Library UniMath.Algebra.Monoids

Algebra I. Part B. Monoids, abelian monoids. Vladimir Voevodsky. Aug. 2011 - .

Contents

  • Monoids
    • Basics definitions
    • Univalence for monoids
    • Functions between monoids compatible with structures (homomorphisms) and their properties
    • Subobjects
    • Kernels
    • Quotient objects
    • Cosets
    • Direct products
  • Abelian (commutative) monoids
    • Basic definitions
    • Univalence for abelian monoids
    • Subobjects
    • Quotient objects
    • Direct products
    • Monoid of fractions of an abelian monoid
    • Canonical homomorphism to the monoid of fractions
    • Abelian monoid of fractions in the case when elements of the localization submonoid are cancelable
    • Relations on the abelian monoid of fractions
    • Relations and canonical homomorphism to abmonoidfrac
For some examples, see UniMath.NumberSystems.NaturalNumbersAlgebra

Preamble

Settings
The following line has to be removed for the file to compile with Coq8.2
Unset Kernel Term Sharing.

Imports

Standard Algebraic Structures

Monoids

Basic definitions


Definition monoid : UU := total2 (λ X : setwithbinop, ismonoidop (@op X)).

Definition make_monoid :
   (t : setwithbinop), (λ X : setwithbinop, ismonoidop op) t X : setwithbinop, ismonoidop op :=
  tpair (λ X : setwithbinop, ismonoidop (@op X)).

Definition pr1monoid : monoid setwithbinop := @pr1 _ _.
Coercion pr1monoid : monoid >-> setwithbinop.

Definition assocax (X : monoid) : isassoc (@op X) := pr1 (pr2 X).

Definition unel (X : monoid) : X := pr1 (pr2 (pr2 X)).

Definition lunax (X : monoid) : islunit (@op X) (unel X) := pr1 (pr2 (pr2 (pr2 X))).

Definition runax (X : monoid) : isrunit (@op X) (unel X) := pr2 (pr2 (pr2 (pr2 X))).

Definition unax (X : monoid) : isunit (@op X) (unel X) := make_dirprod (lunax X) (runax X).

Definition isasetmonoid (X : monoid) : isaset X := pr2 (pr1 (pr1 X)).

Declare Scope addmonoid_scope.
Delimit Scope addmonoid_scope with addmonoid.
Declare Scope multmonoid_scope.
Delimit Scope multmonoid_scope with multmonoid.

Notation "x * y" := (op x y) : multmonoid_scope.
Notation "1" := (unel _) : multmonoid_scope.

Module AddNotation.
  Notation "x + y" := (op x y) : addmonoid_scope.
  Notation "0" := (unel _) : addmonoid_scope.
End AddNotation.


Construction of the trivial monoid consisting of one element given by unit.


Definition unitmonoid_ismonoid : ismonoidop (λ x : unitset, λ y : unitset, x).
Proof.
  use make_ismonoidop.
  - intros x x' x''. use isProofIrrelevantUnit.
  - use make_isunital.
    + exact tt.
    + use make_isunit.
      × intros x. use isProofIrrelevantUnit.
      × intros x. use isProofIrrelevantUnit.
Qed.

Definition unitmonoid : monoid :=
  make_monoid (make_setwithbinop unitset (λ x : unitset, λ y : unitset, x))
             unitmonoid_ismonoid.

Functions between monoids compatible with structure (homomorphisms) and their properties


Definition ismonoidfun {X Y : monoid} (f : X Y) : UU :=
  dirprod (isbinopfun f) (f (unel X) = (unel Y)).

Definition make_ismonoidfun {X Y : monoid} {f : X Y} (H1 : isbinopfun f)
           (H2 : f (unel X) = unel Y) : ismonoidfun f := make_dirprod H1 H2.

Definition ismonoidfunisbinopfun {X Y : monoid} {f : X Y} (H : ismonoidfun f) : isbinopfun f :=
  dirprod_pr1 H.

Definition ismonoidfununel {X Y : monoid} {f : X Y} (H : ismonoidfun f) : f (unel X) = unel Y :=
  dirprod_pr2 H.

Lemma isapropismonoidfun {X Y : monoid} (f : X Y) : isaprop (ismonoidfun f).
Proof.
  apply isofhleveldirprod.
  - apply isapropisbinopfun.
  - apply (setproperty Y).
Defined.

Definition monoidfun (X Y : monoid) : UU := total2 (fun f : X Yismonoidfun f).

Definition monoidfunconstr {X Y : monoid} {f : X Y} (is : ismonoidfun f) : monoidfun X Y :=
  tpair _ f is.

Definition pr1monoidfun (X Y : monoid) : monoidfun X Y (X Y) := @pr1 _ _.

Definition monoidfuntobinopfun (X Y : monoid) : monoidfun X Y binopfun X Y :=
  λ f, make_binopfun (pr1 f) (pr1 (pr2 f)).
Coercion monoidfuntobinopfun : monoidfun >-> binopfun.

Definition monoidfununel {X Y : monoid} (f : monoidfun X Y) : f (unel X) = (unel Y) := pr2 (pr2 f).

Definition monoidfunmul {X Y : monoid} (f : monoidfun X Y) (x x' : X) : f (op x x') = op (f x) (f x') :=
  pr1 (pr2 f) x x'.

Definition monoidfun_paths {X Y : monoid} (f g : monoidfun X Y) (e : pr1 f = pr1 g) : f = g.
Proof.
  use total2_paths_f.
  - exact e.
  - use proofirrelevance. use isapropismonoidfun.
Defined.
Opaque monoidfun_paths.

Lemma isasetmonoidfun (X Y : monoid) : isaset (monoidfun X Y).
Proof.
  apply (isasetsubset (pr1monoidfun X Y)).
  - change (isofhlevel 2 (X Y)).
    apply impred. intro.
    apply (setproperty Y).
  - refine (isinclpr1 _ _). intro.
    apply isapropismonoidfun.
Defined.

Lemma ismonoidfuncomp {X Y Z : monoid} (f : monoidfun X Y) (g : monoidfun Y Z) :
  ismonoidfun (funcomp (pr1 f) (pr1 g)).
Proof.
  split with (isbinopfuncomp f g).
  unfold funcomp. rewrite (pr2 (pr2 f)).
  apply (pr2 (pr2 g)).
Defined.
Opaque ismonoidfuncomp.

Definition monoidfuncomp {X Y Z : monoid} (f : monoidfun X Y) (g : monoidfun Y Z) :
  monoidfun X Z := monoidfunconstr (ismonoidfuncomp f g).

Lemma monoidfunassoc {X Y Z W : monoid} (f : monoidfun X Y) (g : monoidfun Y Z)
      (h : monoidfun Z W) :
  monoidfuncomp f (monoidfuncomp g h) = monoidfuncomp (monoidfuncomp f g) h.
Proof.
  use monoidfun_paths. use idpath.
Qed.

Lemma unelmonoidfun_ismonoidfun (X Y : monoid) : ismonoidfun (λ x : X, (unel Y)).
Proof.
  use make_ismonoidfun.
  - use make_isbinopfun. intros x x'. use pathsinv0. use lunax.
  - use idpath.
Qed.

Definition unelmonoidfun (X Y : monoid) : monoidfun X Y :=
  monoidfunconstr (unelmonoidfun_ismonoidfun X Y).

Lemma monoidfuntounit_ismonoidfun (X : monoid) : ismonoidfun (λ x : X, (unel unitmonoid)).
Proof.
  use make_ismonoidfun.
  - use make_isbinopfun. intros x x'. use isProofIrrelevantUnit.
  - use isProofIrrelevantUnit.
Qed.

Definition monoidfuntounit (X : monoid) : monoidfun X unitmonoid :=
  monoidfunconstr (monoidfuntounit_ismonoidfun X).

Lemma monoidfunfromunit_ismonoidfun (X : monoid) : ismonoidfun (λ x : unitmonoid, (unel X)).
Proof.
  use make_ismonoidfun.
  - use make_isbinopfun. intros x x'. use pathsinv0. use (runax X).
  - use idpath.
Qed.

Definition monoidfunfromunit (X : monoid) : monoidfun unitmonoid X :=
  monoidfunconstr (monoidfunfromunit_ismonoidfun X).

Definition monoidmono (X Y : monoid) : UU := total2 (λ f : incl X Y, ismonoidfun f).

Definition make_monoidmono {X Y : monoid} (f : incl X Y) (is : ismonoidfun f) :
  monoidmono X Y := tpair _ f is.

Definition pr1monoidmono (X Y : monoid) : monoidmono X Y incl X Y := @pr1 _ _.
Coercion pr1monoidmono : monoidmono >-> incl.

Definition monoidincltomonoidfun (X Y : monoid) :
  monoidmono X Y monoidfun X Y := λ f, monoidfunconstr (pr2 f).
Coercion monoidincltomonoidfun : monoidmono >-> monoidfun.

Definition monoidmonotobinopmono (X Y : monoid) : monoidmono X Y binopmono X Y :=
  λ f, make_binopmono (pr1 f) (pr1 (pr2 f)).
Coercion monoidmonotobinopmono : monoidmono >-> binopmono.

Definition monoidmonocomp {X Y Z : monoid}
           (f : monoidmono X Y) (g : monoidmono Y Z) : monoidmono X Z :=
  make_monoidmono (inclcomp (pr1 f) (pr1 g)) (ismonoidfuncomp f g).

Definition monoidiso (X Y : monoid) : UU := total2 (λ f : X Y, ismonoidfun f).

Definition make_monoidiso {X Y : monoid} (f : X Y) (is : ismonoidfun f) :
  monoidiso X Y := tpair _ f is.

Definition pr1monoidiso (X Y : monoid) : monoidiso X Y X Y := @pr1 _ _.
Coercion pr1monoidiso : monoidiso >-> weq.

Definition monoidisotomonoidmono (X Y : monoid) : monoidiso X Y monoidmono X Y :=
  λ f, make_monoidmono (weqtoincl (pr1 f)) (pr2 f).
Coercion monoidisotomonoidmono : monoidiso >-> monoidmono.

Definition monoidisotobinopiso (X Y : monoid) : monoidiso X Y binopiso X Y :=
  λ f, make_binopiso (pr1 f) (pr1 (pr2 f)).
Coercion monoidisotobinopiso : monoidiso >-> binopiso.

Definition monoidiso_paths {X Y : monoid} (f g : monoidiso X Y) (e : pr1 f = pr1 g) : f = g.
Proof.
  use total2_paths_f.
  - exact e.
  - use proofirrelevance. use isapropismonoidfun.
Defined.
Opaque monoidiso_paths.

Lemma ismonoidfuninvmap {X Y : monoid} (f : monoidiso X Y) :
  ismonoidfun (invmap (pr1 f)).
Proof.
  split with (isbinopfuninvmap f).
  apply (invmaponpathsweq (pr1 f)).
  rewrite (homotweqinvweq (pr1 f)).
  apply (pathsinv0 (pr2 (pr2 f))).
Defined.
Opaque ismonoidfuninvmap.

Definition invmonoidiso {X Y : monoid} (f : monoidiso X Y) : monoidiso Y X :=
  make_monoidiso (invweq (pr1 f)) (ismonoidfuninvmap f).

Definition idmonoidiso (X : monoid) : monoidiso X X.
Proof.
  use make_monoidiso.
  - exact (idweq X).
  - use make_dirprod.
    + intros x x'. use idpath.
    + use idpath.
Defined.

Lemma monoidfunidleft {A B : monoid} (f : monoidfun A B) : monoidfuncomp (idmonoidiso A) f = f.
Proof.
  use monoidfun_paths. use idpath.
Qed.

Lemma monoidfunidright {A B : monoid} (f : monoidfun A B) : monoidfuncomp f (idmonoidiso B) = f.
Proof.
  use monoidfun_paths. use idpath.
Qed.

(X = Y) ≃ (monoidiso X Y)

The idea here is to use the following composition
(X = Y) ≃ (X ╝ Y) ≃ (monoidiso' X Y) ≃ (monoidiso X Y).
The reason why we use monoidiso' is that then we can use univalence for sets with binops, setwithbinop_univalence. See monoid_univalence_weq2.

Local Definition monoidiso' (X Y : monoid) : UU :=
   g : ( f : X Y, isbinopfun f), (pr1 g) (unel X) = unel Y.

Definition monoid_univalence_weq1 (X Y : monoid) : (X = Y) (X Y) :=
  total2_paths_equiv _ X Y.

Definition monoid_univalence_weq2 (X Y : monoid) : (X Y) (monoidiso' X Y).
Proof.
  use weqbandf.
  - exact (setwithbinop_univalence X Y).
  - intros e. cbn. use invweq. induction X as [X Xop]. induction Y as [Y Yop]. cbn in e.
    cbn. induction e. use weqimplimpl.
    + intros i. use proofirrelevance. use isapropismonoidop.
    + intros i. induction i. use idpath.
    + use setproperty.
    + use isapropifcontr. exact (@isapropismonoidop X (pr2 X) Xop Yop).
Defined.
Opaque monoid_univalence_weq2.

Definition monoid_univalence_weq3 (X Y : monoid) : (monoidiso' X Y) (monoidiso X Y) :=
  weqtotal2asstor (λ w : X Y, isbinopfun w)
                  (λ y : ( w : weq X Y, isbinopfun w), (pr1 y) (unel X) = unel Y).

Definition monoid_univalence_map (X Y : monoid) : X = Y monoidiso X Y.
Proof.
  intro e. induction e. exact (idmonoidiso X).
Defined.

Lemma monoid_univalence_isweq (X Y : monoid) :
  isweq (monoid_univalence_map X Y).
Proof.
  use isweqhomot.
  - exact (weqcomp (monoid_univalence_weq1 X Y)
                   (weqcomp (monoid_univalence_weq2 X Y) (monoid_univalence_weq3 X Y))).
  - intros e. induction e.
    use (pathscomp0 weqcomp_to_funcomp_app).
    use weqcomp_to_funcomp_app.
  - use weqproperty.
Defined.
Opaque monoid_univalence_isweq.

Definition monoid_univalence (X Y : monoid) : (X = Y) (monoidiso X Y).
Proof.
  use make_weq.
  - exact (monoid_univalence_map X Y).
  - exact (monoid_univalence_isweq X Y).
Defined.
Opaque monoid_univalence.

Subobjects


Definition issubmonoid {X : monoid} (A : hsubtype X) : UU :=
  dirprod (issubsetwithbinop (@op X) A) (A (unel X)).

Definition make_issubmonoid {X : monoid} {A : hsubtype X} (H1 : issubsetwithbinop (@op X) A)
           (H2 : A (unel X)) : issubmonoid A := make_dirprod H1 H2.

Lemma isapropissubmonoid {X : monoid} (A : hsubtype X) :
  isaprop (issubmonoid A).
Proof.
  apply (isofhleveldirprod 1).
  - apply isapropissubsetwithbinop.
  - apply (pr2 (A (unel X))).
Defined.

Definition submonoid (X : monoid) : UU := total2 (λ A : hsubtype X, issubmonoid A).

Definition make_submonoid {X : monoid} :
   (t : hsubtype X), (λ A : hsubtype X, issubmonoid A) t A : hsubtype X, issubmonoid A :=
  tpair (λ A : hsubtype X, issubmonoid A).

Definition pr1submonoid (X : monoid) : submonoid X hsubtype X := @pr1 _ _.

Definition totalsubmonoid (X : monoid) : submonoid X.
Proof.
  split with (totalsubtype X). split.
  - intros x x'. apply tt.
  - apply tt.
Defined.

Definition trivialsubmonoid (X : monoid) : @submonoid X.
Proof.
  intros.
   (λ x, x = @unel X)%set.
  split.
  - intros b c.
    induction b as [x p], c as [y q].
    cbn in ×.
    induction (!p), (!q).
    rewrite lunax.
    apply idpath.
  - apply idpath.
Defined.

Definition submonoidtosubsetswithbinop (X : monoid) : submonoid X @subsetswithbinop X :=
  λ A : _, make_subsetswithbinop (pr1 A) (pr1 (pr2 A)).
Coercion submonoidtosubsetswithbinop : submonoid >-> subsetswithbinop.

Lemma ismonoidcarrier {X : monoid} (A : submonoid X) : ismonoidop (@op A).
Proof.
  split.
  - intros a a' a''. apply (invmaponpathsincl _ (isinclpr1carrier A)).
    simpl. apply (assocax X).
  - split with (make_carrier _ (unel X) (pr2 (pr2 A))).
    split.
    + simpl. intro a. apply (invmaponpathsincl _ (isinclpr1carrier A)).
      simpl. apply (lunax X).
    + intro a. apply (invmaponpathsincl _ (isinclpr1carrier A)).
      simpl. apply (runax X).
Defined.

Definition carrierofsubmonoid {X : monoid} (A : submonoid X) : monoid.
Proof. split with A. apply ismonoidcarrier. Defined.
Coercion carrierofsubmonoid : submonoid >-> monoid.

Lemma intersection_submonoid :
   {X : monoid} {I : UU} (S : I hsubtype X)
         (each_is_submonoid : i : I, issubmonoid (S i)),
    issubmonoid (subtype_intersection S).
Proof.
  intros.
  use make_issubmonoid.
  + intros g h i.
    pose (is_subgr := pr1 (each_is_submonoid i)).
    exact (is_subgr (pr1 g,, (pr2 g) i) (pr1 h,, (pr2 h) i)).
  + exact (λ i, pr2 (each_is_submonoid i)).
Qed.


Lemma ismonoidfun_pr1 {X : monoid} (A : submonoid X) : @ismonoidfun A X pr1.
Proof.
  use make_ismonoidfun.
  - intros a a'. reflexivity.
  - reflexivity.
Defined.

Definition submonoid_incl {X : monoid} (A : submonoid X) : monoidfun A X :=
monoidfunconstr (ismonoidfun_pr1 A).

Kernels

Kernels Let f : X → Y be a morphism of monoids. The kernel of f is the submonoid of X consisting of elements x such that f x = unel Y.

Definition monoid_kernel_hsubtype {A B : monoid} (f : monoidfun A B) : hsubtype A.
Proof.
  intros a.
  use make_hProp.
  - exact (f a = unel B).
  - apply setproperty.
Defined.

Kernel as a monoid

Definition kernel_issubmonoid {A B : monoid} (f : monoidfun A B) :
  issubmonoid (monoid_kernel_hsubtype f).
Proof.
  use make_issubmonoid.
  - intros x y.
    refine (monoidfunmul f _ _ @ _).
    refine (maponpaths _ (pr2 y) @ _).
    refine (runax _ _ @ _).
    exact (pr2 x).
  - apply monoidfununel.
Defined.

Definition kernel_submonoid {A B : monoid} (f : monoidfun A B) : @submonoid A :=
  make_submonoid _ (kernel_issubmonoid f).

Quotient objects


Lemma isassocquot {X : monoid} (R : binopeqrel X) : isassoc (@op (setwithbinopquot R)).
Proof.
  intros a b c.
  apply (setquotuniv3prop
           R (λ x x' x'' : setwithbinopquot R,
                make_hProp _ (setproperty (setwithbinopquot R) (op (op x x') x'')
                                         (op x (op x' x''))))).
  intros x x' x''.
  apply (maponpaths (setquotpr R) (assocax X x x' x'')).
Defined.
Opaque isassocquot.

Lemma isunitquot {X : monoid} (R : binopeqrel X) :
  isunit (@op (setwithbinopquot R)) (setquotpr R (pr1 (pr2 (pr2 X)))).
Proof.
  intros.
  set (qun := setquotpr R (pr1 (pr2 (pr2 X)))).
  set (qsetwithop := setwithbinopquot R).
  split.
  - intro x.
    apply (setquotunivprop R (λ x, @eqset qsetwithop ((@op qsetwithop) qun x) x)).
    simpl. intro x0.
    apply (maponpaths (setquotpr R) (lunax X x0)).
  - intro x.
    apply (setquotunivprop R (λ x, @eqset qsetwithop ((@op qsetwithop) x qun) x)).
    simpl. intro x0. apply (maponpaths (setquotpr R) (runax X x0)).
Defined.
Opaque isunitquot.

Definition ismonoidquot {X : monoid} (R : binopeqrel X) : ismonoidop (@op (setwithbinopquot R)) :=
  tpair _ (isassocquot R) (tpair _ (setquotpr R (pr1 (pr2 (pr2 X)))) (isunitquot R)).

Definition monoidquot {X : monoid} (R : binopeqrel X) : monoid.
Proof. split with (setwithbinopquot R). apply ismonoidquot. Defined.

Lemma ismonoidfun_setquotpr {X : monoid} (R : binopeqrel X) : @ismonoidfun X (monoidquot R) (setquotpr R).
Proof.
  use make_ismonoidfun.
  - intros x y. reflexivity.
  - reflexivity.
Defined.

Definition monoidquotpr {X : monoid} (R : binopeqrel X) : monoidfun X (monoidquot R) :=
  monoidfunconstr (ismonoidfun_setquotpr R).

Lemma ismonoidfun_setquotuniv {X Y : monoid} {R : binopeqrel X} (f : monoidfun X Y)
      (H : iscomprelfun R f) : @ismonoidfun (monoidquot R) Y (setquotuniv R Y f H).
Proof.
  use make_ismonoidfun.
  - refine (setquotuniv2prop' _ _ _).
    + intros. apply isasetmonoid.
    + intros. simpl. rewrite setquotfun2comm. rewrite !setquotunivcomm.
      apply monoidfunmul.
  - exact (setquotunivcomm _ _ _ _ _ @ monoidfununel _).
Defined.

The universal property of the quotient monoid. If X, Y are monoids, R is a congruence on X, and f : X Y is a homomorphism which respects R, then there exists a unique homomorphism f' : X/R Y making the following diagram commute: X -π-> X/R \ | f | ∃! f' \ | V V Y

Definition monoidquotuniv {X Y : monoid} {R : binopeqrel X} (f : monoidfun X Y)
      (H : iscomprelfun R f) : monoidfun (monoidquot R) Y :=
  monoidfunconstr (ismonoidfun_setquotuniv f H).

Definition monoidquotfun {X Y : monoid} {R : binopeqrel X} {S : binopeqrel Y}
  (f : monoidfun X Y) (H : x x' : X, R x x' S (f x) (f x')) : monoidfun (monoidquot R) (monoidquot S) :=
monoidquotuniv (monoidfuncomp f (monoidquotpr S)) (λ x x' r, iscompsetquotpr _ _ _ (H _ _ r)).

Quotients by the equivalence relation of being in the same fiber. This is exactly X / ker f for a homomorphism f.

Local Open Scope multmonoid.

Definition fiber_binopeqrel {X Y : monoid} (f : monoidfun X Y) : binopeqrel X.
Proof.
  use make_binopeqrel.
  - exact (same_fiber_eqrel f).
  - use make_isbinophrel; intros ? ? ? same;
      refine (monoidfunmul _ _ _ @ _ @ !monoidfunmul _ _ _).
    +
Prove that it's a congruence for left multiplication
      apply maponpaths.
      exact same.
    +
Prove that it's a congruence for right multiplication
      apply (maponpaths (λ z, z × f c)).
      exact same.
Defined.

Definition quotient_by_monoidfun {X Y : monoid} (f : monoidfun X Y) : monoid :=
  monoidquot (fiber_binopeqrel f).

Cosets


Section Cosets.
  Context {X : monoid} (Y : submonoid X).

  Definition in_same_left_coset (x1 x2 : X) : UU :=
     y : Y, x1 × (pr1 y) = x2.

  Definition in_same_right_coset (x1 x2 : X) : UU :=
     y : Y, (pr1 y) × x1 = x2.
End Cosets.

Direct products


Lemma isassocdirprod (X Y : monoid) : isassoc (@op (setwithbinopdirprod X Y)).
Proof.
  simpl. intros xy xy' xy''. simpl. apply pathsdirprod.
  - apply (assocax X).
  - apply (assocax Y).
Defined.
Opaque isassocdirprod.

Lemma isunitindirprod (X Y : monoid) :
  isunit (@op (setwithbinopdirprod X Y)) (make_dirprod (unel X) (unel Y)).
Proof.
  split.
  - intro xy. destruct xy as [ x y ]. simpl. apply pathsdirprod.
    apply (lunax X). apply (lunax Y).
  - intro xy. destruct xy as [ x y ]. simpl. apply pathsdirprod.
    apply (runax X). apply (runax Y).
Defined.
Opaque isunitindirprod.

Definition ismonoiddirprod (X Y : monoid) : ismonoidop (@op (setwithbinopdirprod X Y)) :=
  tpair _ (isassocdirprod X Y) (tpair _ (make_dirprod (unel X) (unel Y)) (isunitindirprod X Y)).

Definition monoiddirprod (X Y : monoid) : monoid.
Proof.
  split with (setwithbinopdirprod X Y).
  apply ismonoiddirprod.
Defined.

Abelian (commutative) monoids

Basic definitions


Definition abmonoid : UU := total2 (λ X : setwithbinop, isabmonoidop (@op X)).

Definition make_abmonoid :
   (t : setwithbinop), (λ X : setwithbinop, isabmonoidop op) t
                         X : setwithbinop, isabmonoidop op :=
  tpair (λ X : setwithbinop, isabmonoidop (@op X)).

Definition abmonoidtomonoid : abmonoid monoid :=
  λ X : _, make_monoid (pr1 X) (pr1 (pr2 X)).
Coercion abmonoidtomonoid : abmonoid >-> monoid.

Definition commax (X : abmonoid) : iscomm (@op X) := pr2 (pr2 X).

Definition abmonoidrer (X : abmonoid) (a b c d : X) :
  paths (op (op a b) (op c d)) (op (op a c) (op b d)) := abmonoidoprer (pr2 X) a b c d.

Definition abmonoid_of_monoid (X : monoid) (H : iscomm (@op X)) : abmonoid :=
  make_abmonoid X (make_isabmonoidop (pr2 X) H).

Construction of the trivial abmonoid consisting of one element given by unit.

Abelian monoid structure on homsets

If f g : X -> Y are morphisms of abelian monoids, then we define f + g to be the morphism (f + g)(x) = f(x) + g(x).

Lemma abmonoidshombinop_ismonoidfun {X Y : abmonoid} (f g : monoidfun X Y) :
  @ismonoidfun X Y (λ x : pr1 X, (pr1 f x × pr1 g x)%multmonoid).
Proof.
  use make_ismonoidfun.
  - use make_isbinopfun.
    intros x x'. cbn. rewrite (pr1 (pr2 f)). rewrite (pr1 (pr2 g)).
    rewrite (assocax Y). rewrite (assocax Y). use maponpaths.
    rewrite <- (assocax Y). rewrite <- (assocax Y).
    use (maponpaths (λ y : Y, (y × (pr1 g x'))%multmonoid)).
    use (commax Y).
  - use (pathscomp0 (maponpaths (λ h : Y, (pr1 f (unel X) × h)%multmonoid)
                                (monoidfununel g))).
    rewrite runax. exact (monoidfununel f).
Qed.

Definition abmonoidshombinop {X Y : abmonoid} : binop (monoidfun X Y) :=
  (λ f g, monoidfunconstr (abmonoidshombinop_ismonoidfun f g)).

Lemma abmonoidsbinop_runax {X Y : abmonoid} (f : monoidfun X Y) :
  abmonoidshombinop f (unelmonoidfun X Y) = f.
Proof.
  use monoidfun_paths. use funextfun. intros x. use (runax Y).
Qed.

Lemma abmonoidsbinop_lunax {X Y : abmonoid} (f : monoidfun X Y) :
  abmonoidshombinop (unelmonoidfun X Y) f = f.
Proof.
  use monoidfun_paths. use funextfun. intros x. use (lunax Y).
Qed.

Lemma abmonoidshombinop_assoc {X Y : abmonoid} (f g h : monoidfun X Y) :
  abmonoidshombinop (abmonoidshombinop f g) h = abmonoidshombinop f (abmonoidshombinop g h).
Proof.
  use monoidfun_paths. use funextfun. intros x. use assocax.
Qed.

Lemma abmonoidshombinop_comm {X Y : abmonoid} (f g : monoidfun X Y) :
  abmonoidshombinop f g = abmonoidshombinop g f.
Proof.
  use monoidfun_paths. use funextfun. intros x. use (commax Y).
Qed.

Lemma abmonoidshomabmonoid_ismonoidop (X Y : abmonoid) :
  @ismonoidop (make_hSet (monoidfun X Y) (isasetmonoidfun X Y))
              (λ f g : monoidfun X Y, abmonoidshombinop f g).
Proof.
  use make_ismonoidop.
  - intros f g h. exact (abmonoidshombinop_assoc f g h).
  - use make_isunital.
    + exact (unelmonoidfun X Y).
    + use make_isunit.
      × intros f. exact (abmonoidsbinop_lunax f).
      × intros f. exact (abmonoidsbinop_runax f).
Defined.

Lemma abmonoidshomabmonoid_isabmonoid (X Y : abmonoid) :
  @isabmonoidop (make_hSet (monoidfun X Y) (isasetmonoidfun X Y))
                (λ f g : monoidfun X Y, abmonoidshombinop f g).
Proof.
  use make_isabmonoidop.
  - exact (abmonoidshomabmonoid_ismonoidop X Y).
  - intros f g. exact (abmonoidshombinop_comm f g).
Defined.

Definition abmonoidshomabmonoid (X Y : abmonoid) : abmonoid.
Proof.
  use make_abmonoid.
  - use make_setwithbinop.
    + use make_hSet.
      × exact (monoidfun X Y).
      × exact (isasetmonoidfun X Y).
    + intros f g. exact (abmonoidshombinop f g).
  - exact (abmonoidshomabmonoid_isabmonoid X Y).
Defined.

(X = Y) ≃ (monoidiso X Y)

We use the following composition
(X = Y) ≃ ((make_abmonoid' X) = (make_abmonoid' Y)) ≃ ((pr1 (make_abmonoid' X)) = (pr1 (make_abmonoid' Y))) ≃ (monoidiso X Y)
where the third weak equivalence is given by univalence for monoids, monoid_univalence.

Local Definition abmonoid' : UU := m : monoid, iscomm (@op m).

Local Definition make_abmonoid' (X : abmonoid) : abmonoid' :=
  tpair _ (tpair _ (pr1 X) (dirprod_pr1 (pr2 X))) (dirprod_pr2 (pr2 X)).

Definition abmonoid_univalence_weq1 : abmonoid abmonoid' :=
  weqtotal2asstol (λ X : setwithbinop, ismonoidop (@op X))
                  (fun y : ( X : setwithbinop, ismonoidop op) ⇒ iscomm (@op (pr1 y))).

Definition abmonoid_univalence_weq1' (X Y : abmonoid) :
  (X = Y) ((make_abmonoid' X) = (make_abmonoid' Y)) :=
  make_weq _ (@isweqmaponpaths abmonoid abmonoid' abmonoid_univalence_weq1 X Y).

Definition abmonoid_univalence_weq2 (X Y : abmonoid) :
  ((make_abmonoid' X) = (make_abmonoid' Y)) ((pr1 (make_abmonoid' X)) = (pr1 (make_abmonoid' Y))).
Proof.
  use subtypeInjectivity.
  intros w. use isapropiscomm.
Defined.
Opaque abmonoid_univalence_weq2.

Definition abmonoid_univalence_weq3 (X Y : abmonoid) :
  ((pr1 (make_abmonoid' X)) = (pr1 (make_abmonoid' Y))) (monoidiso X Y) :=
  monoid_univalence (pr1 (make_abmonoid' X)) (pr1 (make_abmonoid' Y)).

Definition abmonoid_univalence_map (X Y : abmonoid) : (X = Y) (monoidiso X Y).
Proof.
  intro e. induction e. exact (idmonoidiso X).
Defined.

Lemma abmonoid_univalence_isweq (X Y : abmonoid) : isweq (abmonoid_univalence_map X Y).
Proof.
  use isweqhomot.
  - exact (weqcomp (abmonoid_univalence_weq1' X Y)
                   (weqcomp (abmonoid_univalence_weq2 X Y) (abmonoid_univalence_weq3 X Y))).
  - intros e. induction e.
    use (pathscomp0 weqcomp_to_funcomp_app).
    use weqcomp_to_funcomp_app.
  - use weqproperty.
Defined.
Opaque abmonoid_univalence_isweq.

Definition abmonoid_univalence (X Y : abmonoid) : (X = Y) (monoidiso X Y).
Proof.
  use make_weq.
  - exact (abmonoid_univalence_map X Y).
  - exact (abmonoid_univalence_isweq X Y).
Defined.
Opaque abmonoid_univalence.

Subobjects


Definition subabmonoid (X : abmonoid) := submonoid X.
Identity Coercion id_subabmonoid : subabmonoid >-> submonoid.

Lemma iscommcarrier {X : abmonoid} (A : submonoid X) : iscomm (@op A).
Proof.
  intros a a'.
  apply (invmaponpathsincl _ (isinclpr1carrier A)).
  simpl. apply (pr2 (pr2 X)).
Defined.
Opaque iscommcarrier.

Definition isabmonoidcarrier {X : abmonoid} (A : submonoid X) :
  isabmonoidop (@op A) := make_dirprod (ismonoidcarrier A) (iscommcarrier A).

Definition carrierofsubabmonoid {X : abmonoid} (A : subabmonoid X) : abmonoid.
Proof.
  unfold subabmonoid in A. split with A. apply isabmonoidcarrier.
Defined.
Coercion carrierofsubabmonoid : subabmonoid >-> abmonoid.

Definition subabmonoid_incl {X : abmonoid} (A : subabmonoid X) : monoidfun A X :=
submonoid_incl A.

Quotient objects


Lemma iscommquot {X : abmonoid} (R : binopeqrel X) : iscomm (@op (setwithbinopquot R)).
Proof.
  intros.
  set (X0 := setwithbinopquot R).
  intros x x'.
  apply (setquotuniv2prop R (λ x x' : X0, make_hProp _ (setproperty X0 (op x x') (op x' x)))).
  intros x0 x0'.
  apply (maponpaths (setquotpr R) ((commax X) x0 x0')).
Defined.
Opaque iscommquot.

Definition isabmonoidquot {X : abmonoid} (R : binopeqrel X) :
  isabmonoidop (@op (setwithbinopquot R)) := make_dirprod (ismonoidquot R) (iscommquot R).

Definition abmonoidquot {X : abmonoid} (R : binopeqrel X) : abmonoid.
Proof. split with (setwithbinopquot R). apply isabmonoidquot. Defined.

Direct products


Lemma iscommdirprod (X Y : abmonoid) : iscomm (@op (setwithbinopdirprod X Y)).
Proof.
  intros xy xy'.
  destruct xy as [ x y ]. destruct xy' as [ x' y' ]. simpl.
  apply pathsdirprod.
  - apply (commax X).
  - apply (commax Y).
Defined.
Opaque iscommdirprod.

Definition isabmonoiddirprod (X Y : abmonoid) : isabmonoidop (@op (setwithbinopdirprod X Y)) :=
  make_dirprod (ismonoiddirprod X Y) (iscommdirprod X Y).

Definition abmonoiddirprod (X Y : abmonoid) : abmonoid.
Proof. split with (setwithbinopdirprod X Y). apply isabmonoiddirprod. Defined.

Monoid of fractions of an abelian monoid

Note : the following construction uses onbly associativity and commutativity of the abmonoid operations but does not use the unit element.

Local Open Scope addmonoid_scope.

Import AddNotation.

Definition abmonoidfracopint (X : abmonoid) (A : submonoid X) :
  binop (X × A) := @op (setwithbinopdirprod X A).

Definition hrelabmonoidfrac (X : abmonoid) (A : submonoid X) : hrel (setwithbinopdirprod X A) :=
  λ xa yb : dirprod X A, hexists (λ a0 : A, paths (((pr1 xa) + (pr1 (pr2 yb))) + (pr1 a0))
                                                    (((pr1 yb) + (pr1 (pr2 xa)) + (pr1 a0)))).

Lemma iseqrelabmonoidfrac (X : abmonoid) (A : submonoid X) : iseqrel (hrelabmonoidfrac X A).
Proof.
  intros.
  set (assoc := assocax X). set (comm := commax X).
  set (R := hrelabmonoidfrac X A).
  assert (symm : issymm R).
  {
    intros xa yb. unfold R. simpl. apply hinhfun. intro eq1.
    destruct eq1 as [ x1 eq1 ]. split with x1. destruct x1 as [ x1 isx1 ].
    simpl. apply (pathsinv0 eq1).
  }
  assert (trans : istrans R).
  {
    unfold istrans. intros ab cd ef. simpl. apply hinhfun2.
    destruct ab as [ a b ]. destruct cd as [ c d ]. destruct ef as [ e f ].
    destruct b as [ b isb ]. destruct d as [ d isd ]. destruct f as [ f isf ].
    intros eq1 eq2. destruct eq1 as [ x1 eq1 ]. destruct eq2 as [ x2 eq2 ].
    simpl in ×. split with (@op A (tpair _ d isd) (@op A x1 x2)).
    destruct x1 as [ x1 isx1 ]. destruct x2 as [ x2 isx2 ].
    destruct A as [ A ax ].
    simpl in ×.
    rewrite (assoc a f (d + (x1 + x2))). rewrite (comm f (d + (x1 + x2))).
    destruct (assoc a (d + (x1 + x2)) f). destruct (assoc a d (x1 + x2)).
    destruct (assoc (a + d) x1 x2).
    rewrite eq1. rewrite (comm x1 x2). rewrite (assoc e b (d + (x2 + x1))).
    rewrite (comm b (d + (x2 + x1))).
    destruct (assoc e (d + (x2 + x1)) b). destruct (assoc e d (x2 + x1)).
    destruct (assoc (e + d) x2 x1). destruct eq2. rewrite (assoc (c + b) x1 x2).
    rewrite (assoc (c + f) x2 x1). rewrite (comm x1 x2).
    rewrite (assoc (c + b) (x2 + x1) f). rewrite (assoc (c + f) (x2 + x1) b).
    rewrite (comm (x2 + x1) f). rewrite (comm (x2 + x1) b).
    destruct (assoc (c + b) f (x2 + x1)). destruct (assoc (c + f) b (x2 + x1)).
    rewrite (assoc c b f). rewrite (assoc c f b). rewrite (comm b f).
    apply idpath.
  }
  assert (refl : isrefl R).
  {
    intro xa. simpl. apply hinhpr. split with (pr2 xa). apply idpath.
  }
  apply (iseqrelconstr trans refl symm).
Defined.
Opaque iseqrelabmonoidfrac.

Definition eqrelabmonoidfrac (X : abmonoid) (A : submonoid X) : eqrel (setwithbinopdirprod X A) :=
  make_eqrel (hrelabmonoidfrac X A) (iseqrelabmonoidfrac X A).

Lemma isbinophrelabmonoidfrac (X : abmonoid) (A : submonoid X) :
  @isbinophrel (setwithbinopdirprod X A) (eqrelabmonoidfrac X A).
Proof.
  intros.
  apply (isbinopreflrel (eqrelabmonoidfrac X A) (eqrelrefl (eqrelabmonoidfrac X A))).
  set (rer := abmonoidoprer (pr2 X)). intros a b c d. simpl.
  apply hinhfun2.
  destruct a as [ a a' ]. destruct a' as [ a' isa' ].
  destruct b as [ b b' ]. destruct b' as [ b' isb' ].
  destruct c as [ c c' ]. destruct c' as [ c' isc' ].
  destruct d as [ d d' ]. destruct d' as [ d' isd' ].
  intros ax ay.
  destruct ax as [ a1 eq1 ]. destruct ay as [ a2 eq2 ].
  split with (@op A a1 a2).
  destruct a1 as [ a1 aa1 ]. destruct a2 as [ a2 aa2 ].
  simpl in ×.
  rewrite (rer a c b' d'). rewrite (rer b d a' c').
  rewrite (rer (a + b') (c + d') a1 a2).
  rewrite (rer (b + a') (d + c') a1 a2).
  destruct eq1. destruct eq2.
  apply idpath.
Defined.
Opaque isbinophrelabmonoidfrac.

Definition abmonoidfracop (X : abmonoid) (A : submonoid X) :
  binop (setquot (hrelabmonoidfrac X A)) :=
  setquotfun2 (hrelabmonoidfrac X A) (eqrelabmonoidfrac X A) (abmonoidfracopint X A)
              ((iscompbinoptransrel _ (eqreltrans _) (isbinophrelabmonoidfrac X A))).

Definition binopeqrelabmonoidfrac (X : abmonoid) (A : subabmonoid X) :
  binopeqrel (abmonoiddirprod X A) :=
  @make_binopeqrel (setwithbinopdirprod X A) (eqrelabmonoidfrac X A) (isbinophrelabmonoidfrac X A).

Definition abmonoidfrac (X : abmonoid) (A : submonoid X) : abmonoid :=
  abmonoidquot (binopeqrelabmonoidfrac X A).

Definition prabmonoidfrac (X : abmonoid) (A : submonoid X) : X A abmonoidfrac X A :=
  fun (x : X) (a : A) ⇒ setquotpr (eqrelabmonoidfrac X A) (make_dirprod x a).


Lemma invertibilityinabmonoidfrac (X : abmonoid) (A : submonoid X) :
   a a' : A, isinvertible (@op (abmonoidfrac X A)) (prabmonoidfrac X A (pr1 a) a').
Proof.
  intros a a'.
  set (R := eqrelabmonoidfrac X A). unfold isinvertible.
  assert (isl : islinvertible (@op (abmonoidfrac X A))
                              (prabmonoidfrac X A (pr1 a) a')).
  {
    unfold islinvertible.
    set (f := λ x0 : abmonoidfrac X A, prabmonoidfrac X A (pr1 a) a' + x0).
    set (g := λ x0 : abmonoidfrac X A, prabmonoidfrac X A (pr1 a') a + x0).
    assert (egf : x0 : _, paths (g (f x0)) x0).
    {
      apply (setquotunivprop R (λ x0 : abmonoidfrac X A, eqset (g (f x0)) x0)).
      intro xb. simpl.
      apply (iscompsetquotpr
               R (@make_dirprod X A ((pr1 a') + ((pr1 a) + (pr1 xb)))
                               ((@op A) a ((@op A) a' (pr2 xb))))).
      simpl. apply hinhpr. split with (unel A). unfold pr1carrier. simpl.
      set (e := assocax X (pr1 a) (pr1 a') (pr1 (pr2 xb))).
      simpl in e. destruct e.
      set (e := assocax X (pr1 xb) (pr1 a + pr1 a') (pr1 (pr2 xb))).
      simpl in e. destruct e.
      set (e := assocax X (pr1 a') (pr1 a) (pr1 xb)).
      simpl in e. destruct e.
      set (e := commax X (pr1 a) (pr1 a')).
      simpl in e. destruct e.
      set (e := commax X (pr1 a + pr1 a') (pr1 xb)).
      simpl in e. destruct e.
      apply idpath.
    }
    assert (efg : x0 : _, paths (f (g x0)) x0).
    {
      apply (setquotunivprop R (λ x0 : abmonoidfrac X A, eqset (f (g x0)) x0)).
      intro xb. simpl.
      apply (iscompsetquotpr
               R (@make_dirprod X A ((pr1 a) + ((pr1 a') + (pr1 xb)))
                               ((@op A) a' ((@op A) a (pr2 xb))))).
      simpl. apply hinhpr. split with (unel A). unfold pr1carrier. simpl.
      set (e := assocax X (pr1 a') (pr1 a) (pr1 (pr2 xb))).
      simpl in e. destruct e.
      set (e := assocax X (pr1 xb) (pr1 a' + pr1 a) (pr1 (pr2 xb))).
      simpl in e. destruct e.
      set (e := assocax X (pr1 a) (pr1 a') (pr1 xb)).
      simpl in e. destruct e.
      set (e := commax X (pr1 a') (pr1 a)).
      simpl in e. destruct e.
      set (e := commax X (pr1 a' + pr1 a) (pr1 xb)).
      simpl in e. destruct e.
      apply idpath.
    }
    apply (isweq_iso _ _ egf efg).
  }
  apply (make_dirprod isl (weqlinvertiblerinvertible (@op (abmonoidfrac X A))
                                                    (commax (abmonoidfrac X A))
                                                    (prabmonoidfrac X A (pr1 a) a') isl)).
Defined.

Canonical homomorphism to the monoid of fractions


Definition toabmonoidfrac (X : abmonoid) (A : submonoid X) (x : X) : abmonoidfrac X A :=
  setquotpr _ (make_dirprod x (unel A)).

Lemma isbinopfuntoabmonoidfrac (X : abmonoid) (A : submonoid X) : isbinopfun (toabmonoidfrac X A).
Proof.
  unfold isbinopfun. intros x1 x2.
  change (paths (setquotpr _ (make_dirprod (x1 + x2) (@unel A)))
                (setquotpr (eqrelabmonoidfrac X A) (make_dirprod (x1 + x2) ((unel A) + (unel A))))).
  apply (maponpaths (setquotpr _)).
  apply (@pathsdirprod X A).
  apply idpath.
  apply (pathsinv0 (lunax A 0)).
Defined.

Lemma isunitalfuntoabmonoidfrac (X : abmonoid) (A : submonoid X) :
  paths (toabmonoidfrac X A (unel X)) (unel (abmonoidfrac X A)).
Proof. apply idpath. Defined.

Definition ismonoidfuntoabmonoidfrac (X : abmonoid) (A : submonoid X) :
  ismonoidfun (toabmonoidfrac X A) :=
  make_dirprod (isbinopfuntoabmonoidfrac X A) (isunitalfuntoabmonoidfrac X A).

Abelian monoid of fractions in the case when elements of the localziation submonoid are cancelable


Definition hrel0abmonoidfrac (X : abmonoid) (A : submonoid X) : hrel (X × A) :=
  λ xa yb : setdirprod X A, eqset ((pr1 xa) + (pr1 (pr2 yb))) ((pr1 yb) + (pr1 (pr2 xa))).

Lemma weqhrelhrel0abmonoidfrac (X : abmonoid) (A : submonoid X)
      (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a))
      (xa xa' : dirprod X A) : (eqrelabmonoidfrac X A xa xa') (hrel0abmonoidfrac X A xa xa').
Proof.
  unfold eqrelabmonoidfrac. unfold hrelabmonoidfrac. simpl.
  apply weqimplimpl.
  apply (@hinhuniv _ (eqset (pr1 xa + pr1 (pr2 xa')) (pr1 xa' + pr1 (pr2 xa)))).
  intro ae. destruct ae as [ a eq ].
  apply (invmaponpathsincl _ (iscanc a) _ _ eq).
  intro eq. apply hinhpr. split with (unel A). rewrite (runax X).
  rewrite (runax X). apply eq. apply (isapropishinh _).
  apply (setproperty X).
Defined.

Lemma isinclprabmonoidfrac (X : abmonoid) (A : submonoid X)
      (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a)) :
   a' : A, isincl (λ x, prabmonoidfrac X A x a').
Proof.
  intro a'. apply isinclbetweensets.
  - apply (setproperty X).
  - apply (setproperty (abmonoidfrac X A)).
  - intros x x'. intro e.
    set (e' := invweq (weqpathsinsetquot (eqrelabmonoidfrac X A) (make_dirprod x a')
                                         (make_dirprod x' a')) e).
    set (e'' := weqhrelhrel0abmonoidfrac X A iscanc (make_dirprod _ _) (make_dirprod _ _) e').
    simpl in e''.
    apply (invmaponpathsincl _ (iscanc a')).
    apply e''.
Defined.

Definition isincltoabmonoidfrac (X : abmonoid) (A : submonoid X)
           (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a)) :
  isincl (toabmonoidfrac X A) := isinclprabmonoidfrac X A iscanc (unel A).

Lemma isdeceqabmonoidfrac (X : abmonoid) (A : submonoid X)
      (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a)) (is : isdeceq X) :
  isdeceq (abmonoidfrac X A).
Proof.
  apply (isdeceqsetquot (eqrelabmonoidfrac X A)). intros xa xa'.
  apply (isdecpropweqb (weqhrelhrel0abmonoidfrac X A iscanc xa xa')).
  apply isdecpropif. unfold isaprop. simpl.
  set (int := setproperty X (pr1 xa + pr1 (pr2 xa')) (pr1 xa' + pr1 (pr2 xa))).
  simpl in int. apply int. unfold hrel0abmonoidfrac. unfold eqset.
  simpl. apply (is _ _).
Defined.

Relations on the abelian monoid of fractions


Definition abmonoidfracrelint (X : abmonoid) (A : subabmonoid X) (L : hrel X) :
  hrel (setwithbinopdirprod X A) :=
  λ xa yb, hexists (λ c0 : A, L (((pr1 xa) + (pr1 (pr2 yb))) + (pr1 c0))
                                  (((pr1 yb) + (pr1 (pr2 xa))) + (pr1 c0))).

Lemma iscomprelabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) : iscomprelrel (eqrelabmonoidfrac X A) (abmonoidfracrelint X A L).
Proof.
  set (assoc := (assocax X) : isassoc (@op X)).
  unfold isassoc in assoc. set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X). apply iscomprelrelif.
  apply (eqrelsymm (eqrelabmonoidfrac X A)).
  - intros xa xa' yb. unfold hrelabmonoidfrac. simpl. apply (@hinhfun2).
    intros t2e t2l.
    destruct t2e as [ c1a e ]. destruct t2l as [ c0a l ].
    set (x := pr1 xa). set (a := pr1 (pr2 xa)).
    set (x' := pr1 xa'). set (a' := pr1 (pr2 xa')).
    set (y := pr1 yb). set (b := pr1 (pr2 yb)).
    set (c0 := pr1 c0a). set (c1 := pr1 c1a).
    split with ((pr2 xa) + c1a + c0a).
    change (L ((x' + b) + ((a + c1) + c0)) ((y + a') + ((a + c1) + c0))).
    change (paths (x + a' + c1) (x' + a + c1)) in e.
    rewrite (rer x' _ _ c0).
    destruct (assoc x' a c1). destruct e.
    rewrite (assoc x a' c1). rewrite (rer x _ _ c0). rewrite (assoc a c1 c0).
    rewrite (rer _ a' a _). rewrite (assoc a' c1 c0). rewrite (comm a' _).
    rewrite (comm c1 _). rewrite (assoc c0 c1 a').
    destruct (assoc (x + b) c0 (@op X c1 a')).
    destruct (assoc (y + a) c0 (@op X c1 a')).
    apply ((pr2 is) _ _ _ (pr2 (@op A c1a (pr2 xa'))) l).
  - intros xa yb yb'. unfold hrelabmonoidfrac. simpl. apply (@hinhfun2).
    intros t2e t2l.
    destruct t2e as [ c1a e ]. destruct t2l as [ c0a l ].
    set (x := pr1 xa). set (a := pr1 (pr2 xa)).
    set (y' := pr1 yb'). set (b' := pr1 (pr2 yb')).
    set (y := pr1 yb). set (b := pr1 (pr2 yb)).
    set (c0 := pr1 c0a). set (c1 := pr1 c1a).
    split with ((pr2 yb) + c1a + c0a).
    change (L ((x + b') + ((b + c1) + c0)) ((y' + a) + ((b + c1) + c0))).
    change (paths (y + b' + c1) (y' + b + c1)) in e.
    rewrite (rer y' _ _ c0).
    destruct (assoc y' b c1). destruct e.
    rewrite (assoc y b' c1). rewrite (rer y _ _ c0).
    rewrite (assoc b c1 c0). rewrite (rer _ b' b _).
    rewrite (assoc b' c1 c0). rewrite (comm b' _).
    rewrite (comm c1 _). rewrite (assoc c0 c1 b').
    destruct (assoc (x + b) c0 (@op X c1 b')).
    destruct (assoc (y + a) c0 (@op X c1 b')).
    apply ((pr2 is) _ _ _ (pr2 (@op A c1a (pr2 yb'))) l).
Defined.
Opaque iscomprelabmonoidfracrelint.

Definition abmonoidfracrel (X : abmonoid) (A : submonoid X) {L : hrel X}
           (is : ispartbinophrel A L) := quotrel (iscomprelabmonoidfracrelint X A is).

Lemma istransabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istrans L) : istrans (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm. set (rer := abmonoidrer X).
  intros xa1 xa2 xa3. unfold abmonoidfracrelint. simpl.
  apply hinhfun2. intros t2l1 t2l2.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  set (c2a := pr1 t2l2). set (l2 := pr2 t2l2).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  set (x3 := pr1 xa3). set (a3 := pr1 (pr2 xa3)).
  set (c1 := pr1 c1a). set (c2 := pr1 c2a).
  split with ((pr2 xa2) + (@op A c1a c2a)).
  change (L ((x1 + a3) + (a2 + (c1 + c2))) ((x3 + a1) + (a2 + (c1 + c2)))).
  assert (ll1 : L ((x1 + a3) + (a2 + (@op X c1 c2)))
                  (((x2 + a1) + c1) + (c2 + a3))).
  {
    rewrite (rer _ a3 a2 _). rewrite (comm a3 (@op X c1 c2)).
    rewrite (assoc c1 c2 a3).
    destruct (assoc (x1 + a2) c1 (@op X c2 a3)).
    apply ((pr2 is) _ _ _ (pr2 (@op A c2a (pr2 xa3))) l1).
  }
  assert (ll2 : L (((x2 + a3) + c2) + (@op X a1 c1))
                  ((x3 + a1) + (a2 + (@op X c1 c2)))).
  {
    rewrite (rer _ a1 a2 _). destruct (assoc a1 c1 c2).
    rewrite (comm (a1 + c1) c2).
    destruct (assoc (x3 + a2) c2 (@op X a1 c1)).
    apply ((pr2 is) _ _ _ (pr2 (@op A (pr2 xa1) c1a)) l2).
  }
  assert (e : paths (x2 + a1 + c1 + (c2 + a3))
                    (x2 + a3 + c2 + (a1 + c1))).
  {
    rewrite (assoc (x2 + a1) c1 _). rewrite (assoc (x2 + a3) c2 _).
    rewrite (assoc x2 a1 _). rewrite (assoc x2 a3 _).
    destruct (assoc a1 c1 (c2 + a3)). destruct (assoc a3 c2 (a1 + c1)).
    destruct (comm (c2 + a3) (a1 + c1)).
    rewrite (comm a3 c2). apply idpath.
  }
  destruct e. apply (isl _ _ _ ll1 ll2).
Defined.
Opaque istransabmonoidfracrelint.

Lemma istransabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istrans L) : istrans (abmonoidfracrel X A is).
Proof.
  apply istransquotrel. apply istransabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma issymmabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : issymm L) : issymm (abmonoidfracrelint X A L).
Proof.
  intros xa1 xa2. unfold abmonoidfracrelint. simpl.
  apply hinhfun. intros t2l1.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  split with (c1a). apply (isl _ _ l1).
Defined.
Opaque issymmabmonoidfracrelint.

Lemma issymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : issymm L) : issymm (abmonoidfracrel X A is).
Proof.
  apply issymmquotrel. apply issymmabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isreflabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isrefl L) : isrefl (abmonoidfracrelint X A L).
Proof.
  intro xa. unfold abmonoidfracrelint. simpl. apply hinhpr.
  split with (unel A). apply (isl _).
Defined.

Lemma isreflabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isrefl L) : isrefl (abmonoidfracrel X A is).
Proof.
  apply isreflquotrel. apply isreflabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma ispoabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : ispreorder L) : ispreorder (abmonoidfracrelint X A L).
Proof.
  split with (istransabmonoidfracrelint X A is (pr1 isl)).
  apply (isreflabmonoidfracrelint X A is (pr2 isl)).
Defined.

Lemma ispoabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : ispreorder L) : ispreorder (abmonoidfracrel X A is).
Proof.
  apply ispoquotrel. apply ispoabmonoidfracrelint.
  apply is. apply isl.
Defined.

Lemma iseqrelabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iseqrel L) : iseqrel (abmonoidfracrelint X A L).
Proof.
  split with (ispoabmonoidfracrelint X A is (pr1 isl)).
  apply (issymmabmonoidfracrelint X A is (pr2 isl)).
Defined.

Lemma iseqrelabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iseqrel L) : iseqrel (abmonoidfracrel X A is).
Proof.
  apply iseqrelquotrel. apply iseqrelabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isirreflabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isirrefl L) : isirrefl (abmonoidfracrelint X A L).
Proof.
  unfold isirrefl. intro xa. unfold abmonoidfracrelint. simpl.
  unfold neg. apply (@hinhuniv _ (make_hProp _ isapropempty)).
  intro t2. apply (isl _ (pr2 t2)).
Defined.

Lemma isirreflabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isirrefl L) : isirrefl (abmonoidfracrel X A is).
Proof.
  apply isirreflquotrel. apply isirreflabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isasymmabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isasymm L) : isasymm (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)).
  unfold isassoc in assoc. set (comm := commax X).
  unfold iscomm in comm. unfold isasymm.
  intros xa1 xa2. unfold abmonoidfracrelint. simpl.
  apply (@hinhuniv2 _ _ (make_hProp _ isapropempty)).
  intros t2l1 t2l2.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  set (c2a := pr1 t2l2). set (l2 := pr2 t2l2).
  set (c1 := pr1 c1a). set (c2 := pr1 c2a).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  assert (ll1 : L ((x1 + a2) + (@op X c1 c2)) ((x2 + a1) + (@op X c1 c2))).
  {
    destruct (assoc (x1 + a2) c1 c2). destruct (assoc (x2 + a1) c1 c2).
    apply ((pr2 is) _ _ _ (pr2 c2a)). apply l1.
  }
  assert (ll2 : L ((x2 + a1) + (@op X c1 c2)) ((x1 + a2) + (@op X c1 c2))).
  {
    destruct (comm c2 c1). destruct (assoc (x1 + a2) c2 c1).
    destruct (assoc (x2 + a1) c2 c1).
    apply ((pr2 is) _ _ _ (pr2 c1a)).
    apply l2.
  }
  apply (isl _ _ ll1 ll2).
Defined.
Opaque isasymmabmonoidfracrelint.

Lemma isasymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isasymm L) : isasymm (abmonoidfracrel X A is).
Proof.
  apply isasymmquotrel. apply isasymmabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma iscoasymmabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscoasymm L) : iscoasymm (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm. unfold iscoasymm.
  intros xa1 xa2. intro nl0.
  set (nl := neghexisttoforallneg _ nl0 (unel A)).
  simpl in nl.
  set (l := isl _ _ nl).
  apply hinhpr.
  split with (unel A).
  apply l.
Defined.
Opaque isasymmabmonoidfracrelint.

Lemma iscoasymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscoasymm L) : iscoasymm (abmonoidfracrel X A is).
Proof.
  apply iscoasymmquotrel. apply iscoasymmabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma istotalabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istotal L) : istotal (abmonoidfracrelint X A L).
Proof.
  unfold istotal. intros x1 x2. unfold abmonoidfracrelint.
  set (int := isl (pr1 x1 + pr1 (pr2 x2)) (pr1 x2 + pr1 (pr2 x1))).
  generalize int. clear int. simpl.
  apply hinhfun. apply coprodf. intro l.
  apply hinhpr.
  split with (unel A). rewrite (runax X _).
  rewrite (runax X _). apply l. intro l.
  apply hinhpr. split with (unel A).
  rewrite (runax X _). rewrite (runax X _).
  apply l.
Defined.

Lemma istotalabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istotal L) : istotal (abmonoidfracrel X A is).
Proof.
  apply istotalquotrel. apply istotalabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma iscotransabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscotrans L) : iscotrans (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := (commax X) : iscomm (@op X)). unfold iscomm in comm.
  set (rer := abmonoidrer X). unfold iscotrans.
  intros xa1 xa2 xa3. unfold abmonoidfracrelint. simpl.
  apply (@hinhuniv _ (ishinh _)).
  intro t2.
  set (c0a := pr1 t2). set (l0 := pr2 t2).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  set (x3 := pr1 xa3). set (a3 := pr1 (pr2 xa3)).
  set (c0 := pr1 c0a).
  set (z1 := (x1 + a3 + (a2 + c0))).
  set (z2 := x2 + a1 + (a3 + c0)).
  set (z3 := x3 + a1 + (a2 + c0)).
  assert (int : L z1 z3).
  {
    unfold z1. unfold z3. rewrite (comm a2 c0).
    rewrite (pathsinv0 (assoc _ _ a2)).
    rewrite (pathsinv0 (assoc _ _ a2)).
    apply ((pr2 is) _ _ _ (pr2 (pr2 xa2)) l0).
  }
  set (int' := isl z1 z2 z3 int). generalize int'. clear int'.
  simpl. apply hinhfun. intro cc.
  destruct cc as [ l12 | l23 ].
  - apply ii1. apply hinhpr. split with ((pr2 xa3) + c0a).
    change (L (x1 + a2 + (a3 + c0)) (x2 + a1 + (a3 + c0))).
    rewrite (rer _ a2 a3 _). apply l12.
  - apply ii2. apply hinhpr. split with ((pr2 xa1) + c0a).
    change (L (x2 + a3 + (a1 + c0)) (x3 + a2 + (a1 + c0))).
    rewrite (rer _ a3 a1 _). rewrite (rer _ a2 a1 _).
    apply l23.
Defined.
Opaque iscotransabmonoidfracrelint.

Lemma iscotransabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscotrans L) : iscotrans (abmonoidfracrel X A is).
Proof.
  apply iscotransquotrel. apply iscotransabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isantisymmnegabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isantisymmneg L) : isantisymmneg (abmonoidfracrel X A is).
Proof.
  intros.
  assert (int : x1 x2, isaprop (neg (abmonoidfracrel X A is x1 x2)
                                  neg (abmonoidfracrel X A is x2 x1)
                                  x1 = x2)).
  {
    intros x1 x2.
    apply impred. intro.
    apply impred. intro.
    apply (isasetsetquot _ x1 x2).
  }
  unfold isantisymmneg.
  apply (setquotuniv2prop _ (λ x1 x2, make_hProp _ (int x1 x2))).
  intros xa1 xa2. intros r r'. apply (weqpathsinsetquot _).
  generalize r r'. clear r r'.
  change (neg (abmonoidfracrelint X A L xa1 xa2)
          neg (abmonoidfracrelint X A L xa2 xa1)
          (eqrelabmonoidfrac X A xa1 xa2)).
  intros nr12 nr21.
  set (nr12' := neghexisttoforallneg _ nr12 (unel A)).
  set (nr21' := neghexisttoforallneg _ nr21 (unel A)).
  set (int' := isl _ _ nr12' nr21').
  simpl. apply hinhpr. split with (unel A). apply int'.
Defined.
Opaque isantisymmnegabmonoidfracrel.

Lemma isantisymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isantisymm L) : isantisymm (abmonoidfracrel X A is).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm. unfold isantisymm.
  assert (int : x1 x2, isaprop ((abmonoidfracrel X A is x1 x2)
                                  (abmonoidfracrel X A is x2 x1)
                                  x1 = x2)).
  {
    intros x1 x2.
    apply impred. intro.
    apply impred. intro.
    apply (isasetsetquot _ x1 x2).
  }
  apply (setquotuniv2prop _ (λ x1 x2, make_hProp _ (int x1 x2))).
  intros xa1 xa2. intros r r'. apply (weqpathsinsetquot _).
  generalize r r'. clear r r'.
  change ((abmonoidfracrelint X A L xa1 xa2)
          (abmonoidfracrelint X A L xa2 xa1)
          (eqrelabmonoidfrac X A xa1 xa2)).
  unfold abmonoidfracrelint. unfold eqrelabmonoidfrac. simpl.
  apply hinhfun2. intros t2l1 t2l2.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  set (c2a := pr1 t2l2). set (l2 := pr2 t2l2).
  set (c1 := pr1 c1a). set (c2 := pr1 c2a).
  split with (@op A c1a c2a).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  change (paths (x1 + a2 + (@op X c1 c2)) (x2 + a1 + (@op X c1 c2))).
  assert (ll1 : L ((x1 + a2) + (@op X c1 c2)) ((x2 + a1) + (@op X c1 c2))).
  {
    destruct (assoc (x1 + a2) c1 c2).
    destruct (assoc (x2 + a1) c1 c2).
    apply ((pr2 is) _ _ _ (pr2 c2a)).
    apply l1.
  }
  assert (ll2 : L ((x2 + a1) + (@op X c1 c2)) ((x1 + a2) + (@op X c1 c2))).
  {
    destruct (comm c2 c1).
    destruct (assoc (x1 + a2) c2 c1).
    destruct (assoc (x2 + a1) c2 c1).
    apply ((pr2 is) _ _ _ (pr2 c1a)).
    apply l2.
  }
  apply (isl _ _ ll1 ll2).
Defined.
Opaque isantisymmabmonoidfracrel.

Lemma ispartbinopabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) :
  @ispartbinophrel (setwithbinopdirprod X A) (λ xa, A (pr1 xa)) (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X).
  apply ispartbinophrelif. apply (commax (abmonoiddirprod X A)).
  intros xa yb zc s. unfold abmonoidfracrelint. simpl.
  apply (@hinhfun). intro t2l. destruct t2l as [ c0a l ].
  set (x := pr1 xa). set (a := pr1 (pr2 xa)).
  set (y := pr1 yb). set (b := pr1 (pr2 yb)).
  set (z := pr1 zc). set (c := pr1 (pr2 zc)).
  set (c0 := pr1 c0a).
  split with c0a.
  change (L (((z + x) + (c + b)) + c0) (((z + y) + (c + a)) + c0)).
  change (pr1 (L ((x + b) + c0) ((y + a) + c0))) in l.
  rewrite (rer z _ _ b). rewrite (assoc (z + c) _ _).
  rewrite (rer z _ _ a). rewrite (assoc (z + c) _ _).
  apply ((pr1 is) _ _ _ (pr2 (@op A (make_carrier A z s) (pr2 zc)))).
  apply l.
Defined.
Opaque ispartbinopabmonoidfracrelint.

Lemma ispartlbinopabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (aa aa' : A) (z z' : abmonoidfrac X A)
      (l : abmonoidfracrel X A is z z') :
  abmonoidfracrel X A is
                  ((prabmonoidfrac X A (pr1 aa) aa') + z) ((prabmonoidfrac X A (pr1 aa) aa') + z').
Proof.
  revert z z' l.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X).
  assert (int : z z', isaprop (abmonoidfracrel X A is z z'
                                 abmonoidfracrel
                                   X A is (prabmonoidfrac X A (pr1 aa) aa' + z)
                                   (prabmonoidfrac X A (pr1 aa) aa' + z'))).
  {
    intros z z'.
    apply impred. intro.
    apply (pr2 (abmonoidfracrel _ _ _ _ _)).
  }
  apply (setquotuniv2prop _ (λ z z', make_hProp _ (int z z'))).
  intros xa1 xa2.
  change (abmonoidfracrelint X A L xa1 xa2
          abmonoidfracrelint X A L
                             (@op (abmonoiddirprod X A) (make_dirprod (pr1 aa) aa') xa1)
                             (@op (abmonoiddirprod X A) (make_dirprod (pr1 aa) aa') xa2)).
  unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2l.
  set (a := pr1 aa). set (a' := pr1 aa').
  set (c0a := pr1 t2l). set (l := pr2 t2l).
  set (c0 := pr1 c0a). set (x1 := pr1 xa1).
  set (a1 := pr1 (pr2 xa1)). set (x2 := pr1 xa2).
  set (a2 := pr1 (pr2 xa2)). split with c0a.

  change (L (a + x1 + (a' + a2) + c0) (a + x2 + (a' + a1) + c0)).
  rewrite (rer _ x1 a' _). rewrite (rer _ x2 a' _).
  rewrite (assoc _ (x1 + a2) c0). rewrite (assoc _ (x2 + a1) c0).
  apply ((pr1 is) _ _ _ (pr2 (@op A aa aa'))). apply l.
Defined.
Opaque ispartlbinopabmonoidfracrel.

Lemma ispartrbinopabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (aa aa' : A) (z z' : abmonoidfrac X A)
      (l : abmonoidfracrel X A is z z') :
  abmonoidfracrel X A is
                  (z + (prabmonoidfrac X A (pr1 aa) aa')) (z' + (prabmonoidfrac X A (pr1 aa) aa')).
Proof.
  revert z z' l.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X).
  assert (int : (z z' : abmonoidfrac X A),
                isaprop (abmonoidfracrel X A is z z'
                         abmonoidfracrel X A is
                                         (z + (prabmonoidfrac X A (pr1 aa) aa'))
                                         (z' + prabmonoidfrac X A (pr1 aa) aa'))).
  {
    intros z z'.
    apply impred. intro.
    apply (pr2 (abmonoidfracrel _ _ _ _ _)).
  }
  apply (setquotuniv2prop _ (λ z z', make_hProp _ (int z z'))).
  intros xa1 xa2.
  change (abmonoidfracrelint X A L xa1 xa2
          abmonoidfracrelint X A L
                             (@op (abmonoiddirprod X A) xa1 (make_dirprod (pr1 aa) aa'))
                             (@op (abmonoiddirprod X A) xa2 (make_dirprod (pr1 aa) aa'))).
  unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2l.
  set (a := pr1 aa). set (a' := pr1 aa').
  set (c0a := pr1 t2l). set (l := pr2 t2l).
  set (c0 := pr1 c0a). set (x1 := pr1 xa1).
  set (a1 := pr1 (pr2 xa1)). set (x2 := pr1 xa2).
  set (a2 := pr1 (pr2 xa2)). split with c0a.

  change (L (x1 + a + (a2 + a') + c0) (x2 + a + (a1 + a') + c0)).
  rewrite (rer _ a a2 _). rewrite (rer _ a a1 _).
  rewrite (assoc (x1 + a2) _ c0). rewrite (assoc (x2 + a1) _ c0).
  rewrite (comm _ c0).
  destruct (assoc (x1 + a2) c0 (a + a')).
  destruct (assoc (x2 + a1) c0 (a + a')).
  apply ((pr2 is) _ _ _ (pr2 (@op A aa aa'))).
  apply l.
Defined.
Opaque ispartrbinopabmonoidfracrel.

Lemma abmonoidfracrelimpl (X : abmonoid) (A : subabmonoid X) {L L' : hrel X}
      (is : ispartbinophrel A L) (is' : ispartbinophrel A L')
      (impl : x x', L x x' L' x x') (x x' : abmonoidfrac X A)
      (ql : abmonoidfracrel X A is x x') : abmonoidfracrel X A is' x x'.
Proof.
  generalize ql. apply quotrelimpl. intros x0 x0'.
  unfold abmonoidfracrelint. simpl. apply hinhfun.
  intro t2. split with (pr1 t2). apply (impl _ _ (pr2 t2)).
Defined.
Opaque abmonoidfracrelimpl.

Lemma abmonoidfracrellogeq (X : abmonoid) (A : subabmonoid X) {L L' : hrel X}
      (is : ispartbinophrel A L) (is' : ispartbinophrel A L')
      (lg : x x', L x x' L' x x') (x x' : abmonoidfrac X A) :
  (abmonoidfracrel X A is x x') (abmonoidfracrel X A is' x x').
Proof.
  apply quotrellogeq. intros x0 x0'. split.
  - unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2.
    split with (pr1 t2). apply (pr1 (lg _ _) (pr2 t2)).
  - unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2.
    split with (pr1 t2). apply (pr2 (lg _ _) (pr2 t2)).
Defined.
Opaque abmonoidfracrellogeq.

Definition isdecabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
           (is : ispartinvbinophrel A L) (isl : isdecrel L) : isdecrel (abmonoidfracrelint X A L).
Proof.
  intros xa1 xa2.
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  assert (int : coprod (L (x1 + a2) (x2 + a1)) (neg (L (x1 + a2) (x2 + a1)))) by apply (isl _ _).
  destruct int as [ l | nl ].
  - apply ii1. unfold abmonoidfracrelint.
    apply hinhpr. split with (unel A).
    rewrite (runax X _). rewrite (runax X _).
    apply l.
  - apply ii2. generalize nl. clear nl. apply negf.
    unfold abmonoidfracrelint. simpl.
    apply (@hinhuniv _ (make_hProp _ (pr2 (L _ _)))).
    intro t2l. destruct t2l as [ c0a l ].
    simpl.
    apply ((pr2 is) _ _ _ (pr2 c0a) l).
Defined.

Definition isdecabmonoidfracrel (X : abmonoid) (A : submonoid X) {L : hrel X}
           (is : ispartbinophrel A L) (isi : ispartinvbinophrel A L)
           (isl : isdecrel L) : isdecrel (abmonoidfracrel X A is).
Proof.
  apply isdecquotrel. apply isdecabmonoidfracrelint.
  - apply isi.
  - apply isl.
Defined.

Relations and the canonical homomorphism to abmonoidfrac


Lemma iscomptoabmonoidfrac (X : abmonoid) (A : submonoid X) {L : hrel X}
      (is : ispartbinophrel A L) : iscomprelrelfun L (abmonoidfracrel X A is) (toabmonoidfrac X A).
Proof.
  unfold iscomprelrelfun. intros x x' l.
  change (abmonoidfracrelint X A L (make_dirprod x (unel A)) (make_dirprod x' (unel A))).
  simpl. apply (hinhpr). split with (unel A). apply ((pr2 is) _ _ 0).
  apply (pr2 (unel A)). apply ((pr2 is) _ _ 0). apply (pr2 (unel A)).
  apply l.
Defined.
Opaque iscomptoabmonoidfrac.

Close Scope addmonoid_scope.