λ b2 : B, a : A, (f a) = (op b1 (grinv B b2)))
                 (abgr_Cokernel_eqrel_istrans f) (abgr_Cokernel_eqrel_isrefl f)
                 (abgr_Cokernel_eqrel_issymm f).

Construction of the quotient abelian group Y/(Im f)


  Definition abgr_Cokernel_abgr_isbinoprel {A B : abgr} (f : monoidfun A B) :
    isbinophrel (λ b1 b2 : pr1 B, a : pr1 A, pr1 f a = (b1 × grinv B b2)%multmonoid).
  Proof.
    use isbinophrelif.
    - exact (commax B).
    - intros x1 x2 x3 y1. use (hinhuniv _ y1). intros y1'. use hinhpr.
      use tpair.
      + exact (pr1 y1').
      + use (pathscomp0 (pr2 y1')). rewrite grinvop.
        rewrite (commax B x3). rewrite (assocax B). rewrite (commax B x3).
        rewrite (assocax B). rewrite (grlinvax B x3). rewrite (runax B). use idpath.
  Qed.

  Definition abgr_Cokernel_abgr {A B : abgr} (f : monoidfun A B) : abgr :=
    @abgrquot B (binopeqrelpair (abgr_Cokernel_eqrel f) (abgr_Cokernel_abgr_isbinoprel f)).

The canonical morphism Y --> Y/(Im f)


  Lemma abgr_CokernelArrow_ismonoidfun {A B : abgr} (f : monoidfun A B) :
    @ismonoidfun B (@abgr_Cokernel_abgr A B f) (@setquotpr B (@abgr_Cokernel_eqrel A B f)).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'. use idpath.
    - use idpath.
  Qed.

  Definition abgr_CokernelArrow {A B : abgr} (f : monoidfun A B) :
    abgr_categoryB, abgr_Cokernel_abgr f.
  Proof.
    use monoidfunconstr.
    - exact (setquotpr (abgr_Cokernel_eqrel f)).
    - exact (abgr_CokernelArrow_ismonoidfun f).
  Defined.

CokernelOut


  Lemma abgr_Cokernel_monoidfun_issurjective {A B : abgr} (f : monoidfun A B) :
    issurjective (pr1 (abgr_CokernelArrow f)).
  Proof.
    use issurjsetquotpr.
  Qed.

  Definition abgr_Cokernel_eq {A B : abgr} (f : abgr_categoryA, B) :
    f · abgr_CokernelArrow f = ZeroArrow abgr_Zero A (abgr_Cokernel_abgr f).
  Proof.
    use monoidfun_paths. use funextfun. intros a.
    use (iscompsetquotpr (abgr_Cokernel_eqrel f)).
    use hinhpr.
    use tpair.
    - exact a.
    - use (pathscomp0 (pathsinv0 (runax B (pr1 f a)))).
      use two_arg_paths.
      + use idpath.
      + use pathsinv0. use (grinvunel B).
  Qed.

  Definition abgr_CokernelArrowOutUniv_iscomprelfun {A B C : abgr_category}
             (f : A --> B) (h : B --> C) (H : f · h = ZeroArrow abgr_Zero A C) :
    iscomprelfun (λ b1 b2 : pr1 B, a : pr1 A, pr1 f a = (b1 × grinv (abgrtogr B) b2)%multmonoid)
                 (pr1 h).
  Proof.
    intros x x' X.
    use (squash_to_prop X (setproperty (C : abgr) (pr1 h x) (pr1 h x'))). intros X'.
    use (grrcan (abgrtogr C) ((pr1 h) (grinv (abgrtogr B) x'))).
    use (pathscomp0 _ (binopfunisbinopfun
                         (h : monoidfun (B : abgr) (C : abgr)) x' (grinv (B : abgr) x'))).
    use (pathscomp0 _ (! maponpaths (λ xx : (B : abgr), pr1 h xx) (grrinvax (B : abgr) x'))).
    use (pathscomp0 _ (! (monoidfununel h))).
    use (pathscomp0 _ (toforallpaths _ _ _ (base_paths _ _ H) (pr1 X'))).
    use (pathscomp0 (! (binopfunisbinopfun
                          (h : monoidfun (B : abgr) (C : abgr)) x (grinv (B : abgr) x')))).
    use maponpaths. use pathsinv0. exact (pr2 X').
  Qed.

  Definition abgr_CokernelOut_map {A B C : abgr_category} (f : A --> B)
             (h : B --> C) (H : f · h = ZeroArrow abgr_Zero A C) :
    (abgr_Cokernel_abgr f) (pr1 C) :=
    setquotuniv (λ b1 b2 : pr1 B, a : pr1 A, pr1 f a = (b1 × grinv (abgrtogr B) b2)%multmonoid)
                (pr1 C) (pr1 h) (abgr_CokernelArrowOutUniv_iscomprelfun f h H).

  Definition abgr_CokernelOut_ismonoidfun {A B C : abgr} (f : abgr_category A, B)
             (h : abgr_category B, C) (H : f · h = ZeroArrow abgr_Zero A C) :
    @ismonoidfun (@abgr_Cokernel_abgr A B f) C (@abgr_CokernelOut_map A B C f h H).
  Proof.
    use mk_ismonoidfun.
    - exact (@isbinopfun_twooutof3b
               (pr1 B) (abgr_Cokernel_abgr f) C
               (pr1 (abgr_CokernelArrow f))
               (abgr_CokernelOut_map f h H)
               (abgr_Cokernel_monoidfun_issurjective f)
               (binopfunisbinopfun (h : monoidfun B C))
               (binopfunisbinopfun ((abgr_CokernelArrow f) : monoidfun B _))).
    - exact (monoidfununel (h : monoidfun B C)).
  Qed.

  Definition abgr_CokernelOut {A B C : abgr} (f : abgr_categoryA, B) (h : abgr_categoryB, C)
             (H : f · h = ZeroArrow abgr_Zero A C) : monoidfun (abgr_Cokernel_abgr f) C :=
    monoidfunconstr (abgr_CokernelOut_ismonoidfun f h H).

  Lemma abgr_CokernelOut_Comm {A B C : abgr} (f : abgr_categoryA, B) (h : abgr_categoryB, C)
        (H : f · h = ZeroArrow abgr_Zero A C) :
    monoidfuncomp (abgr_CokernelArrow f) (abgr_CokernelOut f h H) = h.
  Proof.
    use monoidfun_paths. use funextfun. intros x. use idpath.
  Qed.

  Definition abgr_CokernelOut_pair {A B C : abgr} (f : abgr_category A, B)
             (h : abgr_category B, C) (H : f · h = ZeroArrow abgr_Zero A C) :
     ψ : abgr_categoryabgr_Cokernel_abgr f, C, abgr_CokernelArrow f · ψ = h.
  Proof.
    use tpair.
    - exact (abgr_CokernelOut f h H).
    - exact (abgr_CokernelOut_Comm f h H).
  Defined.

Cokernels


  Lemma abgr_isCokernel_uniquenss {A B C : abgr} (f : abgr_categoryA, B) (h : abgr_categoryB, C)
        (H : f · h = ZeroArrow abgr_Zero A C)
        (t : ψ : abgr_category abgr_Cokernel_abgr f, C, abgr_CokernelArrow f · ψ = h) :
    t = abgr_CokernelOut_pair f h H.
  Proof.
    use total2_paths_f.
    - use monoidfun_paths. use funextfun. intros x.
      use (squash_to_prop (abgr_Cokernel_monoidfun_issurjective f x) (setproperty C _ _)).
      intros hf. rewrite <- (hfiberpr2 _ _ hf).
      exact (toforallpaths _ _ _ (base_paths _ _ (pr2 t)) (hfiberpr1 _ _ hf)).
    - use proofirrelevance. use homset_property.
  Qed.

  Definition abgr_isCokernel {A B : abgr} (f : abgr_categoryA, B) :
    isCokernel abgr_Zero f (abgr_CokernelArrow f) (abgr_Cokernel_eq f).
  Proof.
    use mk_isCokernel.
    - use homset_property.
    - intros C h H. use iscontrpair.
      + exact (abgr_CokernelOut_pair f h H).
      + intros t. exact (abgr_isCokernel_uniquenss f h H t).
  Defined.

  Definition abgr_Cokernel {A B : abgr} (f : abgr_categoryA, B) : Cokernel abgr_Zero f :=
    mk_Cokernel abgr_Zero f (abgr_CokernelArrow f) (abgr_Cokernel_eq f) (abgr_isCokernel f).

  Corollary abgr_Cokernels : Cokernels abgr_Zero.
  Proof.
    intros A B f. exact (abgr_Cokernel f).
  Defined.

End abgr_kernels_and_cokernels.

Monics are injective and epis are surjective

  • Epis are surjective
  • Monics are injective

Epis


  Definition abgr_epi_hfiber_inhabited
             {A B : abgr} (f : abgr_categoryA, B) (isE : isEpi f) (b : B)
             (H : setquotpr (abgr_Cokernel_eqrel f) b =
                  setquotpr (abgr_Cokernel_eqrel f) 1%multmonoid) : hfiber (pr1 f) b .
  Proof.
    set (tmp := weqpathsinsetquot (abgr_Cokernel_eqrel f) b (unel _)).
    use (hinhuniv _ ((invweq tmp) H)). intros Y. use hinhpr. induction Y as [t p].
    rewrite grinvunel in p. rewrite (runax B) in p.
    exact (hfiberpair (pr1 f) t p).
  Qed.

  Definition abgr_epi_issurjective {A B : abgr} (f : abgr_categoryA, B) (isE : isEpi f) :
    issurjective (pr1 f).
  Proof.
    intros x. use abgr_epi_hfiber_inhabited.
    - exact isE.
    - set (tmp := isE (abgr_Cokernel_abgr f) (abgr_CokernelArrow f)
                      (unelabgrfun B (abgr_Cokernel_abgr f))).
      assert (H : f · abgr_CokernelArrow f = f · unelabgrfun B (abgr_Cokernel_abgr f)).
      {
        rewrite abgr_Cokernel_eq.
        rewrite <- abgr_Zero_arrow_comp.
        rewrite ZeroArrow_comp_right.
        use idpath.
      }
      exact (toforallpaths _ _ _ (base_paths _ _ (tmp H)) x).
  Qed.

Monics


  Lemma nat_nat_prod_abgr_monoidfun_paths {A B : abgr} (a1 a2 : A) (f : monoidfun A B)
        (H : f a1 = f a2) : monoidfuncomp (nat_nat_prod_abmonoid_monoidfun a1) f =
                            monoidfuncomp (nat_nat_prod_abmonoid_monoidfun a2) f.
  Proof.
    use monoidfun_paths. use funextfun. intros x. induction x as [x1 x2]. cbn.
    unfold funcomp. unfold nataddabmonoid_nataddabmonoid_to_monoid_fun.
    unfold nat_nat_to_monoid_fun. Opaque nat_to_monoid_fun. cbn.
    use (pathscomp0 (binopfunisbinopfun f _ _)).
    use (pathscomp0 _ (! (binopfunisbinopfun f _ _))). cbn.
    rewrite (monoidfun_nat_to_monoid_fun f a1 x1).
    rewrite (monoidfun_nat_to_monoid_fun f a2 x1).
    rewrite (monoidfun_nat_to_monoid_fun f (grinv A a1) x2).
    rewrite (monoidfun_nat_to_monoid_fun f (grinv A a2) x2).
    use two_arg_paths.
    - induction H. use idpath.
    - assert (e : f (grinv A a1) = f (grinv A a2)). {
        use (@grlcan B _ _ (pr1 f a1)).
        use (pathscomp0 (! binopfunisbinopfun f a1 (grinv A a1))).
        use (pathscomp0 (maponpaths (pr1 f) (grrinvax A a1))).
        cbn in H. rewrite H.
        use (pathscomp0 _ (binopfunisbinopfun f a2 (grinv A a2))).
        use (pathscomp0 _ (! (maponpaths (pr1 f) (grrinvax A a2)))).
        use idpath.
      }
      induction e. use idpath.
  Qed.
  Transparent nat_to_monoid_fun.

  Lemma abgr_monoidfun_precomp {A :abmonoid} {B C : abgr} (f1 f2 : monoidfun B C)
        (g : monoidfun A B) (H : issurjective (pr1 g)) :
    monoidfuncomp g f1 = monoidfuncomp g f2 f1 = f2.
  Proof.
    intros e. use monoidfun_paths. use funextfun. intros x.
    use (squash_to_prop (H x) (setproperty C _ _)). intros hf.
    rewrite <- (hfiberpr2 _ _ hf).
    exact (toforallpaths _ _ _ (base_paths _ _ e) (hfiberpr1 _ _ hf)).
  Qed.

  Lemma hz_abgr_fun_monoifun_paths {A B : abgr} (a1 a2 : A) (f : monoidfun A B) (H : f a1 = f a2) :
    monoidfuncomp (hz_abgr_fun_monoidfun a1) f = monoidfuncomp (hz_abgr_fun_monoidfun a2) f.
  Proof.
    use (@abgr_monoidfun_precomp
           (abmonoiddirprod (rigaddabmonoid natcommrig) (rigaddabmonoid natcommrig))
           hzaddabgr B
           (monoidfuncomp (hz_abgr_fun_monoidfun a1) f)
           (monoidfuncomp (hz_abgr_fun_monoidfun a2) f)
           hz_abmonoid_monoidfun).
    - use issurjsetquotpr.
    - rewrite monoidfunassoc. rewrite monoidfunassoc.
      rewrite abgr_natnat_hz_X_comm. rewrite abgr_natnat_hz_X_comm.
      exact (nat_nat_prod_abgr_monoidfun_paths a1 a2 f H).
  Qed.

  Definition abgr_monic_isincl {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f) :
    isincl (pr1 f).
  Proof.
    intros b h1 h2.
    use iscontrpair.
    - use total2_paths_f.
      + set (e := hfiberpr2 _ _ h1 @ (! hfiberpr2 _ _ h2)).
        set (tmp := isM hzaddabgr (hz_abgr_fun_monoidfun (pr1 h1))
                        (hz_abgr_fun_monoidfun (pr1 h2))
                        (hz_abgr_fun_monoifun_paths (pr1 h1) (pr1 h2) f e)).
        set (e' := toforallpaths _ _ _ (base_paths _ _ tmp) hzone).
        use (grrcan A (unel A)). use (grrcan A (unel A)). exact e'.
      + use proofirrelevance. use (setproperty B).
    - intros t. use proofirrelevance. use isaset_hfiber.
      + use setproperty.
      + use setproperty.
  Qed.

  Definition abgr_monic_isInjective {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f) :
    isInjective (pr1 f).
  Proof.
    exact (isweqonpathsincl (pr1 f) (abgr_monic_isincl f isM)).
  Qed.

  Lemma abgr_monic_paths {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f) (a1 a2 : A) :
    pr1 f a1 = pr1 f a2 a1 = a2.
  Proof.
    exact (invweq (weqpair _ (abgr_monic_isInjective f isM a1 a2))).
  Qed.

  Lemma abgr_monoidfun_postcomp {A B C : abgr} (f1 f2 : monoidfun A B) (g : monoidfun B C)
        (isM : isMonic (g : abgr_categoryB, C)) :
    monoidfuncomp f1 g = monoidfuncomp f2 g f1 = f2.
  Proof.
    intros e. use monoidfun_paths. use funextfun. intros x.
    use (invmap (weqpair _ (abgr_monic_isInjective g isM (pr1 f1 x) (pr1 f2 x)))).
    exact (toforallpaths _ _ _ (base_paths _ _ e) x).
  Qed.

End abgr_monics_and_epis.

Monics are kernels of their cokernels and epis are cokernels of their kernels

Monics are kernels of their cokernels


  Definition abgr_monic_kernel_in_hfiber_iscontr {A B C : abgr} (f : abgr_categoryA, B)
             (isM : isMonic f) (h : abgr_categoryC, B)
             (H : h · CokernelArrow (abgr_Cokernel f) =
                  ZeroArrow abgr_Zero C (abgr_Cokernel f)) (c : C) :
    iscontr (hfiber (pr1 f) (pr1 h c)).
  Proof.
    use (squash_to_prop
           ((invweq (weqpathsinsetquot (abgr_Cokernel_eqrel f) (pr1 h c) (unel _)))
              (toforallpaths _ _ _ (base_paths _ _ H) c)) (isapropiscontr _)).
    intros hf.
    use iscontrpair.
    - use hfiberpair.
      + exact (pr1 hf).
      + use (pathscomp0 (pr2 hf)). rewrite grinvunel. use (runax B).
    - intros t. use total2_paths_f.
      + use (invmap (weqpair _ (abgr_monic_isInjective f isM (pr1 t) (pr1 hf)))).
        use (pathscomp0 (hfiberpr2 _ _ t)). use (pathscomp0 _ (! (pr2 hf))).
        rewrite grinvunel. rewrite runax. use idpath.
      + use proofirrelevance. use (setproperty B).
  Qed.

  Lemma abgr_monic_kernel_in_hfiber_mult_eq {A B : abgr} (f : abgr_categoryA, B)
        (w : abgr) (x x' : w) (h : abgr_categoryw, B) (X : hfiber (pr1 f) (pr1 h x))
        (X0 : hfiber (pr1 f) (pr1 h x')) :
    pr1 f (pr1 X × pr1 X0)%multmonoid = pr1 h (x × x')%multmonoid.
  Proof.
    rewrite (pr1 (pr2 f)).
    rewrite (pr2 X).
    rewrite (pr2 X0).
    rewrite (pr1 (pr2 h)).
    use idpath.
  Qed.

  Definition abgr_monic_kernel_in_hfiber_mult {A B : abgr} (f : abgr_categoryA, B)
             (w : abgr) (x x' : w) (h : abgr_categoryw, B) :
    hfiber (pr1 f) (pr1 h x) hfiber (pr1 f) (pr1 h x')
     hfiber (pr1 f) (pr1 h (x × x')%multmonoid).
  Proof.
    intros X X0.
    exact (hfiberpair (pr1 f) ((pr1 X) × (pr1 X0))%multmonoid
                      (abgr_monic_kernel_in_hfiber_mult_eq f w x x' h X X0)).
  Defined.

  Lemma abgr_monic_kernel_in_hfiber_unel_eq {A B C : abgr} (f : abgr_categoryA, B)
        (h : abgr_categoryC, B) : pr1 f 1%multmonoid = pr1 h 1%multmonoid.
  Proof.
    rewrite (pr2 (pr2 h)). use (pr2 (pr2 f)).
  Qed.

  Definition abgr_monic_kernel_in_hfiber_unel {A B : abgr} (f : abgr_categoryA, B) (w : abgr)
             (h : abgr_categoryw, B) : hfiber (pr1 f) (pr1 h 1%multmonoid) :=
    hfiberpair (pr1 f) 1%multmonoid (abgr_monic_kernel_in_hfiber_unel_eq f h).

  Definition abgr_monic_kernel_in {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f)
             (w : abgr) (h: abgr_categoryw, B)
             (H : h · CokernelArrow (abgr_Cokernel f) = ZeroArrow abgr_Zero _ _) : w A.
  Proof.
    intros x.
    exact (hfiberpr1 _ _ (iscontrpr1 (@abgr_monic_kernel_in_hfiber_iscontr A B w f isM h H x))).
  Defined.

  Definition abgr_monic_kernel_in_ismonoidfun {A B : abgr} (f : abgr_categoryA, B)
             (isM : isMonic f) (w : abgr) (h: abgr_categoryw, B)
             (H : h · CokernelArrow (abgr_Cokernel f) = ZeroArrow abgr_Zero _ _) :
    ismonoidfun (abgr_monic_kernel_in f isM w h H).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'.
      set (t := abgr_monic_kernel_in_hfiber_iscontr f isM h H x).
      set (tmp := abgr_monic_kernel_in_hfiber_mult
                    f w x x' h
                    (iscontrpr1 (abgr_monic_kernel_in_hfiber_iscontr f isM h H x))
                    (iscontrpr1 (abgr_monic_kernel_in_hfiber_iscontr f isM h H x'))).
      use pathscomp0.
      + exact (hfiberpr1 _ _ tmp).
      + unfold abgr_monic_kernel_in.
        use (invmap (weqpair _ (abgr_monic_isInjective f isM _ _))).
        use (pathscomp0 (hfiberpr2 _ _ (iscontrpr1 (abgr_monic_kernel_in_hfiber_iscontr
                                                      f isM h H (x × x')%multmonoid)))).
        use pathsinv0.
        exact (hfiberpr2 _ _ tmp).
      + use idpath.
    - assert (e : iscontrpr1 (abgr_monic_kernel_in_hfiber_iscontr f isM h H 1%multmonoid)
                  = (abgr_monic_kernel_in_hfiber_unel f w h)).
      {
        use total2_paths_f.
        - use (invmap (weqpair _ (abgr_monic_isInjective f isM _ _))).
          use (pathscomp0 (hfiberpr2 _ _ (iscontrpr1 (abgr_monic_kernel_in_hfiber_iscontr
                                                        f isM h H 1%multmonoid)))).
          use pathsinv0.
          exact (hfiberpr2 _ _ (abgr_monic_kernel_in_hfiber_unel f w h)).
        - use proofirrelevance. use setproperty.
      }
      exact (base_paths _ _ e).
  Qed.

  Definition abgr_monic_kernel_in_monoidfun {A B : abgr} (f : abgr_categoryA, B)
             (isM : isMonic f) (w : abgr) (h: abgr_categoryw, B)
             (H : h · CokernelArrow (abgr_Cokernel f) = ZeroArrow abgr_Zero _ _) :
    monoidfun w A := monoidfunconstr (abgr_monic_kernel_in_ismonoidfun f isM w h H).

  Definition abgr_monic_Kernel_eq {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f) :
    f · CokernelArrow (abgr_Cokernel f) = ZeroArrow abgr_Zero A (abgr_Cokernel f).
  Proof.
    use CokernelCompZero.
  Qed.

  Lemma abgr_monic_Kernel_isKernel_comm {A B C : abgr} (f : abgr_categoryA, B)
        (isM : isMonic f) (h : abgr_categoryC, B)
        (H : h · CokernelArrow (abgr_Cokernel f) = ZeroArrow abgr_Zero C (abgr_Cokernel f)):
    monoidfuncomp (abgr_monic_kernel_in_monoidfun f isM C h H) f = h.
  Proof.
    use monoidfun_paths. use funextfun. intros x.
    exact (hfiberpr2 _ _ (iscontrpr1 (abgr_monic_kernel_in_hfiber_iscontr f isM h H x))).
  Qed.

  Definition abgr_monic_Kernel_isKernel_pair {A B C : abgr} (f : abgr_categoryA, B)
             (isM : isMonic f) (h : abgr_categoryC, B)
             (H : h · CokernelArrow (abgr_Cokernel f) = ZeroArrow abgr_Zero C (abgr_Cokernel f)) :
     ψ : abgr_category C, A, ψ · f = h.
  Proof.
    use tpair.
    - exact (abgr_monic_kernel_in_monoidfun f isM C h H).
    - exact (abgr_monic_Kernel_isKernel_comm f isM h H).
  Defined.

  Definition abgr_monic_Kernel_isKernel_uniqueness {A B C : abgr} (f : abgr_categoryA, B)
             (isM : isMonic f) (h : abgr_categoryC, B)
             (H : h · CokernelArrow (abgr_Cokernel f) = ZeroArrow abgr_Zero C (abgr_Cokernel f))
             (t : ψ : abgr_category C, A, ψ · f = h) :
    t = abgr_monic_Kernel_isKernel_pair f isM h H.
  Proof.
    use total2_paths_f.
    - use monoidfun_paths. use funextfun. intros x.
      use (invmap (weqpair _ (abgr_monic_isInjective f isM _ _))).
      use (pathscomp0 (toforallpaths _ _ _ (base_paths _ _ (pr2 t)) x)).
      use pathsinv0.
      exact (hfiberpr2 _ _ (iscontrpr1 (abgr_monic_kernel_in_hfiber_iscontr f isM h H x))).
    - use proofirrelevance. use setproperty.
  Qed.

  Definition abgr_monic_Kernel_isKernel {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f) :
    isKernel abgr_Zero f (CokernelArrow (abgr_Cokernel f))
             (CokernelCompZero abgr_Zero (abgr_Cokernel f)).
  Proof.
    use mk_isKernel.
    - use homset_property.
    - intros w h H.
      use iscontrpair.
      + exact (abgr_monic_Kernel_isKernel_pair f isM h H).
      + exact (abgr_monic_Kernel_isKernel_uniqueness f isM h H).
  Defined.

  Definition abgr_monic_kernel {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f) :
    Kernel abgr_Zero (CokernelArrow (abgr_Cokernel f)) :=
    mk_Kernel abgr_Zero f (CokernelArrow (abgr_Cokernel f)) (abgr_monic_Kernel_eq f isM)
              (abgr_monic_Kernel_isKernel f isM).

  Lemma abgr_monic_kernel_comp {A B : abgr} (f : abgr_categoryA, B) (isM : isMonic f) :
    KernelArrow (abgr_monic_kernel f isM) = f.
  Proof.
    use idpath.
  Qed.

Epis are cokernels of their kernels


  Definition abgr_epi_cokernel_out_kernel_hsubtype {A B : abgr}
             (f : abgr_categoryA, B) (a : A)
             (H : pr1 f a = 1%multmonoid) : abgr_kernel_hsubtype f.
  Proof.
    exact (a,, H).
  Defined.

  Lemma abgr_epi_cokernel_out_data_eq {A B C : abgr} (f : abgr_categoryA, B)
        (isE : isEpi f) (h : abgr_categoryA, C)
        (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero (abgr_Kernel f) C) :
     x : abgr_kernel_hsubtype f, pr1 h (pr1carrier (abgr_kernel_hsubtype f) x) = 1%multmonoid.
  Proof.
    exact (toforallpaths _ _ _ (base_paths _ _ H)).
  Qed.

  Lemma abgr_epi_cokernel_out_data_hfibers_to_unel {A B : abgr} (f : abgr_categoryA, B) (b : B)
        (hfib1 hfib2 : hfiber (pr1 f) b) :
    (pr1 f) ((pr1 hfib1) × (grinv A (pr1 hfib2)))%multmonoid = unel B.
  Proof.
    rewrite (pr1 (pr2 f)).
    use (grrcan (abgrtogr B) (pr1 f (pr1 hfib2))).
    rewrite (assocax B). rewrite <- (pr1 (pr2 f)).
    rewrite (grlinvax A). rewrite (pr2 (pr2 f)).
    rewrite (runax B). rewrite (lunax B).
    rewrite (pr2 hfib1). rewrite (pr2 hfib2).
    use idpath.
  Qed.

  Lemma abgr_epi_cokernel_out_data_hfiber_eq {A B C : abgr} (f : abgr_categoryA, B)
        (isE : isEpi f) (h : abgr_categoryA, C)
        (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _) (b : B)
        (X : hfiber (pr1 f) b) : hfib : hfiber (pr1 f) b, pr1 h (pr1 hfib) = pr1 h (pr1 X).
  Proof.
    intros hfib.
    use (grrcan C (grinv (abgrtogr C) (pr1 h (pr1 X)))).
    rewrite (grrinvax C).
    set (e1 := abgr_epi_cokernel_out_data_hfibers_to_unel f b hfib X).
    set (tmp1 := ! (monoidfuninvtoinv h (hfiberpr1 _ _ X))). cbn in tmp1.
    use (pathscomp0 (maponpaths (λ k : _, ((pr1 h (pr1 hfib)) × k)%multmonoid) tmp1)).
    rewrite <- (pr1 (pr2 h)).
    set (tmp2 := abgr_epi_cokernel_out_data_eq f isE h H).
    set (tmp3 := abgr_epi_cokernel_out_kernel_hsubtype
                   f (pr1 hfib × grinv A (pr1 X))%multmonoid e1).
    set (tmp4 := tmp2 tmp3). cbn in tmp4. exact tmp4.
  Qed.

  Lemma abgr_epi_CokernelOut_iscontr {A B C : abgr} (f : abgr_categoryA, B)
        (isE : isEpi f) (h : abgr_categoryA, C)
        (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _) (b : B) :
    iscontr ( x : C, (hfib : hfiber (pr1 f) b), pr1 h (pr1 hfib) = x).
  Proof.
    use (squash_to_prop (abgr_epi_issurjective f isE b) (isapropiscontr _)).
    intros X. use iscontrpair.
    - use tpair.
      + exact (pr1 h (pr1 X)).
      + exact (abgr_epi_cokernel_out_data_hfiber_eq f isE h H b X).
    - intros t. use total2_paths_f.
      + exact (! ((pr2 t) X)).
      + use proofirrelevance. use impred. intros t0. use (setproperty C).
  Defined.

  Definition abgr_epi_CokernelOut_mult_eq {A B C : abgr} (b1 b2 : B)
             (f : abgr_categoryA, B) (isE : isEpi f) (h : abgr_categoryA, C)
             (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _)
             (X : x : C, hfib : hfiber (pr1 f) b1, pr1 h (pr1 hfib) = x)
             (X0 : x : C, hfib : hfiber (pr1 f) b2, pr1 h (pr1 hfib) = x) :
     hfib : hfiber (pr1 f) (b1 × b2)%multmonoid, pr1 h (pr1 hfib) = (pr1 X × pr1 X0)%multmonoid.
  Proof.
    intros hfib.
    use (squash_to_prop (abgr_epi_issurjective f isE b1) (setproperty C _ _)). intros X1.
    use (squash_to_prop (abgr_epi_issurjective f isE b2) (setproperty C _ _)). intros X2.
    rewrite <- ((pr2 X) X1). rewrite <- ((pr2 X0) X2). rewrite <- (pr1 (pr2 h)).
    exact (abgr_epi_cokernel_out_data_hfiber_eq
             f isE h H (b1 × b2)%multmonoid (hfiberbinop (f : monoidfun _ _) b1 b2 X1 X2) hfib).
  Qed.

  Definition abgr_epi_cokernel_out_data_mult {A B C : abgr} (b1 b2 : B)
             (f : abgr_categoryA, B) (isE : isEpi f) (h : abgr_categoryA, C)
             (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _) :
    ( x : C, (hfib : hfiber (pr1 f) b1), pr1 h (pr1 hfib) = x)
    ( x : C, (hfib : hfiber (pr1 f) b2), pr1 h (pr1 hfib) = x)
    ( x : C, (hfib : hfiber (pr1 f) (b1 × b2)%multmonoid), pr1 h (pr1 hfib) = x).
  Proof.
    intros X X0.
    exact (tpair _ ((pr1 X) × (pr1 X0))%multmonoid
                 (abgr_epi_CokernelOut_mult_eq b1 b2 f isE h H X X0)).
  Defined.

  Definition abgr_epi_cokernel_out_data_unel_eq {A B C : abgr}
             (f : abgr_categoryA, B) (isE : isEpi f) (h : abgr_categoryA, C)
             (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _) :
     hfib : hfiber (pr1 f) 1%multmonoid, pr1 h (pr1 hfib) = 1%multmonoid.
  Proof.
    intros hfib.
    set (hfib_unel := hfiberpair (pr1 f) 1%multmonoid (pr2 (pr2 f))).
    rewrite (abgr_epi_cokernel_out_data_hfiber_eq f isE h H 1%multmonoid hfib_unel hfib).
    exact (monoidfununel h).
  Qed.

  Definition abgr_epi_cokernel_out_data_unel {A B C : abgr} (f : abgr_categoryA, B)
             (isE : isEpi f) (h : abgr_categoryA, C)
             (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _) :
    ( x : C, (hfib : hfiber (pr1 f) 1%multmonoid), pr1 h (pr1 hfib) = x) :=
    tpair _ 1%multmonoid (abgr_epi_cokernel_out_data_unel_eq f isE h H).

  Lemma abgr_epi_cokernel_out_ismonoidfun {A B C : abgr} (f : abgr_categoryA, B)
        (isE : isEpi f) (h : abgr_categoryA, C)
        (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _) :
    ismonoidfun (λ b : B, (pr1 (iscontrpr1 (abgr_epi_CokernelOut_iscontr f isE h H b)))).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x x'.
      set (HH0 := abgr_epi_cokernel_out_data_mult
                    x x' f isE h H
                    (iscontrpr1 (abgr_epi_CokernelOut_iscontr f isE h H x))
                    (iscontrpr1 (abgr_epi_CokernelOut_iscontr f isE h H x'))).
      assert (HH : iscontrpr1 (abgr_epi_CokernelOut_iscontr f isE h H (x × x')%multmonoid) = HH0).
      {
        set (tmp := abgr_epi_CokernelOut_iscontr f isE h H (x × x')%multmonoid).
        rewrite (pr2 tmp). use pathsinv0. rewrite (pr2 tmp).
        use idpath.
      }
      exact (base_paths _ _ HH).
    - assert (HH : iscontrpr1 (abgr_epi_CokernelOut_iscontr f isE h H 1%multmonoid)
                   = abgr_epi_cokernel_out_data_unel f isE h H).
      {
        rewrite (pr2 (abgr_epi_CokernelOut_iscontr f isE h H 1%multmonoid)).
        use pathsinv0.
        rewrite (pr2 (abgr_epi_CokernelOut_iscontr f isE h H 1%multmonoid)).
        use idpath.
      }
      exact (base_paths _ _ HH).
  Qed.

  Definition abgr_epi_cokernel_out_monoidfun {A B C : abgr} (f : abgr_categoryA, B)
             (isE : isEpi f) (h : abgr_categoryA, C)
             (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero _ _) :
    monoidfun B C := monoidfunconstr (abgr_epi_cokernel_out_ismonoidfun f isE h H).

  Definition abgr_epi_cokernel_eq {A B : abgr} (f : abgr_categoryA, B) (isE : isEpi f) :
    KernelArrow (abgr_Kernel f) · f = ZeroArrow abgr_Zero _ _.
  Proof.
    use KernelCompZero.
  Qed.

  Lemma abgr_epi_cokernel_isCokernel_comm {A B C : abgr} (f : abgr_categoryA, B)
             (isE : isEpi f) (h : abgr_categoryA, C)
             (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero (abgr_Kernel f) C) :
    f · abgr_epi_cokernel_out_monoidfun f isE h H = h.
  Proof.
    use total2_paths_f.
    - use funextfun. intros x. use pathsinv0.
      exact (pr2 (iscontrpr1 (abgr_epi_CokernelOut_iscontr f isE h H (pr1 f x)))
                 (@hfiberpair _ _ (pr1 f) (pr1 f x) x (idpath _))).
    - use proofirrelevance. use isapropismonoidfun.
  Qed.

  Definition abgr_epi_cokernel_isCokernel_pair {A B C : abgr} (f : abgr_categoryA, B)
             (isE : isEpi f) (h : abgr_categoryA, C)
             (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero (abgr_Kernel f) C) :
     ψ : abgr_category B, C, f · ψ = h.
  Proof.
    use tpair.
    - exact (abgr_epi_cokernel_out_monoidfun f isE h H).
    - exact (abgr_epi_cokernel_isCokernel_comm f isE h H).
  Defined.

  Lemma abgr_epi_cokernel_isCokernel_uniqueness {A B C : abgr} (f : abgr_categoryA, B)
        (isE : isEpi f) (h : abgr_categoryA, C)
        (H : KernelArrow (abgr_Kernel f) · h = ZeroArrow abgr_Zero (abgr_Kernel f) C)
        (t : ψ : abgr_category B, C, f · ψ = h) :
    t = abgr_epi_cokernel_isCokernel_pair f isE h H.
  Proof.
    use total2_paths_f.
    - use isE. use (pathscomp0 (pr2 t)). use monoidfun_paths. use funextfun. intros x.
      exact (pr2 (iscontrpr1 (abgr_epi_CokernelOut_iscontr f isE h H (pr1 f x)))
                 (@hfiberpair _ _ (pr1 f) (pr1 f x) x (idpath _))).
    - use proofirrelevance. use setproperty.
  Qed.

  Definition abgr_epi_cokernel_isCokernel {A B : abgr} (f : abgr_categoryA, B) (isE : isEpi f) :
    isCokernel abgr_Zero (KernelArrow (abgr_Kernel f)) f (abgr_epi_cokernel_eq f isE).
  Proof.
    use mk_isCokernel.
    - use homset_property.
    - intros w h H. use iscontrpair.
      + exact (abgr_epi_cokernel_isCokernel_pair f isE h H).
      + intros t. exact (abgr_epi_cokernel_isCokernel_uniqueness f isE h H t).
  Defined.

  Definition abgr_epi_cokernel {A B : abgr} (f : abgr_categoryA, B) (isE : isEpi f) :
    Cokernel abgr_Zero (KernelArrow (abgr_Kernel f)) :=
    mk_Cokernel abgr_Zero (KernelArrow (abgr_Kernel f)) f _ (abgr_epi_cokernel_isCokernel f isE).

  Definition abgr_epi_cokernel_comp {A B : abgr} (f : abgr_categoryA, B) (isE : isEpi f) :
    CokernelArrow (abgr_epi_cokernel f isE) = f.
  Proof.
    use idpath.
  Qed.

End abgr_monic_kernels_epi_cokernels.

Category of abelian groups is an abelian category

Section abgr_abelian.

  Definition abgr_Abelian : AbelianPreCat.
  Proof.
    set (BinDS := to_BinDirectSums abgr_Additive).
    use (mk_Abelian abgr_category).
    - use mk_Data1.
      + exact abgr_Zero.
      + intros X Y. exact (BinDirectSum_BinProduct abgr_Additive (BinDS X Y)).
      + intros X Y. exact (BinDirectSum_BinCoproduct abgr_Additive (BinDS X Y)).
    - use mk_AbelianData.
      + use mk_Data2.
        × intros A B f. exact (abgr_Kernel f).
        × intros A B f. exact (abgr_Cokernel f).
      + use mk_MonicsAreKernels.
        intros x y M.
        exact (KernelisKernel abgr_Zero (abgr_monic_kernel M (MonicisMonic abgr_category M))).
      + use mk_EpisAreCokernels.
        intros x y E.
        exact (CokernelisCokernel abgr_Zero (abgr_epi_cokernel E (EpiisEpi abgr_category E))).
  Defined.

End abgr_abelian.

Corollaries to additive categories

In an additive category the homsets are abelian groups and pre- and postcompositions are morphisms of abelian groups. In this section we prove the following lemmas about additive categories using the theory of abelian groups developed above
Section abgr_corollaries.

Isomorphism criteria

(_ · ZeroArrow) = ZeroArrow = (ZeroArrow · _)


  Lemma AdditiveZeroArrow_postmor_Abelian {Add : CategoryWithAdditiveStructure} (x y z : Add) :
    to_postmor_monoidfun Add x y z (ZeroArrow (Additive.to_Zero Add) y z) =
    ZeroArrow (to_Zero abgr_Abelian) (@to_abgr Add x y) (@to_abgr Add x z).
  Proof.
    rewrite <- PreAdditive_unel_zero.
    use monoidfun_paths. use funextfun. intros f. exact (to_premor_unel Add z f).
  Qed.

  Lemma AdditiveZeroArrow_premor_Abelian {Add : CategoryWithAdditiveStructure} (x y z : Add) :
    to_premor_monoidfun Add x y z (ZeroArrow (Additive.to_Zero Add) x y) =
    ZeroArrow (to_Zero abgr_Abelian) (@to_abgr Add y z) (@to_abgr Add x z).
  Proof.
    rewrite <- PreAdditive_unel_zero.
    use monoidfun_paths. use funextfun. intros f. exact (to_postmor_unel Add x f).
  Qed.

f isomorphism ⇒ (f · _) isomorphism


  Local Lemma abgr_Additive_is_iso_premor_inverses {Add : CategoryWithAdditiveStructure} (x y z : Add) {f : x --> y}
        (H : is_z_isomorphism f) :
    is_inverse_in_precat ((to_premor_monoidfun Add x y z f) : abgr_Abelian_, _)
                         (to_premor_monoidfun Add y x z (is_z_isomorphism_mor H)).
  Proof.
    use mk_is_inverse_in_precat.
    - use monoidfun_paths. use funextfun.
      intros x0. cbn. unfold to_premor. rewrite assoc.
      rewrite (is_inverse_in_precat2 H). use id_left.
    - use monoidfun_paths. use funextfun.
      intros x0. cbn. unfold to_premor. rewrite assoc.
      rewrite (is_inverse_in_precat1 H). use id_left.
  Qed.

  Lemma abgr_Additive_is_iso_premor {Add : CategoryWithAdditiveStructure} (x y z : Add) {f : x --> y}
        (H : is_z_isomorphism f) :
    @is_z_isomorphism abgr_Abelian _ _ (to_premor_monoidfun Add x y z f).
  Proof.
    use mk_is_z_isomorphism.
    - exact (to_premor_monoidfun Add _ _ z (is_z_isomorphism_mor H)).
    - exact (abgr_Additive_is_iso_premor_inverses _ _ z H).
  Defined.

f isomorphism ⇒ (_ · f) isomorphism


  Local Lemma abgr_Additive_is_iso_postmor_inverses {Add : CategoryWithAdditiveStructure} (x y z : Add) {f : y --> z}
        (H : is_z_isomorphism f) :
    is_inverse_in_precat ((to_postmor_monoidfun Add x y z f) : abgr_Abelian_, _)
                         (to_postmor_monoidfun Add x z y (is_z_isomorphism_mor H)).
  Proof.
    use mk_is_inverse_in_precat.
    - use monoidfun_paths. use funextfun.
      intros x0. cbn. unfold to_postmor. rewrite <- assoc.
      rewrite (is_inverse_in_precat1 H). use id_right.
    - use monoidfun_paths. use funextfun.
      intros x0. cbn. unfold to_postmor. rewrite <- assoc.
      rewrite (is_inverse_in_precat2 H). use id_right.
  Qed.

  Lemma abgr_Additive_is_iso_postmor {Add : CategoryWithAdditiveStructure} (x y z : Add) {f : y --> z}
        (H : is_z_isomorphism f) :
    @is_z_isomorphism abgr_Abelian _ _ (to_postmor_monoidfun Add x y z f).
  Proof.
    use mk_is_z_isomorphism.
    - exact (to_postmor_monoidfun Add x _ _ (is_z_isomorphism_mor H)).
    - exact (abgr_Additive_is_iso_postmor_inverses x _ _ H).
  Defined.

Pre- and postcomposition with f is an isomorphism ⇒ f isomorphism


  Local Lemma abgr_Additive_premor_postmor_is_iso_inverses {Add : CategoryWithAdditiveStructure} (x y : Add)
        {f : x --> y}
        (H1 : @is_z_isomorphism abgr_Abelian _ _ (to_premor_monoidfun Add x y x f))
        (H2 : @is_z_isomorphism abgr_Abelian _ _ (to_postmor_monoidfun Add y x y f)) :
    is_inverse_in_precat f ((is_z_isomorphism_mor H1 : monoidfun (to_abgr x x) (to_abgr y x))
                              (identity x : to_abgr x x)).
  Proof.
    set (mor1 := ((is_z_isomorphism_mor H1) : (monoidfun (to_abgr x x) (to_abgr y x)))
                   ((identity x) : to_abgr x x)).
    set (mor2 := ((is_z_isomorphism_mor H2) : (monoidfun (to_abgr y y) (to_abgr y x)))
                   ((identity y) : to_abgr y y)).
    assert (Hx : f · mor1 = identity x).
    {
      exact (toforallpaths _ _ _ (base_paths _ _ (is_inverse_in_precat2 H1)) (identity x)).
    }
    assert (Hy : mor2 · f = identity y).
    {
      exact (toforallpaths _ _ _ (base_paths _ _ (is_inverse_in_precat2 H2)) (identity y)).
    }
    assert (H : mor1 = mor2).
    {
      rewrite <- (id_right mor2).
      rewrite <- Hx.
      rewrite assoc.
      rewrite Hy.
      rewrite id_left.
      use idpath.
    }
    use mk_is_inverse_in_precat.
    - exact Hx.
    - rewrite H. exact Hy.
  Qed.

  Lemma abgr_Additive_premor_postmor_is_iso {Add : CategoryWithAdditiveStructure} (x y : Add) {f : x --> y}
        (H1 : @is_z_isomorphism abgr_Abelian _ _ (to_premor_monoidfun Add x y x f))
        (H2 : @is_z_isomorphism abgr_Abelian _ _ (to_postmor_monoidfun Add y x y f)) :
    is_z_isomorphism f.
  Proof.
    use mk_is_z_isomorphism.
    - exact (((is_z_isomorphism_mor H1) : (monoidfun (to_abgr x x) (to_abgr y x)))
               ((identity x) : to_abgr x x)).
    - exact (abgr_Additive_premor_postmor_is_iso_inverses _ _ H1 H2).
  Defined.

A criteria for isKernel which uses only the elements in the abelian group.


  Local Opaque ZeroArrow.

  Definition abgr_isKernel_iscontr {X Y Z W : abgr_Abelian} (f : X --> Y) (g : Y --> Z)
             (ZA : f · g = @ZeroArrow abgr_Abelian (to_Zero abgr_Abelian) _ _)
             (H : (D : ( y : pr1 Y, pr1 g y = 1%multmonoid)),
                   (x : abgrtogr X), monoidfuntobinopfun _ _ f x = (pr1 D) )
             (isM : @isMonic abgr_Abelian _ _ f) (h : W --> Y)
             (H' : h · g = @ZeroArrow abgr_Abelian (to_Zero abgr_Abelian) W Z) (w' : pr1 W) :
    iscontr ( (x : abgrtogr X), monoidfuntobinopfun _ _ f x = pr1 h w').
  Proof.
    cbn in H'. rewrite <- (@PreAdditive_unel_zero (abgr_PreAdditive)) in H'.
    unfold to_unel in H'.
    set (e := toforallpaths _ _ _ (base_paths _ _ H') w').
    set (H'' := H (tpair _ (pr1 h w') e)).
    use (squash_to_prop H'' (isapropiscontr _)). intros HH.
    induction HH as [H1 H2]. cbn in H2.
    use tpair.
    - use tpair.
      + exact H1.
      + exact H2.
    - cbn. intros T. induction T as [T1 T2].
      use total2_paths_f.
      + use (abgr_monic_paths f isM T1 H1). cbn in H2. cbn.
        rewrite H2. rewrite T2. use idpath.
      + use proofirrelevance. use setproperty.
  Qed.

  Lemma abgr_isKernel_Criteria_ismonoidfun {X Y Z W : abgr_category} (f : X --> Y) (g : Y --> Z)
             (ZA : f · g = ZeroArrow (to_Zero abgr_Abelian) _ _)
             (H : (D : ( y : pr1 Y, pr1 g y = 1%multmonoid)),
                   (x : abgrtogr X), monoidfuntobinopfun _ _ f x = (pr1 D))
             (isM : @isMonic abgr_category _ _ f) (h : abgr_Abelian W, Y)
             (H' : h · g = ZeroArrow (to_Zero abgr_Abelian) W Z) :
    ismonoidfun (λ w' : (W : abgr), pr1 (iscontrpr1 (abgr_isKernel_iscontr f g ZA H isM h H' w'))).
  Proof.
    use mk_ismonoidfun.
    - use mk_isbinopfun. intros x y. use (abgr_monic_paths f isM).
      use (pathscomp0 _ (! binopfunisbinopfun (f : monoidfun _ _) _ _)).
      use (pathscomp0 (pr2 (iscontrpr1 (abgr_isKernel_iscontr
                                          f g ZA H isM h H' ((x × y)%multmonoid))))).
      use (pathscomp0 (binopfunisbinopfun (h : monoidfun _ _) _ _)).
      use pathsinv0.
      use two_arg_paths.
      + exact (pr2 (iscontrpr1 (abgr_isKernel_iscontr f g ZA H isM h H' (x%multmonoid)))).
      + exact (pr2 (iscontrpr1 (abgr_isKernel_iscontr f g ZA H isM h H' (y%multmonoid)))).
    - use (abgr_monic_paths f isM).
      use (pathscomp0 (pr2 (iscontrpr1 (abgr_isKernel_iscontr
                                          f g ZA H isM h H' (unel (W : abgr)))))).
      use (pathscomp0 (monoidfununel h)). exact (! monoidfununel f).
  Qed.

  Lemma abgr_isKernel_Criteria_comm {X Y Z W : abgr_category} (f : X --> Y) (g : Y --> Z)
             (ZA : f · g = ZeroArrow (to_Zero abgr_Abelian) _ _)
             (H : (D : ( y : pr1 Y, pr1 g y = 1%multmonoid)),
                   (x : abgrtogr X), monoidfuntobinopfun _ _ f x = (pr1 D) )
             (isM : @isMonic abgr_category _ _ f) (h : abgr_Abelian W, Y)
             (H' : h · g = ZeroArrow (to_Zero abgr_Abelian) W Z) :
    monoidfuncomp (monoidfunconstr (abgr_isKernel_Criteria_ismonoidfun f g ZA H isM h H')) f = h.
  Proof.
    use monoidfun_paths. use funextfun. intros x.
    exact (pr2 (iscontrpr1 (abgr_isKernel_iscontr f g ZA H isM h H' (x%multmonoid)))).
  Qed.

  Definition abgr_isKernel_Criteria_pair {X Y Z W : abgr_category} (f : X --> Y) (g : Y --> Z)
             (ZA : f · g = ZeroArrow (to_Zero abgr_Abelian) _ _)
             (H : (D : ( y : pr1 Y, pr1 g y = 1%multmonoid)),
                   (x : abgrtogr X), monoidfuntobinopfun _ _ f x = (pr1 D) )
             (isM : @isMonic abgr_category _ _ f) (h : abgr_Abelian W, Y)
             (H' : h · g = ZeroArrow (to_Zero abgr_Abelian) W Z) :
     ψ : abgr_Abelian W, X, ψ · f = h.
  Proof.
    use tpair.
    - use monoidfunconstr.
      + intros w'. exact (pr1 (iscontrpr1 (abgr_isKernel_iscontr f g ZA H isM h H' w'))).
      + exact (abgr_isKernel_Criteria_ismonoidfun f g ZA H isM h H').
    - exact (abgr_isKernel_Criteria_comm f g ZA H isM h H').
  Defined.

  Lemma abgr_isKernel_Criteria_uniqueness {X Y Z W : abgr_category} (f : X --> Y) (g : Y --> Z)
        (ZA : f · g = ZeroArrow (to_Zero abgr_Abelian) _ _)
        (H : (D : ( y : pr1 Y, pr1 g y = 1%multmonoid)),
              (x : abgrtogr X), monoidfuntobinopfun _ _ f x = (pr1 D) )
        (isM : @isMonic abgr_category _ _ f) (h : abgr_Abelian W, Y)
        (H' : h · g = ZeroArrow (to_Zero abgr_Abelian) W Z)
        (t : ψ : abgr_Abelian W, X, ψ · f = h) :
    t = abgr_isKernel_Criteria_pair f g ZA H isM h H'.
  Proof.
    use total2_paths_f.
    - use monoidfun_paths. use funextfun. intros x.
      use (abgr_monic_paths f isM).
      use (pathscomp0 (toforallpaths _ _ _ (base_paths _ _ (pr2 t)) x)). use pathsinv0.
      exact (pr2 (iscontrpr1 (abgr_isKernel_iscontr f g ZA H isM h H' (x%multmonoid)))).
    - use proofirrelevance. use setproperty.
  Qed.

  Definition abgr_isKernel_Criteria {X Y Z : abgr_category} (f : X --> Y) (g : Y --> Z)
             (ZA : f · g = ZeroArrow (to_Zero abgr_Abelian) _ _)
             (H : (D : ( y : pr1 Y, pr1 g y = 1%multmonoid)),
                   (x : abgrtogr X), monoidfuntobinopfun _ _ f x = (pr1 D) )
             (isM : @isMonic abgr_category _ _ f) : isKernel (to_Zero abgr_Abelian) f g ZA.
  Proof.
    use mk_isKernel.
    - use homset_property.
    - intros w h H'. use iscontrpair.
      + exact (abgr_isKernel_Criteria_pair f g ZA H isM h H').
      + intros t. exact (abgr_isKernel_Criteria_uniqueness f g ZA H isM h H' t).
  Defined.

End abgr_corollaries.