Library UniMath.CategoryTheory.Monics

Monics

Contents

  • Definitions of Monics
  • Construction of the subcategory of Monics
  • Construction of monics in functor categories

Definition of Monics

Section def_monic.

  Variable C : precategory.
  Hypothesis hs : has_homsets C.

Definition and construction of isMonic.
  Definition isMonic {y z : C} (f : y --> z) : UU :=
     (x : C) (g h : x --> y), g · f = h · f g = h.

  Definition mk_isMonic {y z : C} (f : y --> z)
             (H : (x : C) (g h : x --> y), g · f = h · f g = h) : isMonic f := H.

  Lemma isapropisMonic {y z : C} (f : y --> z) : isaprop (isMonic f).
  Proof.
    apply impred_isaprop; intros t.
    apply impred_isaprop; intros g.
    apply impred_isaprop; intros h.
    apply impred_isaprop; intros H.
    apply hs.
  Qed.

Definition and construction of Monic.
  Definition Monic (y z : C) : UU := f : y --> z, isMonic f.

  Definition mk_Monic {y z : C} (f : y --> z) (H : isMonic f) : Monic y z := tpair _ f H.

Gets the arrow out of Monic.
  Definition MonicArrow {y z : C} (M : Monic y z) : Cy, z := pr1 M.
  Coercion MonicArrow : Monic >-> precategory_morphisms.

  Definition MonicisMonic {y z : C} (M : Monic y z) : isMonic M := pr2 M.

Isomorphism to isMonic and Monic.
  Lemma is_iso_isMonic {y x : C} (f : y --> x) (H : is_z_isomorphism f) : isMonic f.
  Proof.
    apply mk_isMonic.
    intros z g h X.
    apply (post_comp_with_z_iso_is_inj H).
    exact X.
  Qed.

  Lemma is_iso_Monic {y x : C} (f : y --> x) (H : is_z_isomorphism f) : Monic y x.
  Proof.
    apply (mk_Monic f (is_iso_isMonic f H)).
  Defined.

Identity to isMonic and Monic.
  Lemma identity_isMonic {x : C} : isMonic (identity x).
  Proof.
    apply (is_iso_isMonic (identity x) (is_z_isomorphism_identity x)).
  Defined.

  Lemma identity_Monic {x : C} : Monic x x.
  Proof.
    exact (tpair _ (identity x) (identity_isMonic)).
  Defined.

Composition of isMonics and Monics.
  Definition isMonic_comp {x y z : C} (f : x --> y) (g : y --> z) :
    isMonic f isMonic g isMonic (f · g).
  Proof.
    intros X X0. apply mk_isMonic. intros x0 g0 h X1.
    repeat rewrite assoc in X1. apply X0 in X1. apply X in X1. apply X1.
  Qed.

  Definition Monic_comp {x y z : C} (M1 : Monic x y) (M2 : Monic y z) :
    Monic x z := tpair _ (M1 · M2) (isMonic_comp M1 M2 (pr2 M1) (pr2 M2)).

If precomposition of g with f is a monic, then f is a monic.
  Definition isMonic_postcomp {x y z : C} (f : x --> y) (g : y --> z) :
    isMonic (f · g) isMonic f.
  Proof.
    intros X. intros w φ ψ H.
    apply (maponpaths (λ f', f' · g)) in H.
    repeat rewrite <- assoc in H.
    apply (X w _ _ H).
  Defined.

  Lemma isMonic_path {x y : C} (f1 f2 : x --> y) (e : f1 = f2) (isM : isMonic f1) : isMonic f2.
  Proof.
    induction e. exact isM.
  Qed.

Transport of isMonic
  Lemma transport_target_isMonic {x y z : C} (f : x --> y) (E : isMonic f) (e : y = z) :
    isMonic (transportf (precategory_morphisms x) e f).
  Proof.
    induction e. apply E.
  Qed.

  Lemma transport_source_isMonic {x y z : C} (f : y --> z) (E : isMonic f) (e : y = x) :
    isMonic (transportf (λ x' : ob C, precategory_morphisms x' z) e f).
  Proof.
    induction e. apply E.
  Qed.

End def_monic.
Arguments isMonic [C] [y] [z] _.

Construction of the subcategory consisting of all monics.

Section monics_subcategory.

  Variable C : precategory.
  Hypothesis hs : has_homsets C.

  Definition hsubtype_obs_isMonic : hsubtype C := (λ c : C, hProppair _ isapropunit).

  Definition hsubtype_mors_isMonic : (a b : C), hsubtype (Ca, b) :=
    (λ a b : C, (fun f : Ca, bhProppair _ (isapropisMonic C hs f))).

  Definition subprecategory_of_monics : sub_precategories C.
  Proof.
    use tpair.
    split.
    - exact hsubtype_obs_isMonic.
    - exact hsubtype_mors_isMonic.
    - cbn. unfold is_sub_precategory. cbn.
      split.
      + intros a tt. exact (identity_isMonic C).
      + apply isMonic_comp.
  Defined.

  Definition has_homsets_subprecategory_of_monics : has_homsets subprecategory_of_monics.
  Proof.
    intros a b.
    apply is_set_sub_precategory_morphisms.
    exact hs.
  Qed.

  Definition subprecategory_of_monics_ob (c : C) : ob (subprecategory_of_monics) := tpair _ c tt.

  Definition subprecategory_of_monics_mor {c' c : C} (f : c' --> c) (isM : isMonic f) :
    subprecategory_of_monicssubprecategory_of_monics_ob c', subprecategory_of_monics_ob c :=
    tpair _ f isM.

End monics_subcategory.

In functor categories monics can be constructed from pointwise monics

Section monics_functorcategories.

  Lemma is_nat_trans_monic_from_pointwise_monics (C D : precategory) (hs : has_homsets D)
        (F G : ob (functor_precategory C D hs)) (α : F --> G) (H : a : ob C, isMonic (pr1 α a)) :
    isMonic α.
  Proof.
    intros G' β η H'.
    use (nat_trans_eq hs).
    intros x.
    set (H'' := nat_trans_eq_pointwise H' x). cbn in H''.
    apply (H x) in H''.
    exact H''.
  Qed.

End monics_functorcategories.

Faithful functors reflect monomorphisms.

Lemma faithful_reflects_mono {C D : precategory} (F : functor C D)
      (FF : faithful F) : reflects_morphism F (@isMonic).
Proof.
  unfold reflects_morphism.
  intros ? ? ? is_monic_Ff.
  intros ? ? ? eqcomp.
  apply (Injectivity (# F)).
  - apply isweqonpathsincl, FF.
  - apply is_monic_Ff.
    refine (!(functor_comp F g f) @ _).
    refine (_ @ functor_comp F h f).
    apply maponpaths; assumption.
Defined.