Library UniMath.NumberSystems.Integers

Generalities on the type of integers and integer arithmetic. Vladimir Voevodsky . Aug. - Sep. 2011.

In this file we introduce the type hz of integers defined as the quotient set of dirprod nat nat by the standard equivalence relation and develop the main notions of the integer arithmetic using this definition .

Preamble

Settings

Unset Kernel Term Sharing.

Imports
Upstream

The commutative ring hz of integres

General definitions


Definition hz : commring := commrigtocommring natcommrig .
Definition hzaddabgr : abgr := hz .
Definition hzmultabmonoid : abmonoid := ringmultabmonoid hz .

Definition natnattohz : nat nat hz := λ n m, setquotpr _ ( make_dirprod n m ) .

Definition hzplus : hz hz hz := @op1 hz.
Definition hzsign : hz hz := grinv hzaddabgr .
Definition hzminus : hz hz hz := λ x y, hzplus x ( hzsign y ) .
Definition hzzero : hz := unel hzaddabgr .

Definition hzmult : hz hz hz := @op2 hz .
Definition hzone : hz := unel hzmultabmonoid .

Declare Scope hz_scope.
Bind Scope hz_scope with hz .
Notation " x + y " := ( hzplus x y ) : hz_scope .
Notation " 0 " := hzzero : hz_scope .
Notation " 1 " := hzone : hz_scope .
Notation " - x " := ( hzsign x ) : hz_scope .
Notation " x - y " := ( hzminus x y ) : hz_scope .
Notation " x * y " := ( hzmult x y ) : hz_scope .

Delimit Scope hz_scope with hz .

Properties of equlaity on hz


Theorem isdeceqhz : isdeceq hz .
Proof . change ( isdeceq ( abgrdiff ( rigaddabmonoid natcommrig ) ) ) . apply isdeceqabgrdiff . apply isinclnatplusr . apply isdeceqnat . Defined .
Opaque isdeceqhz.

Lemma isasethz : isaset hz .
Proof . apply ( setproperty hzaddabgr ) . Defined .
Opaque isasethz.

Definition hzeq ( x y : hz ) : hProp := make_hProp ( x = y ) ( isasethz _ _ ) .
Definition isdecrelhzeq : isdecrel hzeq := λ a b, isdeceqhz a b .
Definition hzdeceq : decrel hz := make_decrel isdecrelhzeq .


Definition hzbooleq := decreltobrel hzdeceq .

Definition hzneq ( x y : hz ) : hProp := make_hProp ( neg ( x = y ) ) ( isapropneg _ ) .
Definition isdecrelhzneq : isdecrel hzneq := isdecnegrel _ isdecrelhzeq .
Definition hzdecneq : decrel hz := make_decrel isdecrelhzneq .


Definition hzboolneq := decreltobrel hzdecneq .

Local Open Scope hz_scope .

hz is a non-zero ring


Lemma isnonzerorighz : isnonzerorig hz .
Proof . apply ( ct ( hzneq , isdecrelhzneq, 1 , 0 ) ) . Defined .

Properties of addition and subtraction on hz


Definition hzminuszero : ( - 0 ) = 0 := ringinvunel1 hz .

Lemma hzplusr0 ( x : hz ) : ( x + 0 ) = x .
Proof . apply ( ringrunax1 _ x ) . Defined .

Lemma hzplusl0 ( x : hz ) : ( 0 + x ) = x .
Proof . apply ( ringlunax1 _ x ) . Defined .

Lemma hzplusassoc ( x y z : hz ) : ( ( x + y ) + z ) = ( x + ( y + z ) ) .
Proof . intros . apply ( ringassoc1 hz x y z ) . Defined .

Lemma hzpluscomm ( x y : hz ) : ( x + y ) = ( y + x ) .
Proof . intros . apply ( ringcomm1 hz x y ) . Defined .

Lemma hzlminus ( x : hz ) : ( -x + x ) = 0 .
Proof . apply ( ringlinvax1 hz x ) . Defined .

Lemma hzrminus ( x : hz ) : ( x - x ) = 0 .
Proof . apply ( ringrinvax1 hz x ) . Defined .

Lemma isinclhzplusr ( n : hz ) : isincl ( λ m : hz, m + n ) .
Proof. apply ( pr2 ( weqtoincl ( weqrmultingr hzaddabgr n ) ) ) . Defined.

Lemma isinclhzplusl ( n : hz ) : isincl ( λ m : hz, n + m ) .
Proof. apply ( pr2 ( weqtoincl ( weqlmultingr hzaddabgr n ) ) ) . Defined .

Lemma hzpluslcan ( a b c : hz ) ( is : ( c + a ) = ( c + b ) ) : a = b .
Proof . intros . apply ( @grlcan hzaddabgr a b c is ) . Defined .

Lemma hzplusrcan ( a b c : hz ) ( is : ( a + c ) = ( b + c ) ) : a = b .
Proof . intros . apply ( @grrcan hzaddabgr a b c is ) . Defined .

Lemma hzplusradd (a b c : hz) (is : a = b) : (a + c) = (b + c).
Proof. intros. induction is. apply idpath. Defined.

Lemma hzplusladd (a b c : hz) (is : a = b) : (c + a) = (c + b).
Proof. intros. apply maponpaths. apply is. Defined.

Definition hzinvmaponpathsminus { a b : hz } ( e : ( - a ) = ( - b ) ) : a = b := grinvmaponpathsinv hzaddabgr e .

Lemma hzrplusminus (n m : hz) : n + m - m = n.
Proof.
  unfold hzminus, hzplus, hzplus. rewrite ringassoc1.
  set (tmp := hzrminus m). unfold hzminus, hzplus in tmp. rewrite tmp. clear tmp.
  apply hzplusr0.
Defined.
Opaque hzrplusminus.

Lemma hzrplusminus' (n m : hz) : n = n + m - m.
Proof.
  apply pathsinv0. apply hzrplusminus.
Defined.
Opaque hzrplusminus'.

Lemma hzrminusplus (n m : hz) : n - m + m = n.
Proof.
  unfold hzplus, hzminus. rewrite ringassoc1.
  rewrite hzlminus. apply hzplusr0.
Defined.
Opaque hzrminusplus.

Lemma hzrminusplus' (n m : hz) : n = n - m + m.
Proof.
  apply pathsinv0. apply hzrminusplus.
Defined.
Opaque hzrminusplus'.

Properties of multiplication on hz


Lemma hzmultr1 ( x : hz ) : ( x × 1 ) = x .
Proof . apply ( ringrunax2 _ x ) . Defined .

Lemma hzmultl1 ( x : hz ) : ( 1 × x ) = x .
Proof . apply ( ringlunax2 _ x ) . Defined .

Lemma hzmult0x ( x : hz ) : ( 0 × x ) = 0 .
Proof . apply ( ringmult0x _ x ) . Defined .

Lemma hzmultx0 ( x : hz ) : ( x × 0 ) = 0 .
Proof . apply ( ringmultx0 _ x ) . Defined .

Lemma hzmultassoc ( x y z : hz ) : ( ( x × y ) × z ) = ( x × ( y × z ) ) .
Proof . intros . apply ( ringassoc2 hz x y z ) . Defined .

Lemma hzmultcomm ( x y : hz ) : ( x × y ) = ( y × x ) .
Proof . intros . apply ( ringcomm2 hz x y ) . Defined .

Definition hzneq0andmultlinv ( n m : hz ) ( isnm : hzneq ( n × m ) 0 ) : hzneq n 0 := ringneq0andmultlinv hz n m isnm .

Definition hzneq0andmultrinv ( n m : hz ) ( isnm : hzneq ( n × m ) 0 ) : hzneq m 0 := ringneq0andmultrinv hz n m isnm .

Definition and properties of "greater", "less", "greater or equal" and "less or equal" on hz .

Definitions and notations


Definition hzgth : hrel hz := rigtoringrel natcommrig isplushrelnatgth .

Definition hzlth : hrel hz := λ a b, hzgth b a .

Definition hzleh : hrel hz := λ a b, make_hProp ( neg ( hzgth a b ) ) ( isapropneg _ ) .

Definition hzgeh : hrel hz := λ a b, make_hProp ( neg ( hzgth b a ) ) ( isapropneg _ ) .

Decidability

Properties of individual relations

hzgth

Lemma istranshzgth ( n m k : hz ) : hzgth n m hzgth m k hzgth n k .
Proof. apply ( istransabgrdiffrel nataddabmonoid isplushrelnatgth ) . unfold istrans . apply istransnatgth . Defined.

Lemma isirreflhzgth ( n : hz ) : neg ( hzgth n n ) .
Proof. apply ( isirreflabgrdiffrel nataddabmonoid isplushrelnatgth ) . unfold isirrefl . apply isirreflnatgth . Defined .

Lemma hzgthtoneq ( n m : hz ) ( g : hzgth n m ) : neg ( n = m ) .
Proof . intros . intro e . rewrite e in g . apply ( isirreflhzgth _ g ) . Defined .

Lemma isasymmhzgth ( n m : hz ) : hzgth n m hzgth m n empty .
Proof. apply ( isasymmabgrdiffrel nataddabmonoid isplushrelnatgth ) . unfold isasymm . apply isasymmnatgth . Defined .

Lemma isantisymmneghzgth ( n m : hz ) : neg ( hzgth n m ) neg ( hzgth m n ) n = m .
Proof . apply ( isantisymmnegabgrdiffrel nataddabmonoid isplushrelnatgth ) . unfold isantisymmneg . apply isantisymmnegnatgth . Defined .

Lemma isnegrelhzgth : isnegrel hzgth .
Proof . apply isdecreltoisnegrel . apply isdecrelhzgth . Defined .

Lemma iscoantisymmhzgth ( n m : hz ) : neg ( hzgth n m ) ( hzgth m n ) ⨿ ( n = m ) .
Proof . revert n m. apply isantisymmnegtoiscoantisymm . apply isdecrelhzgth . intros n m . apply isantisymmneghzgth . Defined .

Lemma iscotranshzgth ( n m k : hz ) : hzgth n k hdisj ( hzgth n m ) ( hzgth m k ) .
Proof . intros gxz . destruct ( isdecrelhzgth n m ) as [ gxy | ngxy ] . apply ( hinhpr ( ii1 gxy ) ) . apply hinhpr . apply ii2 . destruct ( isdecrelhzgth m n ) as [ gyx | ngyx ] . apply ( istranshzgth _ _ _ gyx gxz ) . set ( e := isantisymmneghzgth _ _ ngxy ngyx ) . rewrite e in gxz . apply gxz . Defined .


Definition istranshzlth ( n m k : hz ) : hzlth n m hzlth m k hzlth n k := λ lnm lmk, istranshzgth _ _ _ lmk lnm .

Definition isirreflhzlth ( n : hz ) : neg ( hzlth n n ) := isirreflhzgth n .

Lemma hzlthtoneq ( n m : hz ) ( g : hzlth n m ) : neg ( n = m ) .
Proof . intros . intro e . rewrite e in g . apply ( isirreflhzlth _ g ) . Defined .

Definition isasymmhzlth ( n m : hz ) : hzlth n m hzlth m n empty := λ lnm lmn, isasymmhzgth _ _ lmn lnm .

Definition isantisymmneghztth ( n m : hz ) : neg ( hzlth n m ) neg ( hzlth m n ) n = m := λ nlnm nlmn, isantisymmneghzgth _ _ nlmn nlnm .

Definition isnegrelhzlth : isnegrel hzlth := λ n m, isnegrelhzgth m n .

Definition iscoantisymmhzlth ( n m : hz ) : neg ( hzlth n m ) ( hzlth m n ) ⨿ ( n = m ) .
Proof . intros nlnm . destruct ( iscoantisymmhzgth m n nlnm ) as [ l | e ] . apply ( ii1 l ) . apply ( ii2 ( pathsinv0 e ) ) . Defined .

Definition iscotranshzlth ( n m k : hz ) : hzlth n k hdisj ( hzlth n m ) ( hzlth m k ) .
Proof . intros lnk . apply ( ( pr1 islogeqcommhdisj ) ( iscotranshzgth _ _ _ lnk ) ) . Defined .


Definition istranshzleh ( n m k : hz ) : hzleh n m hzleh m k hzleh n k .
Proof. apply istransnegrel . unfold iscotrans. apply iscotranshzgth . Defined.

Definition isreflhzleh ( n : hz ) : hzleh n n := isirreflhzgth n .

Definition isantisymmhzleh ( n m : hz ) : hzleh n m hzleh m n n = m := isantisymmneghzgth n m .

Definition isnegrelhzleh : isnegrel hzleh .
Proof . apply isdecreltoisnegrel . apply isdecrelhzleh . Defined .

Definition iscoasymmhzleh ( n m : hz ) ( nl : neg ( hzleh n m ) ) : hzleh m n := negf ( isasymmhzgth _ _ ) nl .

Definition istotalhzleh : istotal hzleh .
Proof . intros x y . destruct ( isdecrelhzleh x y ) as [ lxy | lyx ] . apply ( hinhpr ( ii1 lxy ) ) . apply hinhpr . apply ii2 . apply ( iscoasymmhzleh _ _ lyx ) . Defined .

hzgeh .

Definition istranshzgeh ( n m k : hz ) : hzgeh n m hzgeh m k hzgeh n k := λ gnm gmk, istranshzleh _ _ _ gmk gnm .

Definition isreflhzgeh ( n : hz ) : hzgeh n n := isreflhzleh _ .

Definition isantisymmhzgeh ( n m : hz ) : hzgeh n m hzgeh m n n = m := λ gnm gmn, isantisymmhzleh _ _ gmn gnm .

Definition isnegrelhzgeh : isnegrel hzgeh := λ n m, isnegrelhzleh m n .

Definition iscoasymmhzgeh ( n m : hz ) ( nl : neg ( hzgeh n m ) ) : hzgeh m n := iscoasymmhzleh _ _ nl .

Definition istotalhzgeh : istotal hzgeh := λ n m, istotalhzleh m n .

Simple implications between comparisons


Definition hzgthtogeh ( n m : hz ) : hzgth n m hzgeh n m .
Proof. intros g . apply iscoasymmhzgeh . apply ( todneg _ g ) . Defined .

Definition hzlthtoleh ( n m : hz ) : hzlth n m hzleh n m := hzgthtogeh _ _ .

Definition hzlehtoneghzgth ( n m : hz ) : hzleh n m neg ( hzgth n m ) .
Proof. intros is is' . apply ( is is' ) . Defined .

Definition hzgthtoneghzleh ( n m : hz ) : hzgth n m neg ( hzleh n m ) := λ g l , hzlehtoneghzgth _ _ l g .

Definition hzgehtoneghzlth ( n m : hz ) : hzgeh n m neg ( hzlth n m ) := λ gnm lnm, hzlehtoneghzgth _ _ gnm lnm .

Definition hzlthtoneghzgeh ( n m : hz ) : hzlth n m neg ( hzgeh n m ) := λ gnm lnm, hzlehtoneghzgth _ _ lnm gnm .

Definition neghzlehtogth ( n m : hz ) : neg ( hzleh n m ) hzgth n m := isnegrelhzgth n m .

Definition neghzgehtolth ( n m : hz ) : neg ( hzgeh n m ) hzlth n m := isnegrelhzlth n m .

Definition neghzgthtoleh ( n m : hz ) : neg ( hzgth n m ) hzleh n m .
Proof . intros ng . destruct ( isdecrelhzleh n m ) as [ l | nl ] . apply l . destruct ( nl ng ) . Defined .

Definition neghzlthtogeh ( n m : hz ) : neg ( hzlth n m ) hzgeh n m := λ nl, neghzgthtoleh _ _ nl .

Comparison alternatives


Definition hzgthorleh ( n m : hz ) : ( hzgth n m ) ⨿ ( hzleh n m ) .
Proof . intros . apply ( isdecrelhzgth n m ) . Defined .

Definition hzlthorgeh ( n m : hz ) : ( hzlth n m ) ⨿ ( hzgeh n m ) := hzgthorleh _ _ .

Definition hzneqchoice ( n m : hz ) ( ne : neg ( n = m ) ) : ( hzgth n m ) ⨿ ( hzlth n m ) .
Proof . intros . destruct ( hzgthorleh n m ) as [ g | l ] . destruct ( hzlthorgeh n m ) as [ g' | l' ] . destruct ( isasymmhzgth _ _ g g' ) . apply ( ii1 g ) . destruct ( hzlthorgeh n m ) as [ l' | g' ] . apply ( ii2 l' ) . destruct ( ne ( isantisymmhzleh _ _ l g' ) ) . Defined .

Definition hzlehchoice ( n m : hz ) ( l : hzleh n m ) : ( hzlth n m ) ⨿ ( n = m ) .
Proof . intros . destruct ( hzlthorgeh n m ) as [ l' | g ] . apply ( ii1 l' ) . apply ( ii2 ( isantisymmhzleh _ _ l g ) ) . Defined .

Definition hzgehchoice ( n m : hz ) ( g : hzgeh n m ) : ( hzgth n m ) ⨿ ( n = m ) .
Proof . intros . destruct ( hzgthorleh n m ) as [ g' | l ] . apply ( ii1 g' ) . apply ( ii2 ( isantisymmhzleh _ _ l g ) ) . Defined .

Mixed transitivities


Lemma hzgthgehtrans ( n m k : hz ) : hzgth n m hzgeh m k hzgth n k .
Proof. intros gnm gmk . destruct ( hzgehchoice m k gmk ) as [ g' | e ] . apply ( istranshzgth _ _ _ gnm g' ) . rewrite e in gnm . apply gnm . Defined.

Lemma hzgehgthtrans ( n m k : hz ) : hzgeh n m hzgth m k hzgth n k .
Proof. intros gnm gmk . destruct ( hzgehchoice n m gnm ) as [ g' | e ] . apply ( istranshzgth _ _ _ g' gmk ) . rewrite e . apply gmk . Defined.

Lemma hzlthlehtrans ( n m k : hz ) : hzlth n m hzleh m k hzlth n k .
Proof . intros l1 l2 . apply ( hzgehgthtrans k m n l2 l1 ) . Defined .

Lemma hzlehlthtrans ( n m k : hz ) : hzleh n m hzlth m k hzlth n k .
Proof . intros l1 l2 . apply ( hzgthgehtrans k m n l2 l1 ) . Defined .

Addition and comparisons

hzgth

Definition hzgthandplusl ( n m k : hz ) : hzgth n m hzgth ( k + n ) ( k + m ) .
Proof. apply ( pr1 ( isbinopabgrdiffrel nataddabmonoid isplushrelnatgth ) ) . Defined .

Definition hzgthandplusr ( n m k : hz ) : hzgth n m hzgth ( n + k ) ( m + k ) .
Proof. apply ( pr2 ( isbinopabgrdiffrel nataddabmonoid isplushrelnatgth ) ) . Defined .

Definition hzgthandpluslinv ( n m k : hz ) : hzgth ( k + n ) ( k + m ) hzgth n m .
Proof. intros g . set ( g' := hzgthandplusl _ _ ( - k ) g ) . clearbody g' . rewrite ( pathsinv0 ( hzplusassoc _ _ n ) ) in g' . rewrite ( pathsinv0 ( hzplusassoc _ _ m ) ) in g' . rewrite ( hzlminus k ) in g' . rewrite ( hzplusl0 _ ) in g' . rewrite ( hzplusl0 _ ) in g' . apply g' . Defined .

Definition hzgthandplusrinv ( n m k : hz ) : hzgth ( n + k ) ( m + k ) hzgth n m .
Proof. intros l . rewrite ( hzpluscomm n k ) in l . rewrite ( hzpluscomm m k ) in l . apply ( hzgthandpluslinv _ _ _ l ) . Defined .

Lemma hzgthsnn ( n : hz ) : hzgth ( n + 1 ) n .
Proof . set ( int := hzgthandplusl _ _ n ( ct ( hzgth , isdecrelhzgth, 1 , 0 ) ) ) . clearbody int . rewrite ( hzplusr0 _ ) in int . apply int . Defined .


Definition hzlthandplusl ( n m k : hz ) : hzlth n m hzlth ( k + n ) ( k + m ) := hzgthandplusl _ _ _ .

Definition hzlthandplusr ( n m k : hz ) : hzlth n m hzlth ( n + k ) ( m + k ) := hzgthandplusr _ _ _ .

Definition hzlthandpluslinv ( n m k : hz ) : hzlth ( k + n ) ( k + m ) hzlth n m := hzgthandpluslinv _ _ _ .

Definition hzlthandplusrinv ( n m k : hz ) : hzlth ( n + k ) ( m + k ) hzlth n m := hzgthandplusrinv _ _ _ .

Definition hzlthnsn ( n : hz ) : hzlth n ( n + 1 ) := hzgthsnn n .


Definition hzlehandplusl ( n m k : hz ) : hzleh n m hzleh ( k + n ) ( k + m ) := negf ( hzgthandpluslinv n m k ) .

Definition hzlehandplusr ( n m k : hz ) : hzleh n m hzleh ( n + k ) ( m + k ) := negf ( hzgthandplusrinv n m k ) .

Definition hzlehandpluslinv ( n m k : hz ) : hzleh ( k + n ) ( k + m ) hzleh n m := negf ( hzgthandplusl n m k ) .

Definition hzlehandplusrinv ( n m k : hz ) : hzleh ( n + k ) ( m + k ) hzleh n m := negf ( hzgthandplusr n m k ) .


Definition hzgehandplusl ( n m k : hz ) : hzgeh n m hzgeh ( k + n ) ( k + m ) := negf ( hzgthandpluslinv m n k ) .

Definition hzgehandplusr ( n m k : hz ) : hzgeh n m hzgeh ( n + k ) ( m + k ) := negf ( hzgthandplusrinv m n k ) .

Definition hzgehandpluslinv ( n m k : hz ) : hzgeh ( k + n ) ( k + m ) hzgeh n m := negf ( hzgthandplusl m n k ) .

Definition hzgehandplusrinv ( n m k : hz ) : hzgeh ( n + k ) ( m + k ) hzgeh n m := negf ( hzgthandplusr m n k ) .

Properties of hzgth in the terminology of algebra1.v (continued below)

Note: at the moment we do not need properties of hzlth , hzleh and hzgeh in terminology of algebra1 since the corresponding relations on hq are bulid from hqgth .

Negation and comparisons

hzgth

Lemma hzgth0andminus { n : hz } ( is : hzgth n 0 ) : hzlth ( - n ) 0 .
Proof . intros . apply ( ringfromgt0 hz isplushrelhzgth ) . apply is . Defined .

Lemma hzminusandgth0 { n : hz } ( is : hzgth ( - n ) 0 ) : hzlth n 0 .
Proof . intros . apply ( ringtolt0 hz isplushrelhzgth ) . apply is . Defined .


Lemma hzlth0andminus { n : hz } ( is : hzlth n 0 ) : hzgth ( - n ) 0 .
Proof . intros . apply ( ringfromlt0 hz isplushrelhzgth ) . apply is . Defined .

Lemma hzminusandlth0 { n : hz } ( is : hzlth ( - n ) 0 ) : hzgth n 0 .
Proof . intros . apply ( ringtogt0 hz isplushrelhzgth ) . apply is . Defined .



Lemma hzleh0andminus { n : hz } ( is : hzleh n 0 ) : hzgeh ( - n ) 0 .
Proof . revert is. apply ( negf ( @hzminusandlth0 n ) ) . Defined .

Lemma hzminusandleh0 { n : hz } ( is : hzleh ( - n ) 0 ) : hzgeh n 0 .
Proof . revert is. apply ( negf ( @hzlth0andminus n ) ) . Defined .


Lemma hzgeh0andminus { n : hz } ( is : hzgeh n 0 ) : hzleh ( - n ) 0 .
Proof . revert is . apply ( negf ( @hzminusandgth0 n ) ) . Defined .

Lemma hzminusandgeh0 { n : hz } ( is : hzgeh ( - n ) 0 ) : hzleh n 0 .
Proof . revert is . apply ( negf ( @hzgth0andminus n ) ) . Defined .

Multiplication and comparisons

hzgth

Definition hzgthandmultl ( n m k : hz ) ( is : hzgth k hzzero ) : hzgth n m hzgth ( k × n ) ( k × m ) .
Proof. revert n m k is. apply ( isringmultgttoislringmultgt _ isplushrelhzgth isringmulthzgth ) . Defined .

Definition hzgthandmultr ( n m k : hz ) ( is : hzgth k hzzero ) : hzgth n m hzgth ( n × k ) ( m × k ) .
Proof . revert n m k is. apply ( isringmultgttoisrringmultgt _ isplushrelhzgth isringmulthzgth ) . Defined .

Definition hzgthandmultlinv ( n m k : hz ) ( is : hzgth k hzzero ) : hzgth ( k × n ) ( k × m ) hzgth n m .
Proof . intros is' . apply ( isinvringmultgttoislinvringmultgt hz isplushrelhzgth isinvringmulthzgth n m k is is' ) . Defined .

Definition hzgthandmultrinv ( n m k : hz ) ( is : hzgth k hzzero ) : hzgth ( n × k ) ( m × k ) hzgth n m .
Proof. intros is' . apply ( isinvringmultgttoisrinvringmultgt hz isplushrelhzgth isinvringmulthzgth n m k is is' ) . Defined .


Definition hzlthandmultl ( n m k : hz ) ( is : hzgth k 0 ) : hzlth n m hzlth ( k × n ) ( k × m ) := hzgthandmultl _ _ _ is .

Definition hzlthandmultr ( n m k : hz ) ( is : hzgth k 0 ) : hzlth n m hzlth ( n × k ) ( m × k ) := hzgthandmultr _ _ _ is .

Definition hzlthandmultlinv ( n m k : hz ) ( is : hzgth k 0 ) : hzlth ( k × n ) ( k × m ) hzlth n m := hzgthandmultlinv _ _ _ is .

Definition hzlthandmultrinv ( n m k : hz ) ( is : hzgth k 0 ) : hzlth ( n × k ) ( m × k ) hzlth n m := hzgthandmultrinv _ _ _ is .


Definition hzlehandmultl ( n m k : hz ) ( is : hzgth k 0 ) : hzleh n m hzleh ( k × n ) ( k × m ) := negf ( hzgthandmultlinv _ _ _ is ) .

Definition hzlehandmultr ( n m k : hz ) ( is : hzgth k 0 ) : hzleh n m hzleh ( n × k ) ( m × k ) := negf ( hzgthandmultrinv _ _ _ is ) .

Definition hzlehandmultlinv ( n m k : hz ) ( is : hzgth k 0 ) : hzleh ( k × n ) ( k × m ) hzleh n m := negf ( hzgthandmultl _ _ _ is ) .

Definition hzlehandmultrinv ( n m k : hz ) ( is : hzgth k 0 ) : hzleh ( n × k ) ( m × k ) hzleh n m := negf ( hzgthandmultr _ _ _ is ) .


Definition hzgehandmultl ( n m k : hz ) ( is : hzgth k 0 ) : hzgeh n m hzgeh ( k × n ) ( k × m ) := negf ( hzgthandmultlinv _ _ _ is ) .

Definition hzgehandmultr ( n m k : hz ) ( is : hzgth k 0 ) : hzgeh n m hzgeh ( n × k ) ( m × k ) := negf ( hzgthandmultrinv _ _ _ is ) .

Definition hzgehandmultlinv ( n m k : hz ) ( is : hzgth k 0 ) : hzgeh ( k × n ) ( k × m ) hzgeh n m := negf ( hzgthandmultl _ _ _ is ) .

Definition hzgehandmultrinv ( n m k : hz ) ( is : hzgth k 0 ) : hzgeh ( n × k ) ( m × k ) hzgeh n m := negf ( hzgthandmultr _ _ _ is ) .

Multiplication of positive with positive, positive with negative, negative with positive, two negatives etc.

Lemma hzmultgth0gth0 { m n : hz } ( ism : hzgth m 0 ) ( isn : hzgth n 0 ) : hzgth ( m × n ) 0 .
Proof . intros . apply isringmulthzgth . apply ism . apply isn . Defined .

Lemma hzmultgth0geh0 { m n : hz } ( ism : hzgth m 0 ) ( isn : hzgeh n 0 ) : hzgeh ( m × n ) 0 .
Proof . intros . destruct ( hzgehchoice _ _ isn ) as [ gn | en ] .

apply ( hzgthtogeh _ _ ( hzmultgth0gth0 ism gn ) ) .

rewrite en . rewrite ( hzmultx0 m ) . apply isreflhzgeh . Defined .

Lemma hzmultgeh0gth0 { m n : hz } ( ism : hzgeh m 0 ) ( isn : hzgth n 0 ) : hzgeh ( m × n ) 0 .
Proof . intros . destruct ( hzgehchoice _ _ ism ) as [ gm | em ] .

apply ( hzgthtogeh _ _ ( hzmultgth0gth0 gm isn ) ) .

rewrite em . rewrite ( hzmult0x _ ) . apply isreflhzgeh . Defined .

Lemma hzmultgeh0geh0 { m n : hz } ( ism : hzgeh m 0 ) ( isn : hzgeh n 0 ) : hzgeh ( m × n ) 0 .
Proof . intros . destruct ( hzgehchoice _ _ isn ) as [ gn | en ] .

apply ( hzmultgeh0gth0 ism gn ) .

rewrite en . rewrite ( hzmultx0 m ) . apply isreflhzgeh . Defined .

Lemma hzmultgth0lth0 { m n : hz } ( ism : hzgth m 0 ) ( isn : hzlth n 0 ) : hzlth ( m × n ) 0 .
Proof . intros . apply ( ringmultgt0lt0 hz isplushrelhzgth isringmulthzgth ) . apply ism . apply isn . Defined .

Lemma hzmultgth0leh0 { m n : hz } ( ism : hzgth m 0 ) ( isn : hzleh n 0 ) : hzleh ( m × n ) 0 .
Proof . intros . destruct ( hzlehchoice _ _ isn ) as [ ln | en ] .

apply ( hzlthtoleh _ _ ( hzmultgth0lth0 ism ln ) ) .

rewrite en . rewrite ( hzmultx0 m ) . apply isreflhzleh . Defined .

Lemma hzmultgeh0lth0 { m n : hz } ( ism : hzgeh m 0 ) ( isn : hzlth n 0 ) : hzleh ( m × n ) 0 .
Proof . intros . destruct ( hzlehchoice _ _ ism ) as [ lm | em ] .

apply ( hzlthtoleh _ _ ( hzmultgth0lth0 lm isn ) ) .

destruct em . rewrite ( hzmult0x _ ) . apply isreflhzleh . Defined .

Lemma hzmultgeh0leh0 { m n : hz } ( ism : hzgeh m 0 ) ( isn : hzleh n 0 ) : hzleh ( m × n ) 0 .
Proof . intros . destruct ( hzlehchoice _ _ isn ) as [ ln | en ] .

apply ( hzmultgeh0lth0 ism ln ) .

rewrite en . rewrite ( hzmultx0 m ) . apply isreflhzleh . Defined .

Lemma hzmultlth0gth0 { m n : hz } ( ism : hzlth m 0 ) ( isn : hzgth n 0 ) : hzlth ( m × n ) 0 .
Proof . intros . rewrite ( hzmultcomm ) . apply hzmultgth0lth0 . apply isn . apply ism . Defined .

Lemma hzmultlth0geh0 { m n : hz } ( ism : hzlth m 0 ) ( isn : hzgeh n 0 ) : hzleh ( m × n ) 0 .
Proof . intros . rewrite ( hzmultcomm ) . apply hzmultgeh0lth0 . apply isn . apply ism . Defined .

Lemma hzmultleh0gth0 { m n : hz } ( ism : hzleh m 0 ) ( isn : hzgth n 0 ) : hzleh ( m × n ) 0 .
Proof . intros . rewrite ( hzmultcomm ) . apply hzmultgth0leh0 . apply isn . apply ism . Defined .

Lemma hzmultleh0geh0 { m n : hz } ( ism : hzleh m 0 ) ( isn : hzgeh n 0 ) : hzleh ( m × n ) 0 .
Proof . intros . rewrite ( hzmultcomm ) . apply hzmultgeh0leh0 . apply isn . apply ism . Defined .

Lemma hzmultlth0lth0 { m n : hz } ( ism : hzlth m 0 ) ( isn : hzlth n 0 ) : hzgth ( m × n ) 0 .
Proof . intros . assert ( ism' := hzlth0andminus ism ) . assert ( isn' := hzlth0andminus isn ) . assert ( int := isringmulthzgth _ _ ism' isn' ) . rewrite ( ringmultminusminus hz ) in int . apply int . Defined .

Lemma hzmultlth0leh0 { m n : hz } ( ism : hzlth m 0 ) ( isn : hzleh n 0 ) : hzgeh ( m × n ) 0 .
Proof . intros . intros . destruct ( hzlehchoice _ _ isn ) as [ ln | en ] .

apply ( hzgthtogeh _ _ ( hzmultlth0lth0 ism ln ) ) .

rewrite en . rewrite ( hzmultx0 m ) . apply isreflhzgeh . Defined .

Lemma hzmultleh0lth0 { m n : hz } ( ism : hzleh m 0 ) ( isn : hzlth n 0 ) : hzgeh ( m × n ) 0 .
Proof . intros . destruct ( hzlehchoice _ _ ism ) as [ lm | em ] .

apply ( hzgthtogeh _ _ ( hzmultlth0lth0 lm isn ) ) .

rewrite em . rewrite ( hzmult0x _ ) . apply isreflhzgeh . Defined .

Lemma hzmultleh0leh0 { m n : hz } ( ism : hzleh m 0 ) ( isn : hzleh n 0 ) : hzgeh ( m × n ) 0 .
Proof . intros . destruct ( hzlehchoice _ _ isn ) as [ ln | en ] .

apply ( hzmultleh0lth0 ism ln ) .

rewrite en . rewrite ( hzmultx0 m ) . apply isreflhzgeh . Defined .

hz as an integral domain


Lemma isintdomhz : isintdom hz .
Proof . split with isnonzerorighz . intros a b e0 . destruct ( isdeceqhz a 0 ) as [ ea | nea ] . apply ( hinhpr ( ii1 ea ) ) . destruct ( isdeceqhz b 0 ) as [ eb | neb ] . apply ( hinhpr ( ii2 eb ) ) . destruct ( hzneqchoice _ _ nea ) as [ ga | la ] . destruct ( hzneqchoice _ _ neb ) as [ gb | lb ] . destruct ( hzgthtoneq _ _ ( hzmultgth0gth0 ga gb ) e0 ) . destruct ( hzlthtoneq _ _ ( hzmultgth0lth0 ga lb ) e0 ) . destruct ( hzneqchoice _ _ neb ) as [ gb | lb ] . destruct ( hzlthtoneq _ _ ( hzmultlth0gth0 la gb ) e0 ) . destruct ( hzgthtoneq _ _ ( hzmultlth0lth0 la lb ) e0 ) . Defined .

Definition hzintdom : intdom := tpair _ _ isintdomhz .

Definition hzneq0andmult ( n m : hz ) ( isn : hzneq n 0 ) ( ism : hzneq m 0 ) : hzneq ( n × m ) 0 := intdomneq0andmult hzintdom n m isn ism .

Lemma hzmultlcan ( a b c : hz ) ( ne : neg ( c = 0 ) ) ( e : ( c × a ) = ( c × b ) ) : a = b .
Proof . intros . apply ( intdomlcan hzintdom _ _ _ ne e ) . Defined .

Lemma hzmultrcan ( a b c : hz ) ( ne : neg ( c = 0 ) ) ( e : ( a × c ) = ( b × c ) ) : a = b .
Proof . intros . apply ( intdomrcan hzintdom _ _ _ ne e ) . Defined .

Lemma isinclhzmultl ( n : hz )( ne : neg ( n = 0 ) ) : isincl ( λ m : hz, n × m ) .
Proof. intros . apply ( pr1 ( intdomiscancelable hzintdom n ne ) ) . Defined .

Lemma isinclhzmultr ( n : hz )( ne : neg ( n = 0 ) ) : isincl ( λ m : hz, m × n ) .
Proof. intros . apply ( pr2 ( intdomiscancelable hzintdom n ne ) ) . Defined.

Comparisons and n n + 1


Definition hzgthtogths ( n m : hz ) : hzgth n m hzgth ( n + 1 ) m .
Proof. intros is . apply ( istranshzgth _ _ _ ( hzgthsnn n ) is ) . Defined .

Definition hzlthtolths ( n m : hz ) : hzlth n m hzlth n ( m + 1 ) := hzgthtogths _ _ .

Definition hzlehtolehs ( n m : hz ) : hzleh n m hzleh n ( m + 1 ) .
Proof . intros is . apply ( istranshzleh _ _ _ is ( hzlthtoleh _ _ ( hzlthnsn _ ) ) ) . Defined .

Definition hzgehtogehs ( n m : hz ) : hzgeh n m hzgeh ( n + 1 ) m := hzlehtolehs _ _ .

Two comparisons and n n + 1


Lemma hzgthtogehsn ( n m : hz ) : hzgth n m hzgeh n ( m + 1 ) .
Proof. assert ( int : n m , isaprop ( hzgth n m hzgeh n ( m + 1 ) ) ) .
       { intros . apply impred . intro . apply ( pr2 _ ) . }
       unfold hzgth in × . apply ( setquotuniv2prop _ ( λ n m, make_hProp _ ( int n m ) ) ) . set ( R := abgrdiffrelint nataddabmonoid natgth ) .
       intros x x' . change ( R x x' ( neg ( R ( @op ( abmonoiddirprod (rigaddabmonoid natcommrig) (rigaddabmonoid natcommrig) ) x' ( make_dirprod 1%nat 0%nat ) ) x ) ) ) .
       unfold R . unfold abgrdiffrelint . simpl .
       apply ( @hinhuniv _ (make_hProp ( neg ( ishinh_UU _ ) ) ( isapropneg _ ) ) ) .
       intro t2 . simpl . unfold neg . apply ( @hinhuniv _ ( make_hProp _ isapropempty ) ) .
       intro t2' .
       set ( x1 := pr1 x ) . set ( a1 := pr2 x ) . set ( x2 := pr1 x' ) .
       set ( a2 := pr2 x' ) . set ( c1 := pr1 t2 ) . assert ( r1 := pr2 t2 ) .
       change ( pr1 ( ( x1 + a2 + c1 ) > ( x2 + a1 + c1 ) ) ) in r1 .
       set ( c2 := pr1 t2' ) . assert ( r2 := pr2 t2' ) .
       change ( pr1 ( ( ( x2 + 1 ) + a1 + c2 ) > ( x1 + ( a2 + 0 ) + c2 ) ) ) in r2 .
       assert ( r1' := natgthandplusrinv _ _ c1 r1 ) .
       assert ( r2' := natgthandplusrinv _ _ c2 r2 ) .
       rewrite ( natplusr0 _ ) in r2' .
       rewrite ( natpluscomm _ 1 ) in r2' .
       rewrite ( natplusassoc _ _ _ ) in r2' .
       change (1 + (x2 + a1) > x1 + a2) with (x1 + a2 x2 + a1) in r2'.
       contradicts (natlehneggth r2') r1'.
Defined .

Lemma hzgthsntogeh ( n m : hz ) : hzgth ( n + 1 ) m hzgeh n m .
Proof. intros a . apply (hzgehandplusrinv n m 1) . apply ( hzgthtogehsn ( n + 1 ) m a ) . Defined.
Lemma hzlehsntolth ( n m : hz ) : hzleh ( n + 1 ) m hzlth n m .
Proof. intros X . apply ( hzlthlehtrans _ _ _ ( hzlthnsn n ) X ) . Defined .

Lemma hzlthtolehsn ( n m : hz ) : hzlth n m hzleh ( n + 1 ) m .
Proof. intros X . apply ( hzgthtogehsn m n X ) . Defined .

Lemma hzlthsntoleh ( n m : hz ) : hzlth n ( m + 1 ) hzleh n m .
Proof. intros a . apply (hzlehandplusrinv n m 1) . apply ( hzlthtolehsn n ( m + 1 ) a ) . Defined.
Lemma hzgehsntogth ( n m : hz ) : hzgeh n ( m + 1 ) hzgth n m .
Proof. intros X . apply ( hzlehsntolth m n X ) . Defined .

Comparsion alternatives and n n + 1


Lemma hzlehchoice2 ( n m : hz ) : hzleh n m coprod ( hzleh ( n + 1 ) m ) ( n = m ) .
Proof . intros l . destruct ( hzlehchoice n m l ) as [ l' | e ] . apply ( ii1 ( hzlthtolehsn _ _ l' ) ) . apply ( ii2 e ) . Defined .

Lemma hzgehchoice2 ( n m : hz ) : hzgeh n m coprod ( hzgeh n ( m + 1 ) ) ( n = m ) .
Proof . intros g . destruct ( hzgehchoice n m g ) as [ g' | e ] . apply ( ii1 ( hzgthtogehsn _ _ g' ) ) . apply ( ii2 e ) . Defined .

Lemma hzgthchoice2 ( n m : hz ) : hzgth n m coprod ( hzgth n ( m + 1 ) ) ( n = ( m + 1 ) ) .
Proof. intros g . destruct ( hzgehchoice _ _ ( hzgthtogehsn _ _ g ) ) as [ g' | e ] . apply ( ii1 g' ) . apply ( ii2 e ) . Defined .

Lemma hzlthchoice2 ( n m : hz ) : hzlth n m coprod ( hzlth ( n + 1 ) m ) ( ( n + 1 ) = m ) .
Proof. intros l . destruct ( hzlehchoice _ _ ( hzlthtolehsn _ _ l ) ) as [ l' | e ] . apply ( ii1 l' ) . apply ( ii2 e ) . Defined .

Operations and comparisons on hz and natnattohz


Lemma natnattohzandgth ( xa1 xa2 : dirprod nat nat ) ( is : hzgth ( setquotpr _ xa1 ) ( setquotpr _ xa2 ) ) : natgth ( ( pr1 xa1 ) + ( pr2 xa2 ) ) ( ( pr1 xa2 ) + ( pr2 xa1 ) ) .
Proof . intros . change ( ishinh_UU ( total2 ( λ a0, natgth (pr1 xa1 + pr2 xa2 + a0) (pr1 xa2 + pr2 xa1 + a0) ) ) ) in is . generalize is . apply @hinhuniv . intro t2 . set ( a0 := pr1 t2 ) . assert ( g := pr2 t2 ) . change ( pr1 ( natgth (pr1 xa1 + pr2 xa2 + a0) (pr1 xa2 + pr2 xa1 + a0) ) ) in g . apply ( natgthandplusrinv _ _ a0 g ) . Defined .

Lemma natnattohzandlth ( xa1 xa2 : dirprod nat nat ) ( is : hzlth ( setquotpr _ xa1 ) ( setquotpr _ xa2 ) ) : natlth ( ( pr1 xa1 ) + ( pr2 xa2 ) ) ( ( pr1 xa2 ) + ( pr2 xa1 ) ) .
Proof . intros . apply ( natnattohzandgth xa2 xa1 is ) . Defined .

Canonical rig homomorphism from nat to hz


Definition nattohz : nat hz := λ n, setquotpr _ ( make_dirprod n 0%nat ) .

Definition isinclnattohz : isincl nattohz := isincltoringdiff natcommrig ( λ n, isinclnatplusr n ) .

Definition nattohzandneq ( n m : nat ) ( is : natnegpaths n m ) : hzneq ( nattohz n ) ( nattohz m ) := negf ( invmaponpathsincl _ isinclnattohz n m ) is .

Definition nattohzand0 : ( nattohz 0%nat ) = 0 := idpath _ .

Definition nattohzandS ( n : nat ) : ( nattohz ( S n ) ) = ( 1 + nattohz n ) := isbinop1funtoringdiff natcommrig 1%nat n .

Definition nattohzand1 : ( nattohz 1%nat ) = 1 := idpath _ .

Lemma nattorig_nattohz :
   n : nat, nattorig (X := hz) n = nattohz n.
Proof.
  induction n as [|n IHn].
  - unfold nattorig, nattohz ; simpl.
    reflexivity.
  - rewrite nattorigS, IHn.
    apply pathsinv0, nattohzandS.
Qed.

Definition nattohzandplus ( n m : nat ) : ( nattohz ( n + m )%nat ) = ( nattohz n + nattohz m ) := isbinop1funtoringdiff natcommrig n m .

Definition nattohzandminus ( n m : nat ) ( is : natgeh n m ) : ( nattohz ( n - m )%nat ) = ( nattohz n - nattohz m ) .
Proof . intros . apply ( hzplusrcan _ _ ( nattohz m ) ) . unfold hzminus . rewrite ( hzplusassoc ( nattohz n ) ( - nattohz m ) ( nattohz m ) ) . rewrite ( hzlminus _ ) . rewrite hzplusr0 . rewrite ( pathsinv0 ( nattohzandplus _ _ ) ) . rewrite ( minusplusnmm _ _ is ) . apply idpath . Defined .

Opaque nattohzandminus .

Definition nattohzandmult ( n m : nat ) : ( nattohz ( n × m )%nat ) = ( nattohz n × nattohz m ) .
Proof . intros . simpl . change nattohz with ( toringdiff natcommrig ) . apply ( isbinop2funtoringdiff natcommrig n m ) . Defined .

Definition nattohzandgth ( n m : nat ) ( is : natgth n m ) : hzgth ( nattohz n ) ( nattohz m ) := iscomptoringdiff natcommrig isplushrelnatgth n m is .

Definition nattohzandlth ( n m : nat ) ( is : natlth n m ) : hzlth ( nattohz n ) ( nattohz m ) := nattohzandgth m n is .

Definition nattohzandleh ( n m : nat ) ( is : natleh n m ) : hzleh ( nattohz n ) ( nattohz m ) .
Proof . intros . destruct ( natlehchoice _ _ is ) as [ l | e ] . apply ( hzlthtoleh _ _ ( nattohzandlth _ _ l ) ) . rewrite e . apply ( isreflhzleh ) . Defined .

Definition nattohzandgeh ( n m : nat ) ( is : natgeh n m ) : hzgeh ( nattohz n ) ( nattohz m ) := nattohzandleh _ _ is .

Addition and subtraction on nat and hz

Absolute value on hz


Definition hzabsvalint : ( dirprod nat nat ) nat .
Proof . intro nm . destruct ( natgthorleh ( pr1 nm ) ( pr2 nm ) ) . apply ( sub ( pr1 nm ) ( pr2 nm ) ) . apply ( sub ( pr2 nm ) ( pr1 nm ) ) . Defined .

Lemma hzabsvalintcomp : @iscomprelfun ( dirprod nat nat ) nat ( hrelabgrdiff nataddabmonoid ) hzabsvalint .
Proof . unfold iscomprelfun . intros x x' . unfold hrelabgrdiff . simpl . apply ( @hinhuniv _ ( make_hProp _ ( isasetnat (hzabsvalint x) (hzabsvalint x') ) ) ) . unfold hzabsvalint . set ( n := ( pr1 x ) : nat ) . set ( m := ( pr2 x ) : nat ) . set ( n' := ( pr1 x' ) : nat ) . set ( m' := ( pr2 x' ) : nat ) . set ( int := natgthorleh n m ) . set ( int' := natgthorleh n' m' ) . intro tt0 . simpl . destruct tt0 as [ x0 eq ] . simpl in eq . assert ( e' := invmaponpathsincl _ ( isinclnatplusr x0 ) _ _ eq ) .

destruct int as [isgt | isle ] . destruct int' as [ isgt' | isle' ] .

apply ( invmaponpathsincl _ ( isinclnatplusr ( m + m' ) ) ) . rewrite ( pathsinv0 ( natplusassoc ( n - m ) m m' ) ) . rewrite ( natpluscomm m m' ) . rewrite ( pathsinv0 ( natplusassoc ( n' - m' ) m' m ) ) . rewrite ( minusplusnmm n m ( natgthtogeh _ _ isgt ) ) . rewrite ( minusplusnmm n' m' ( natgthtogeh _ _ isgt' ) ) . apply e' .

assert ( e'' := natlehandplusl n' m' n isle' ) . assert ( e''' := natgthandplusr n m n' isgt ) . assert ( e'''' := natlthlehtrans _ _ _ e''' e'' ) . rewrite e' in e'''' . rewrite ( natpluscomm m n' ) in e'''' . destruct ( isirreflnatgth _ e'''' ) .

destruct int' as [ isgt' | isle' ] .

destruct ( natpluscomm m n') . set ( e'' := natlehandplusr n m m' isle ) . set ( e''' := natgthandplusl n' m' m isgt' ) . set ( e'''' := natlehlthtrans _ _ _ e'' e''' ) . rewrite e' in e'''' . destruct ( isirreflnatgth _ e'''' ) .

apply ( invmaponpathsincl _ ( isinclnatplusr ( n + n') ) ) . rewrite ( pathsinv0 ( natplusassoc ( m - n ) n n' ) ) . rewrite ( natpluscomm n n' ) . rewrite ( pathsinv0 ( natplusassoc ( m' - n') n' n ) ) . rewrite ( minusplusnmm m n isle ) . rewrite ( minusplusnmm m' n' isle' ) . rewrite ( natpluscomm m' n ) . rewrite ( natpluscomm m n' ) . apply ( pathsinv0 e' ) .
Defined .

Definition hzabsval : hz nat := setquotuniv _ natset hzabsvalint hzabsvalintcomp .

Lemma hzabsval0 : ( hzabsval 0 ) = 0%nat .
Proof . apply idpath . Defined .

Lemma hzabsvalgth0 { x : hz } ( is : hzgth x 0 ) : ( nattohz ( hzabsval x ) ) = x .
Proof .
revert x is.
assert ( int : x : hz , isaprop ( hzgth x 0 ( nattohz ( hzabsval x ) ) = x ) ) . intro . apply impred . intro . apply ( setproperty hz ) . apply ( setquotunivprop _ ( λ x, make_hProp _ ( int x ) ) ) . intros xa g . simpl in xa . assert ( g' := natnattohzandgth _ _ g ) . simpl in g' . simpl . change (( setquotpr (eqrelabgrdiff (rigaddabmonoid natcommrig)) ( make_dirprod ( hzabsvalint xa ) 0%nat ) ) = ( setquotpr (eqrelabgrdiff (rigaddabmonoid natcommrig)) xa ) ) . apply weqpathsinsetquot . simpl . apply hinhpr . split with 0%nat . change ( pr1 ( natgth ( pr1 xa + 0%nat ) ( pr2 xa ) ) ) in g' . rewrite ( natplusr0 _ ) in g' . change ((hzabsvalint xa + pr2 xa + 0)%nat = (pr1 xa + 0 + 0)%nat ) . rewrite ( natplusr0 _ ) . rewrite ( natplusr0 _ ) . rewrite ( natplusr0 _ ) . unfold hzabsvalint . destruct ( natgthorleh (pr1 xa) (pr2 xa) ) as [ g'' | l ] .

rewrite ( minusplusnmm _ _ ( natlthtoleh _ _ g'' ) ) . apply idpath .

contradicts (natlehneggth l) g'.
Defined .

Opaque hzabsvalgth0 .

Lemma hzabsvalgeh0 { x : hz } ( is : hzgeh x 0 ) : ( nattohz ( hzabsval x ) ) = x .
Proof . intros . destruct ( hzgehchoice _ _ is ) as [ g | e ] . apply ( hzabsvalgth0 g ) . rewrite e . apply idpath . Defined .

Lemma hzabsvallth0 { x : hz } ( is : hzlth x 0 ) : ( nattohz ( hzabsval x ) ) = ( - x ) .
Proof .
revert x is.
assert ( int : x : hz , isaprop ( hzlth x 0 ( nattohz ( hzabsval x ) ) = ( - x ) ) ) . intro . apply impred . intro . apply ( setproperty hz ) . apply ( setquotunivprop _ ( λ x, make_hProp _ ( int x ) ) ) . intros xa l . simpl in xa . assert ( l' := natnattohzandlth _ _ l ) . simpl in l' . simpl . change (( setquotpr (eqrelabgrdiff (rigaddabmonoid natcommrig)) ( make_dirprod ( hzabsvalint xa ) 0%nat ) ) = ( setquotpr (eqrelabgrdiff (rigaddabmonoid natcommrig)) ( make_dirprod ( pr2 xa ) ( pr1 xa ) ) ) ) . apply weqpathsinsetquot . simpl . apply hinhpr . split with 0%nat . change ( pr1 ( natlth ( pr1 xa + 0%nat ) ( pr2 xa ) ) ) in l' . rewrite ( natplusr0 _ ) in l' . change ((hzabsvalint xa + pr1 xa + 0)%nat = (pr2 xa + 0 + 0)%nat). rewrite ( natplusr0 _ ) . rewrite ( natplusr0 _ ) . rewrite ( natplusr0 _ ) . unfold hzabsvalint . destruct ( natgthorleh (pr1 xa) (pr2 xa) ) as [ g | l'' ] .

destruct ( isasymmnatgth _ _ g l' ) .

rewrite ( minusplusnmm _ _ l'' ) . apply idpath . Defined .

Opaque hzabsvallth0 .

Lemma hzabsvalleh0 { x : hz } ( is : hzleh x 0 ) : ( nattohz ( hzabsval x ) ) = ( - x ) .
Proof . intros . destruct ( hzlehchoice _ _ is ) as [ l | e ] . apply ( hzabsvallth0 l ) . rewrite e . apply idpath . Defined .

Lemma hzabsvaleq0 { x : hz } ( e : ( hzabsval x ) = 0%nat ) : x = 0 .
Proof . intros . destruct ( isdeceqhz x 0 ) as [ e0 | ne0 ] . apply e0 . destruct ( hzneqchoice _ _ ne0 ) as [ g | l ] .

assert ( e' := hzabsvalgth0 g ) . rewrite e in e' . change ( 0 = x ) in e' . apply ( pathsinv0 e' ) .

assert ( e' := hzabsvallth0 l ) . rewrite e in e' . change ( 0 = ( - x ) ) in e' . assert ( g := hzlth0andminus l ) . rewrite e' in g . destruct ( isirreflhzgth _ g ) . Defined .

Definition hzabsvalneq0 { x : hz } ne := neg_to_negProp (nP := natneq _ _) (negf ( @hzabsvaleq0 x ) ne).

Lemma hzabsvalandmult ( a b : hz ) : ( ( hzabsval a ) × ( hzabsval b ) )%nat = ( hzabsval ( a × b ) ) .
Proof . intros . apply ( invmaponpathsincl _ isinclnattohz ) . rewrite ( nattohzandmult _ _ ) . destruct ( hzgthorleh a 0 ) as [ ga | lea ] . destruct ( hzgthorleh b 0 ) as [ gb | leb ] .

rewrite ( hzabsvalgth0 ga ) . rewrite ( hzabsvalgth0 gb ) . rewrite ( hzabsvalgth0 ( hzmultgth0gth0 ga gb ) ) . apply idpath .

rewrite ( hzabsvalgth0 ga ) . rewrite ( hzabsvalleh0 leb ) . rewrite ( hzabsvalleh0 ( hzmultgth0leh0 ga leb ) ) . apply ( ringrmultminus hz ) . destruct ( hzgthorleh b 0 ) as [ gb | leb ] .

rewrite ( hzabsvalgth0 gb ) . rewrite ( hzabsvalleh0 lea ) . rewrite ( hzabsvalleh0 ( hzmultleh0gth0 lea gb ) ) . apply ( ringlmultminus hz ) .

rewrite ( hzabsvalleh0 lea ) . rewrite ( hzabsvalleh0 leb ) . rewrite ( hzabsvalgeh0 ( hzmultleh0leh0 lea leb ) ) . apply (ringmultminusminus hz ) . Defined .

Some common equalities on integers

These lemmas are used for example in Complexes.v to construct complexes.
Local Opaque hz isdecrelhzeq iscommringops.

Lemma hzeqbooleqii (i : hz) : hzbooleq i i = true.
Proof.
  unfold hzbooleq. unfold decreltobrel. induction (pr2 hzdeceq i i) as [T | F].
  - apply idpath.
  - apply fromempty. apply F. apply idpath.
Qed.

Lemma hzbooleqisi (i : hz) : hzbooleq i (i + 1) = false.
Proof.
  apply negrtopaths.
  apply (negf (λ e, hzpluslcan _ _ _ (! (hzplusr0 i @ e)))); clear i.
  confirm_not_equal isdecrelhzeq.
Qed.

Lemma hzbooleqisi' (i : hz) : hzbooleq i (i + 1) = false.
Proof.
  apply negrtopaths.
  apply (negf (λ e, hzpluslcan _ _ _ (! (hzplusr0 i @ e)))); clear i.
  simple refine (confirm_not_equal isdecrelhzeq _ _ _).
  reflexivity.
Qed.

Lemma hzbooleqissi (i : hz) : hzbooleq i (i + 1 + 1) = false.
Proof.
  apply negrtopaths.
  rewrite hzplusassoc.
  apply (negf (λ e, hzpluslcan _ _ _ (! (hzplusr0 i @ e)))); clear i.
  confirm_not_equal isdecrelhzeq.
Qed.

Lemma hzeqeisi {i i0 : hz} (e : hzeq i i0) (e' : hzeq i (i0 + 1)) : empty.
Proof.
  apply nopathstruetofalse.
  use (pathscomp0 _ (hzbooleqisi i0)).
  rewrite <- e'. rewrite <- e.
  apply (! (hzeqbooleqii i)).
Qed.

Lemma hzeqisi {i : hz} (e' : hzeq i (i + 1)) : empty.
Proof.
  apply nopathstruetofalse. rewrite <- (hzbooleqisi i). rewrite <- e'.
  apply (! (hzeqbooleqii i)).
Qed.

Lemma hzeqissi {i : hz} (e : hzeq i (i + 1 + 1)) : empty.
Proof.
  set (tmp := hzbooleqissi i). cbn in e. rewrite <- e in tmp.
  rewrite (hzeqbooleqii i) in tmp. apply nopathstruetofalse. apply tmp.
Qed.

Lemma hzeqeissi {i i0 : hz} (e : hzeq i i0) (e' : hzeq i (i0 + 1 + 1)) : empty.
Proof.
  cbn in e. rewrite e in e'. apply (hzeqissi e').
Qed.

Lemma hzeqsnmnsm {n m : hz} (e : hzeq (n + 1) m) (e' : hzeq n (m + 1)) : empty.
Proof.
  cbn in e. rewrite <- e in e'. apply (hzeqissi e').
Qed.

Lemma hzeqnmplusr {n m i : hz} (e : n = m) (e' : ¬ (n + i = m + i)) : empty.
Proof.
  apply e'. exact (hzplusradd _ _ i e).
Qed.

Lemma hzeqnmplusr' {n m i : hz} (e : ¬ (n = m)) (e' : n + i = m + i) : empty.
Proof.
  apply e. exact (hzplusrcan _ _ i e').
Qed.

Lemma isdecrelhzeqi (i : hz) : isdecrelhzeq i i = ii1 (idpath _).
Proof.
  induction (isdecrelhzeq i i) as [T | F].
  - apply maponpaths. apply isasethz.
  - apply fromempty. apply F. apply idpath.
Qed.

Lemma isdecrelhzeqminusplus (i j : hz) : isdecrelhzeq i (i - j + j) = ii1 (hzrminusplus' i j).
Proof.
  induction (isdecrelhzeq i (i - j + j)) as [T | F].
  - apply maponpaths. apply isasethz.
  - apply fromempty. apply F. apply (hzrminusplus' i j).
Qed.

Lemma isdecrelhzeqminusplus' (i j : hz) : isdecrelhzeq (i - j + j) i = ii1 (hzrminusplus i j).
Proof.
  induction (isdecrelhzeq (i - j + j) i) as [T | F].
  - apply maponpaths. apply isasethz.
  - apply fromempty. apply F. apply (hzrminusplus i j).
Qed.

Lemma hzeqpii {i : hz} : i - 1 != i.
Proof.
  apply (negf (λ e, hzpluslcan _ _ _ (e @ ! hzplusr0 i))); clear i.
  confirm_not_equal isdecrelhzeq.
Qed.

Lemma isdecrelhzeqpii (i : hz) :
  isdecrelhzeq (i - 1) i = ii2 (fun (e : hzeq (i - 1) i) ⇒ hzeqpii e).
Proof.
  induction (isdecrelhzeq (i - 1) i) as [e | n].
  - apply fromempty. apply (hzeqpii e).
  - apply maponpaths. apply funextfun. intros e.
    apply fromempty. apply n. apply e.
Qed.

Local Transparent hz isdecrelhzeq iscommringops.

hz is an archimedean ring


Local Open Scope hz_scope .

Lemma isarchhz : isarchring (X := hz) hzgth.
Proof.
  simple refine (isarchrigtoring _ _ _ _ _ _).
  - reflexivity.
  - intros n m.
    apply istransnatgth.
  - apply isarchrig_setquot_aux.
    + split.
      × apply natgthandpluslinv.
      × apply natgthandplusrinv.
    + apply isarchnat.
Qed.

Lemma isarchhz_one :
   x : hz, hzgth x 0 n : nat, hzgth (nattohz n × x) 1.
Proof.
  intros x Hx.
  generalize (isarchring_1 _ isarchhz x Hx).
  apply hinhfun.
  intros n.
   (pr1 n).
  rewrite <- nattorig_nattohz.
  exact (pr2 n).
Qed.

Lemma isarchhz_gt :
   x : hz, n : nat, hzgth (nattohz n) x.
Proof.
  intros x.
  generalize (isarchring_2 _ isarchhz x).
  apply hinhfun.
  intros n.
   (pr1 n).
  rewrite <- nattorig_nattohz.
  exact (pr2 n).
Qed.

hz -> abgr, 1 ↦ x, n ↦ x + x + ... + x (n times), hz_abmonoid_monoidfun


Definition nat_to_monoid_fun {X : monoid} (x : X) : natset X.
Proof.
  intros n. induction n as [ | n IHn].
  - exact (unel X).
  - exact (@op X x IHn).
Defined.

Lemma nat_to_monoid_fun_unel {X : monoid} (x : X) : nat_to_monoid_fun x O = (unel X).
Proof.
  exact (idpath (unel X)).
Defined.

Lemma nat_to_monoid_fun_S {X : abmonoid} (x : X) (n : nat) :
  nat_to_monoid_fun x (S n) = (nat_to_monoid_fun x n × x)%multmonoid.
Proof.
  induction n as [ | n IHn].
  - exact (commax X x (unel X)).
  - cbn. rewrite (assocax X). use two_arg_paths.
    + use idpath.
    + exact (commax X x _).
Qed.

Lemma nat_to_abmonoid_fun_plus {X : monoid} (x : X) (n m : nat) :
  nat_to_monoid_fun x (n + m)%nat = @op X (nat_to_monoid_fun x n) (nat_to_monoid_fun x m).
Proof.
  revert m. induction n as [ | n IHn].
  - intros m. rewrite (lunax X). use idpath.
  - intros m. cbn. rewrite (assocax X). use two_arg_paths.
    + use idpath.
    + exact (IHn m).
Qed.

Definition nat_nat_to_monoid_fun {X : gr} (x : X) : natset × natset X.
Proof.
  intros n.
  exact (@op X (nat_to_monoid_fun x (dirprod_pr1 n))
             (nat_to_monoid_fun (grinv X x) (dirprod_pr2 n))).
Defined.

Lemma nat_to_monoid_unel' {X : abgr} (x : X) (n : nat) :
  ((nat_to_monoid_fun x n) × (nat_to_monoid_fun (grinv X x) n))%multmonoid = (unel X).
Proof.
  induction n as [ | n IHn].
  - use (runax X).
  - Opaque nat_to_monoid_fun. cbn in ×.
    rewrite (@nat_to_monoid_fun_S X x). rewrite (@nat_to_monoid_fun_S X (grinv X x)).
    rewrite (commax X _ x). rewrite (assocax X).
    rewrite <- (assocax X (@nat_to_monoid_fun X x n)).
    use (pathscomp0 (maponpaths (λ xx : pr1 X, (x × (xx × (grinv X x))))%multmonoid IHn)).
    clear IHn. use (pathscomp0 _ (grrinvax X x)).
    use two_arg_paths.
    + use idpath.
    + use (lunax X).
Qed.
Transparent nat_to_monoid_fun.

Lemma nat_nat_to_monoid1 {X : gr} (x : X) {n1 n2 m2 : nat} (e : n2 = m2) :
  nat_nat_to_monoid_fun x (make_dirprod n1 n2) = nat_nat_to_monoid_fun x (make_dirprod n1 m2).
Proof.
  induction e. use idpath.
Qed.

Lemma nat_nat_to_monoid2 {X : gr} (x : X) {n1 m1 n2 : nat} (e : n1 = m1) :
  nat_nat_to_monoid_fun x (make_dirprod n1 n2) = nat_nat_to_monoid_fun x (make_dirprod m1 n2).
Proof.
  induction e. use idpath.
Qed.

Definition nataddabmonoid_nataddabmonoid_to_monoid_fun {X : gr} (x : X) :
  abmonoiddirprod nataddabmonoid nataddabmonoid X := nat_nat_to_monoid_fun x.

Opaque nat_to_monoid_fun.
Lemma nat_nat_monoid_fun_isbinopfun {X : abgr} (x : X) :
  isbinopfun (nataddabmonoid_nataddabmonoid_to_monoid_fun x).
Proof.
  use make_isbinopfun. intros n m. induction n as [n1 n2]. induction m as [m1 m2]. cbn.
  unfold nataddabmonoid_nataddabmonoid_to_monoid_fun. unfold nat_nat_to_monoid_fun. cbn.
  rewrite nat_to_abmonoid_fun_plus. rewrite nat_to_abmonoid_fun_plus.
  rewrite (assocax X). rewrite (assocax X).
  use two_arg_paths.
  - use idpath.
  - rewrite <- (assocax X). rewrite (commax X (nat_to_monoid_fun (grinv X x) n2) _).
    rewrite (assocax X). rewrite (assocax X).
    use two_arg_paths.
    + use idpath.
    + use (commax X).
Qed.
Transparent nat_to_monoid_fun.

Lemma nat_nat_to_monoid_plus1 {X : abgr} (x : X) {n1 m1 m2: nat} (e : m2 = (m1 + n1)%nat) :
  nat_to_monoid_fun (grinv X x) n1 =
  (nat_to_monoid_fun x m1 × nat_to_monoid_fun (grinv X x) m2)%multmonoid.
Proof.
  rewrite e. clear e. rewrite nat_to_abmonoid_fun_plus.
  rewrite <- (assocax X). use pathsinv0.
  use (pathscomp0 (maponpaths (λ xx : X, (xx × (nat_to_monoid_fun (grinv X x) n1))%multmonoid)
                              (nat_to_monoid_unel' x m1))).
  use (lunax X).
Qed.

Lemma nat_nat_prod_abmonoid_fun_unel {X : abgr} (x : X) :
  (nataddabmonoid_nataddabmonoid_to_monoid_fun x)
    (unel (abmonoiddirprod nataddabmonoid nataddabmonoid)) = (unel X).
Proof.
  use (pathscomp0 (lunax X _)). use idpath.
Qed.

Definition nat_nat_prod_abmonoid_monoidfun {X : abgr} (x : X) :
  monoidfun (abmonoiddirprod (rigaddabmonoid natcommrig) (rigaddabmonoid natcommrig)) X.
Proof.
  use monoidfunconstr.
  - exact (nataddabmonoid_nataddabmonoid_to_monoid_fun x).
  - use make_ismonoidfun.
    + exact (nat_nat_monoid_fun_isbinopfun x).
    + exact (nat_nat_prod_abmonoid_fun_unel x).
Defined.

Lemma hz_abmonoid_ismonoidfun :
  @ismonoidfun
    (abmonoiddirprod (rigaddabmonoid natcommrig) (rigaddabmonoid natcommrig))
    hzaddabgr (@setquotpr (abmonoiddirprod (rigaddabmonoid natcommrig)
                                           (rigaddabmonoid natcommrig))
                          (binopeqrelabgrdiff (rigaddabmonoid natcommrig))).
Proof.
  use make_ismonoidfun.
  - use make_isbinopfun. intros x x'. use idpath.
  - use idpath.
Qed.

Definition hz_abmonoid_monoidfun :
  monoidfun (abmonoiddirprod (rigaddabmonoid natcommrig) (rigaddabmonoid natcommrig)) hzaddabgr.
Proof.
  use monoidfunconstr.
  - use setquotpr.
  - exact hz_abmonoid_ismonoidfun.
Defined.

Definition nat_nat_fun_unel {X : abgr} (x : X) (n : nat) :
  nat_nat_to_monoid_fun x (make_dirprod n n) = unel X.
Proof.
  exact (nat_to_monoid_unel' x n).
Qed.

Opaque nat_to_monoid_fun.
Definition nat_nat_fun_ind {X : abgr} (x : X) (n m : nat) :
  nat_nat_to_monoid_fun x (make_dirprod (n + m)%nat m) = nat_nat_to_monoid_fun x (make_dirprod n O).
Proof.
  use (pathscomp0 (nat_nat_monoid_fun_isbinopfun x (make_dirprod n O) (make_dirprod m m))).
  unfold nataddabmonoid_nataddabmonoid_to_monoid_fun.
  rewrite (nat_nat_fun_unel x m). rewrite (runax X). use idpath.
Qed.
Transparent nat_to_monoid_fun.

Opaque nat_to_monoid_fun.
Definition nat_nat_fun_ind2 {X : abgr} (x : X) (n1 n2 m k : nat) :
  nat_nat_to_monoid_fun x (make_dirprod n1 m) = nat_nat_to_monoid_fun x (make_dirprod n2 k)
  nat_nat_to_monoid_fun x (make_dirprod n1 (S m)) = nat_nat_to_monoid_fun x (make_dirprod n2 (S k)).
Proof.
  intros H.
  unfold nat_nat_to_monoid_fun in ×. cbn in ×.
  rewrite (@nat_to_monoid_fun_S X (grinv X x)).
  rewrite (@nat_to_monoid_fun_S X (grinv X x)).
  rewrite <- (assocax X). rewrite <- (assocax X).
  use two_arg_paths.
  - exact H.
  - use idpath.
Qed.
Transparent nat_to_monoid_fun.

Opaque nat_to_monoid_fun.
Definition abgr_precategory_integer_fun_iscomprelfun {X : abgr} (x : X) :
  iscomprelfun (binopeqrelabgrdiff (rigaddabmonoid natcommrig))
               (nat_nat_prod_abmonoid_monoidfun x).
Proof.
  intros x1. induction x1 as [x1 e1].
  unfold nat_nat_prod_abmonoid_monoidfun. cbn.
  unfold nataddabmonoid_nataddabmonoid_to_monoid_fun.
  unfold nat_nat_to_monoid_fun. cbn.
  induction x1 as [ | x1 IHx1].
  - intros x2 H. use (squash_to_prop H (setproperty X _ _)). intros H'. cbn in H'.
    induction H' as [H1 H2]. clear H. induction x2 as [x2 e2].
    apply natplusrcan in H2. rewrite nat_to_monoid_fun_unel. rewrite (lunax X). cbn. cbn in H2.
    exact (nat_nat_to_monoid_plus1 x H2).
  - intros x2 H. use (squash_to_prop H (setproperty X _ _)). intros H'. cbn in H'.
    induction H' as [H1 H2]. clear H. induction x2 as [x2 e2]. cbn in H2. cbn.
    use (pathscomp0
           (maponpaths (λ xx : X, (xx × (nat_to_monoid_fun (grinv X x) e1))%multmonoid)
                       (@nat_to_monoid_fun_S X x x1))).
    rewrite (commax X _ x). rewrite (assocax X). cbn.
    assert (HH : ishinh_UU( x0 : nat, (x1 + (S e2) + x0)%nat = (x2 + e1 + x0)%nat)).
    {
      use hinhpr. use tpair.
      - exact O.
      - cbn. rewrite natplusr0. rewrite natplusr0. cbn.
        rewrite natplusassoc in H2.
        rewrite plus_n_Sm in H2. rewrite plus_n_Sm in H2.
        rewrite natplusnsm in H2. rewrite <- natplusassoc in H2.
        apply natplusrcan in H2. exact H2.
    }
    set (tmp := IHx1 (make_dirprod x2 (S e2)) HH). cbn in tmp.
    use (pathscomp0 (maponpaths (λ xx : X, (x × xx)%multmonoid) tmp)).
    clear tmp. clear HH. clear H2. clear IHx1. rewrite (commax X x). rewrite (assocax X).
    use two_arg_paths.
    + use idpath.
    + use (pathscomp0
             (maponpaths (λ xx : X, (xx × x)%multmonoid)
                         (@nat_to_monoid_fun_S X (grinv X x) e2))).
      rewrite (assocax X). rewrite (grlinvax X x). use (runax X).
Qed.
Transparent nat_to_monoid_fun.

Construction of tha map \mathbb{Z} --> A, 1 ↦ x
Definition hz_abgr_fun {X : abgr} (x : X) : hzaddabgr X.
Proof.
  use setquotuniv.
  - exact (nat_nat_prod_abmonoid_monoidfun x).
  - exact (abgr_precategory_integer_fun_iscomprelfun x).
Defined.

Hide ismonoidfun behind Qed.
Definition hz_abgr_fun_ismonoidfun {X : abgr} (x : X) : ismonoidfun (hz_abgr_fun x).
Proof.
  use make_ismonoidfun.
  - use isbinopfun_twooutof3b.
    + use (abmonoiddirprod (rigaddabmonoid natcommrig) (rigaddabmonoid natcommrig)).
    + use (hz_abmonoid_monoidfun).
    + use issurjsetquotpr.
    + use binopfunisbinopfun.
    + use binopfunisbinopfun.
  - use (runax X).
Qed.

Construction of the monoidfun \mathbb{Z} --> A, 1 ↦ x
Definition hz_abgr_fun_monoidfun {X : abgr} (x : X) : monoidfun hzaddabgr X.
Proof.
  use monoidfunconstr.
  - exact (hz_abgr_fun x).
  - exact (hz_abgr_fun_ismonoidfun x).
Defined.

Commutativity of the following diagram
nat × nat --- nat_nat_prod_abmonoid_monoidfun ---> X hz_abgr_fun_monoidfun | || hz -------- hz_abmonoid_monoidfun -------------> X
Lemma abgr_natnat_hz_X_comm {X : abgr} (x : X) :
  monoidfuncomp hz_abmonoid_monoidfun (hz_abgr_fun_monoidfun x) =
  nat_nat_prod_abmonoid_monoidfun x.
Proof.
  use monoidfun_paths. use funextfun. intros n. use setquotunivcomm.
Qed.

Opaque nat_to_monoid_fun.
Lemma monoidfun_nat_to_monoid_fun {X Y : abgr} (f : monoidfun X Y) (x : X) (n : nat) :
  pr1 f (nat_to_monoid_fun x n) = nat_to_monoid_fun (f x) n.
Proof.
  induction n as [ | n IHn].
  - use monoidfununel.
  - use (pathscomp0 (maponpaths (pr1 f) (@nat_to_monoid_fun_S X x n))).
    use (pathscomp0 (binopfunisbinopfun f _ _)).
    use (pathscomp0 _ (! (@nat_to_monoid_fun_S Y (f x) n))).
    use two_arg_paths.
    + exact IHn.
    + use idpath.
Qed.
Transparent nat_to_monoid_fun.

Some more facts about integers added by D. Grayson

Definition := hzaddabgr.
Definition toℤ (n:nat) : := nattohz n.
Definition toℤneg (n:nat) : := natnattohz O n.
Definition zero := toℤ 0.
Definition one := toℤ 1.

Definition hzabsvalnat n : hzabsval (natnattohz n 0) = n. Proof.
  intros. unfold hzabsval. unfold setquotuniv. simpl.
  unfold hzabsvalint. simpl. destruct (natgthorleh n 0).
  { apply natminuseqn. } { exact (! (natleh0tois0 h)). }
Defined.

Lemma hzsign_natnattohz m n : - natnattohz m n = natnattohz n m. Proof.
  reflexivity. Defined.

Lemma hzsign_nattohz m : - nattohz m = natnattohz 0 m. Proof.
  reflexivity. Defined.

Lemma hzsign_hzsign (i:hz) : - - i = i.
Proof.
  apply (grinvinv ).
Defined.

Definition hz_normal_form (i:) :=
  coprod ( n, natnattohz n 0 = i)
         ( n, natnattohz 0 (S n) = i).

Definition hznf_pos n := _,, inl (n,,idpath _) : total2 hz_normal_form.

Definition hznf_neg n := _,, inr (n,,idpath _) : total2 hz_normal_form.

Definition hznf_zero := hznf_pos 0.

Definition hznf_neg_one := hznf_neg 0.

Definition hz_to_normal_form (i:) : hz_normal_form i.
Proof.
  intros. destruct (hzlthorgeh i 0) as [r|s].
  { apply inr. assert (a := hzabsvallth0 r). assert (b := hzlthtoneq _ _ r).
    assert (c := hzabsvalneq0 b). assert (d := natneq0togth0 _ c).
    assert (f := natgthtogehsn _ _ d). assert (g := minusplusnmm _ _ f).
    rewrite natpluscomm in g. simpl in g. (hzabsval i - 1)%nat.
    rewrite g. apply hzinvmaponpathsminus. exact a. }
  { apply inl. (hzabsval i). exact (hzabsvalgeh0 s). }
Defined.

Lemma nattohz_inj {m n} : nattohz m = nattohz n m = n.
Proof.
  revert m n; exact (invmaponpathsincl _ isinclnattohz).
Defined.

Lemma hzdichot {m n} : neg (nattohz m = - nattohz (S n)).
Proof.
  intros. intro e. assert (d := maponpaths hzsign e); clear e.
  rewrite hzsign_hzsign in d.
  assert( f := maponpaths (λ i, nattohz m + i) d); simpl in f; clear d.
  change (nattohz m + - nattohz m) with (nattohz m - nattohz m) in f.
  rewrite hzrminus in f. change (0 = nattohz (m + S n)) in f.
  assert (g := nattohz_inj f); clear f. rewrite natpluscomm in g.
  exact (negpaths0sx _ g).
Defined.

Definition negpos' : isweq (@pr1 _ hz_normal_form).
Proof.
  apply isweqpr1; intro i.
   (hz_to_normal_form i).
  generalize (hz_to_normal_form i) as s.
  intros [[m p]|[m p]] [[n q]|[n q]].
  { apply (maponpaths (@ii1 ( n, natnattohz n 0 = i)
                            ( n, natnattohz 0 (S n) = i))).
    apply (proofirrelevance _ (isinclnattohz i)). }
  { apply fromempty. assert (r := p@!q); clear p q. apply (hzdichot r). }
  { apply fromempty. assert (r := q@!p); clear p q. apply (hzdichot r). }
  { apply (maponpaths (@ii2 ( n, natnattohz n 0 = i)
                            ( n, natnattohz 0 (S n) = i))).
    assert (p' := maponpaths hzsign p). assert (q' := maponpaths hzsign q).
    change (- natnattohz O (S m)) with (nattohz (S m)) in p'.
    change (- natnattohz O (S n)) with (nattohz (S n)) in q'.
    assert (c := proofirrelevance _ (isinclnattohz (-i)) (S m,,p') (S n,,q')).
    assert (d := maponpaths pr1 c); simpl in d.
    assert (e := invmaponpathsS _ _ d); clear d.
    apply subtypePath.
    - intro; apply setproperty.
    - exact (!e). }
Defined.

Definition negpos_weq := make_weq _ negpos' : weq (total2 hz_normal_form) .

Definition negpos : weq (coprod nat nat) . Proof.
  simple refine (make_weq _ (isweq_iso _ _ _ _)).
  { intros [n'|n].
    { exact (natnattohz 0 (S n')). } { exact (natnattohz n 0). } }
  { intro i. destruct (hz_to_normal_form i) as [[n p]|[m q]].
    { exact (inr n). } { exact (inl m). } }
  { intros [n'|n].
    { simpl. rewrite natminuseqn. reflexivity. }
    { simpl. rewrite hzabsvalnat. reflexivity. } }
  { simpl. intro i.
    destruct (hz_to_normal_form i) as [[n p]|[m q]].
    { exact p. } { exact q. } }
Defined.

Lemma hzminusplus (x y:hz) : -(x+y) = (-x) + (-y). Proof.
  intros. apply (hzplusrcan _ _ (x+y)). rewrite hzlminus.
  rewrite (hzpluscomm (-x)). rewrite (hzplusassoc (-y)).
  rewrite <- (hzplusassoc (-x)). rewrite hzlminus. rewrite hzplusl0.
  rewrite hzlminus. reflexivity.
Defined.

Definition loop_power {Y} {y:Y} (l:y = y) (n:) : y = y.
Proof.
  intros. assert (m := loop_power_nat l (hzabsval n)).
  destruct (hzlthorgeh n 0%hz). { exact (!m). } { exact m. }
Defined.