Library UniMath.SyntheticHomotopyTheory.Circle


Unset Kernel Term Sharing.

Construction of the circle

We will show that B has the universal property of the circle.

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.

Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.Groups.

Require Import UniMath.NumberSystems.Integers
               UniMath.SyntheticHomotopyTheory.AffineLine
               UniMath.Algebra.GroupAction
               UniMath.MoreFoundations.MoreEquivalences.
Declare Scope paths_scope.
Delimit Scope paths_scope with paths.
Local Open Scope paths_scope.
Local Open Scope action_scope.

Local Notation "g + x" := (ac_mult _ g x) : action_scope.

Definition circle := B .

Theorem loops_circle : Ω circle.
Proof.
  apply loopsBG.
Defined.

Local Open Scope hz.

Definition circle_loop := ! loops_circle 1 : Ω circle.

Lemma loop_compute t : castTorsor (!circle_loop) t = one + t.
Proof.
  intros. unfold circle_loop. rewrite pathsinv0inv0.
  exact (loopsBG_comp_2 _ one t @ commax _ t one).
Defined.

The total space of guided homotopies over BZ


Definition ZGuidedHomotopy {Y} {y:Y} (l:y = y) (T:Torsor ) :=
  GuidedHomotopy (confun T l).

Definition GH {Y} {y:Y} (l:y = y) := T:Torsor , ZGuidedHomotopy l T.

Definition make_GH {Y} {y:Y} (l:y = y) (T:Torsor ) (g:ZGuidedHomotopy l T) :=
  T,,g : GH l.

Definition pr1_GH {Y} {y:Y} {l:y = y} := pr1 : GH l Torsor .

Definition pr2_GH {Y} {y:Y} (l:y = y) (u:GH l)
  := pr2 u : ZGuidedHomotopy l (pr1_GH u).

Definition GH_path3 {Y} {y:Y} (l:y = y) {T:Torsor } {y':Y}
           {g g':GHomotopy (confun T l) y'} (u:g = g') :
  make_GH l T (y',, g) = make_GH l T (y',,g').
Proof.
  intros. destruct u. reflexivity.
Defined.

Definition pr12_GH {Y} {y:Y} {l:y = y} (u:GH l) := pr1 (pr2_GH l u) : Y.

Definition pr22_GH {Y} {y:Y} {l:y = y} (u:GH l)
     := pr2 (pr2_GH l u)
     : GHomotopy (confun (pr1_GH u) l) (pr12_GH u).

Definition GH_path3_comp1 {Y} {y:Y} (l:y = y) {T:Torsor } {y':Y}
           {g g':GHomotopy (confun T l) y'} (u:g = g') :
  maponpaths pr1_GH (GH_path3 l u) = idpath T.
Proof.
  intros. destruct u. reflexivity.
Defined.

Definition GH_path3_comp2 {Y} {y:Y} (l:y = y) {T:Torsor } {y':Y}
           {g g':GHomotopy (confun T l) y'} (u:g = g') :
  maponpaths pr12_GH (GH_path3 l u) = idpath y'.
Proof.
  intros. destruct u. reflexivity.
Defined.

Local Definition irr {Y} {y:Y} (l:y = y) (T:Torsor ) :
   (v w : GuidedHomotopy (confun T l)), v = w
  :=
    (λ v w, proofirrGuidedHomotopy v w).

Local Definition sec {Y} {y:Y} (l:y = y) (T:Torsor ) := makeGuidedHomotopy2 (confun T l).

Definition pr1_GH_weq {Y} {y:Y} {l:y = y} : (GH l) (Torsor ) := weqpr1_irr_sec (irr l) (sec l).

Definition homotinvweqweq_GH_comp {Y} {y:Y} {l:y = y}
           (T:Torsor ) (gh:ZGuidedHomotopy l T) :
  @paths (@paths (GH l)
             (invweq (@pr1_GH_weq _ _ l) T) (T,,gh))
            (homotinvweqweq' (irr l) (sec l) (T,,gh))
            (@pair_path_in2 _ (ZGuidedHomotopy l)
                            _ (sec l T) gh
                            (irr l T (sec l T) gh)).
Proof.
  reflexivity. Defined.

Definition makeGH {Y} {y:Y} (l:y = y) (T:Torsor ) (t:T) {y':Y} (h:y' = y) : GH l
  := make_GH l T (makeGuidedHomotopy (t0:=t) _ h).

Definition makeGH1 {Y} {y:Y} (l:y = y) (T:Torsor ) (t:T) : GH l
  := makeGH l T t (idpath y).

Definition pr12_pair_path_in2 {Y} {y:Y} (l:y = y) (T:Torsor )
           {gh gh':ZGuidedHomotopy l T} (w : gh = gh') :
  maponpaths pr12_GH (pair_path_in2 (ZGuidedHomotopy l) w) = maponpaths pr1 w.
Proof.
  intros. destruct w. reflexivity.
Defined.

Definition pr1_GH_weq_compute {Y} {y:Y} (l:y = y) :
  let T0 := trivialTorsor in
  let t0 := 0 : T0 in
    @paths (y = y)
              (maponpaths pr12_GH (homotinvweqweq' (irr l) (sec l) (makeGH1 l T0 t0)))
              (idpath y).
Proof.
  intros.
  unfold makeGH1,makeGH,make_GH.
  refine (maponpaths (maponpaths pr12_GH)
                     (homotinvweqweq_GH_comp
                        T0
                        (makeGuidedHomotopy (confun T0 l) (idpath y)))
                     @ _).
  refine (pr12_pair_path_in2
            l T0
            (irr l T0 (sec l T0)
                 (makeGuidedHomotopy (confun T0 l) (idpath y)))
            @ _).
  unfold sec.
  change (makeGuidedHomotopy (confun T0 l) (idpath y)) with (sec l T0).
  change (makeGuidedHomotopy2 (confun T0 l)) with (sec l T0).
  change (idpath y) with (maponpaths pr1 (idpath (sec l T0))).
  apply (maponpaths (maponpaths pr1)). apply irrel_paths. apply (irr l).
Defined.

Various paths in GH


Definition makeGH_localPath {Y} {y:Y} (l:y=y) (T:Torsor ) {t t':T} (r:t = t')
           {y'} {h h':y' = y} (q:h = h')
  : makeGH l T t h = makeGH l T t' h'.
Proof.
  intros. destruct q, r. reflexivity.
Defined.

Definition makeGH_localPath_comp1 {Y} {y:Y} (l:y = y) (T:Torsor ) {t t':T} (r:t = t')
           {y'} {h h':y' = y} (q:h = h') :
  maponpaths pr1_GH (makeGH_localPath l T r q) = idpath T.
Proof.
  intros. destruct q,r. reflexivity.
Defined.

Definition makeGH_localPath_comp2 {Y} {y:Y} (l:y = y) (T:Torsor ) {t t':T} (r:t = t')
           {y'} {h h':y' = y} (q:h = h') :
  maponpaths pr12_GH (makeGH_localPath l T r q) = idpath y'.
Proof.
  intros. destruct q,r. reflexivity.
Defined.

Definition makeGH_verticalPath {Y} {y:Y} (l:y = y) {T:Torsor } (t:T)
           {y' y''} (h:y' = y) (p:y'' = y')
  : makeGH l T t (p@h) = makeGH l T t h.
Proof.
  intros. destruct p. reflexivity.
Defined.

Definition makeGH_verticalPath_comp1 {Y} {y:Y} (l:y = y) {T:Torsor } (t:T)
           {y' y''} (h:y' = y) (p:y'' = y')
  : maponpaths pr1_GH (makeGH_verticalPath l t h p) = idpath T.
Proof.
  intros. destruct p. reflexivity.
Defined.

Definition makeGH_verticalPath_comp2 {Y} {y:Y} (l:y = y) {T:Torsor } (t:T)
           {y' y''} (h:y' = y) (p:y'' = y')
  : maponpaths pr12_GH (makeGH_verticalPath l t h p) = p.
Proof.
  intros. destruct p. reflexivity.
Defined.

Definition makeGH_horizontalPath {Y} {y:Y} (l:y = y) {T T':Torsor } (q:T = T')
           (t:T) {y'} (h:y' = y)
  : makeGH l T t h = makeGH l T' (castTorsor q t) h.
Proof.
  intros. destruct q. reflexivity.
Defined.

Definition makeGH_horizontalPath_comp1 {Y} {y:Y} (l:y = y) {T T':Torsor } (q:T = T')
           (t:T) {y'} (h:y' = y)
  : maponpaths pr1_GH (makeGH_horizontalPath l q t h) = q.
Proof.
  intros. destruct q. reflexivity.
Defined.

Definition makeGH_horizontalPath_comp2 {Y} {y:Y} (l:y = y) {T T':Torsor } (q:T = T')
           (t:T) {y'} (h:y' = y)
  : maponpaths pr12_GH (makeGH_horizontalPath l q t h) = idpath y'.
Proof.
  intros. destruct q. reflexivity.
Defined.

Local Open Scope action_scope.

Definition makeGH_transPath {Y} {y:Y} (l:y = y) {T:Torsor } (t:T) {y'} (h:y' = y)
  : makeGH l T t h = makeGH l T (one+t) (h@l).
Proof.
  intros. apply GH_path3.
  exact (ℤTorsorRecursion_transition_inv (λ _, weq_pathscomp0r _ l) (t:=t) h).
Defined.

Definition makeGH_transPath_comp1 {Y} {y:Y} (l:y = y) {T:Torsor } (t:T) {y'} (h:y' = y)
  : maponpaths pr1_GH (makeGH_transPath l t h) = idpath T.
Proof.
  intros. exact (GH_path3_comp1 l _).
Defined.

Definition makeGH_transPath_comp2 {Y} {y:Y} (l:y = y) {T:Torsor } (t:T) {y'} (h:y' = y)
  : maponpaths pr12_GH (makeGH_transPath l t h) = idpath y'.
Proof.
  intros. exact (GH_path3_comp2 l _).
Defined.

Definition makeGH_diagonalLoop {Y} {y:Y} (l:y = y) {T:Torsor } (t:T)
           (q:T = T) (r:castTorsor q t = one + t) :
  makeGH1 l T t = makeGH1 l T t.
Proof.
  intros.
  assert (p2 := makeGH_transPath l t (idpath y)).
  assert (p0:= makeGH_localPath l T (!r) (idpath l)); clear r.
  assert (ph := makeGH_horizontalPath l q t l).
  assert (p1 := makeGH_localPath l T (idpath t) (! pathscomp0rid l)).
  assert (pv := makeGH_verticalPath l t (idpath y) l).
  assert (p := p2 @ p0 @ !ph @ p1 @ pv); clear p2 p0 ph p1 pv.
  exact p.
Defined.

Definition makeGH_diagonalLoop_comp1 {Y} {y:Y} (l:y = y) {T:Torsor } (t:T)
           (q:T = T) (r:castTorsor q t = one + t) :
  maponpaths pr1_GH (makeGH_diagonalLoop l t q r) = !q.
Proof.
  intros. unfold makeGH_diagonalLoop.
  refine (maponpaths_naturality (makeGH_transPath_comp1 _ _ _) _).
  refine (maponpaths_naturality (makeGH_localPath_comp1 _ _ _ _) _).
  rewrite <- (pathscomp0rid (paths_rect _ _ (λ b _, b = T) _ _ q)).   refine (maponpaths_naturality' (makeGH_horizontalPath_comp1 _ _ _ _) _).
  rewrite <- (pathscomp0rid (idpath T)).
  refine (maponpaths_naturality (makeGH_localPath_comp1 _ _ _ _) _).
  exact (makeGH_verticalPath_comp1 _ _ _ _).
Defined.

Definition makeGH_diagonalLoop_comp2 {Y} {y:Y} (l:y = y) {T:Torsor } (t:T)
           (q:T = T) (r:castTorsor q t = one + t) :
  maponpaths pr12_GH (makeGH_diagonalLoop l t q r) = l.
Proof.
  intros. unfold makeGH_diagonalLoop.
  refine (maponpaths_naturality (makeGH_transPath_comp2 _ _ _) _).
  refine (maponpaths_naturality (makeGH_localPath_comp2 _ _ _ _) _).
  refine (maponpaths_naturality' (makeGH_horizontalPath_comp2 _ _ _ _) _).
  refine (maponpaths_naturality (makeGH_localPath_comp2 _ _ _ _) _).
  exact (makeGH_verticalPath_comp2 _ _ _ _).
Defined.

The universal property of the circle

The recursion principle (non-dependent functions)


Definition circle_map {Y} {y:Y} (l:y = y) : circle Y.
Proof.
  exact (funcomp (invmap (@pr1_GH_weq _ _ l)) pr12_GH).
Defined.

Definition circle_map_check_values {Y} {y:Y} (l:y = y) :
  circle_map l (basepoint circle) = y.
Proof.
  reflexivity.
Defined.

Definition circle_map_check_paths {Y} {y:Y} (l:y = y) :
  maponpaths (circle_map l) circle_loop = l.
Proof.
  intros. assert (p := pr1_GH_weq_compute l).
  refine (_ @ loop_correspondence' (irr l) (sec l) pr12_GH
            (makeGH_diagonalLoop_comp1 l _ _ (loop_compute 0))
            (makeGH_diagonalLoop_comp2 l _ _ (loop_compute 0)) @ _).
  { intermediate_path (maponpaths (circle_map l) circle_loop @ idpath y).
    { apply pathsinv0. apply pathscomp0rid. }
    { apply pathsinv0. rewrite pathsinv0inv0.
      exact (maponpaths (λ r, maponpaths (circle_map l) circle_loop @ r) p). } }
  { exact (maponpaths (λ r, r @ l) p). }
Defined.

Definition circle_map_conjugation {Y} {y:Y} (l:y = y) {y':Y} (e:y=y') :
  circle_map l = circle_map (!e @ l @ e).
Proof.
  induction e.
  change (circle_map l = circle_map (l @ idpath y)).
  rewrite pathscomp0rid.
  reflexivity.
Defined.

The induction principle (dependent functions)


Local Open Scope transport.

Definition CircleInduction : Type
  := (Y:circleType) (y:Y(basepoint circle)) (l:circle_loop#y = y),
      c:circle, Y c.

Definition circle_map' : CircleInduction.
Proof.
(not proved yet)
Abort.


Section A.

  Context (circle_map': CircleInduction).

  Lemma circle_map_check_paths' {Y} (f:circleY) : circle_map (maponpaths f circle_loop) = f .
  Proof.
    intros. apply funextsec.
    simple refine (circle_map' _ _ _).
    { reflexivity. }
    { set (y := f (basepoint circle)). set (l := maponpaths f circle_loop).
      set (P := λ T : underlyingType circle, circle_map _ T = f T).
      apply transport_fun_path. rewrite pathscomp0rid.
      change (idpath y @ maponpaths f circle_loop) with (maponpaths f circle_loop).
      exact (! circle_map_check_paths l). }
  Defined.

  Lemma circle_map_uniqueness {Y} (f g:circleY)
        (e : f (basepoint circle) = g (basepoint circle))
        (q : maponpaths f circle_loop = e @ maponpaths g circle_loop @ !e):
    f = g.
  Proof.
  Abort.

  Definition circle_map'' : CircleInduction.
  Proof.
(not proved yet)
  Abort.

End A.