Library UniMath.PAdics.lemmas
*Fixing notation, terminology and basic lemmas
By Alvaro Pelayo, Vladimir Voevodsky and Michael A. Warren
made compatible with the current UniMath library again by Benedikt Ahrens in 2014
and by Ralph Matthes in 2017
Imports
Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.NaturalNumbers.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.Algebra.Domains_and_Fields.
Require Import UniMath.NumberSystems.Integers.
Require Import UniMath.Algebra.Monoids.
Unset Kernel Term Sharing.
for quicker proof-checking, approx. by factor 25
Fixing some notation
Notation, terminology and very basic facts
Arguments tpair [ T P ].
Lemma pathintotalfiber ( B : UU ) ( E : B → UU ) ( b0 b1 : B )
( e0 : E b0 ) ( e1 : E b1 ) ( p0 : b0 = b1 ) ( p1 : transportf E p0 e0 = e1 ) :
( tpair b0 e0 ) = ( tpair b1 e1 ).
Proof.
intros. destruct p0, p1. apply idpath.
Defined.
Definition neq ( X : UU ) : hrel X :=
fun x y : X ⇒ make_hProp (neg (x = y)) (isapropneg (x = y)).
Definition pathintotalpr1 { B : UU } { E : B → UU } { v w : total2 E} ( p : v = w ) :
( pr1 v ) = ( pr1 w ) := maponpaths ( fun x ⇒ pr1 x ) p.
Lemma isinclisinj { A B : UU } { f : A → B } ( p : isincl f ) { a b : A }
( f_eq : f a = f b ) : a = b.
Proof.
intros.
set ( q := p ( f a )).
set ( a' := make_hfiber f a ( idpath ( f a ) ) ).
set ( b' := make_hfiber f b ( pathsinv0 f_eq ) ).
assert ( a' = b' ) as p1. apply (p ( f a ) ).
apply ( pathintotalpr1 p1 ).
Defined.
Lemma minus0r ( n : nat ) : sub n 0 = n.
Proof.
destruct n; apply idpath.
Defined.
Lemma minusnn0 ( n : nat ) : sub n n = 0%nat.
Proof.
induction n.
- apply idpath.
- assumption.
Defined.
Lemma minussn1 ( n : nat ) : sub ( S n ) 1 = n.
Proof.
destruct n; apply idpath.
Defined.
Lemma minussn1non0 ( n : nat ) ( p : natlth 0 n ) : S ( sub n 1 ) = n.
Proof.
revert p. destruct n.
- intro p. apply fromempty. exact (isirreflnatlth 0%nat p ).
- intro. apply maponpaths. apply minus0r.
Defined.
Lemma minusleh ( n m : nat ) : natleh ( sub n m ) n.
Proof.
revert m. induction n.
- intros m. apply isreflnatleh.
- intros m. destruct m.
+ apply isreflnatleh.
+ apply ( istransnatleh (IHn m)).
apply natlthtoleh.
apply natlthnsn.
Defined.
Lemma minus1leh { n m : nat } ( p : natlth 0 n ) ( q : natlth 0 m ) ( r : natleh n m ) : natleh ( sub n 1 ) ( sub m 1 ).
Proof.
revert m p q r. destruct n.
- auto.
- intros m p q r. destruct m.
+ apply fromempty. exact (isirreflnatlth 0%nat q ).
+ assert ( natleh n m ) as a. apply r.
assert ( natleh ( sub n 0%nat ) m ) as a0.
exact (transportf ( fun x : nat ⇒ natleh x m ) ( pathsinv0 ( minus0r n ) ) a).
exact ( transportf ( fun x : nat ⇒ natleh ( sub n 0 ) x ) (pathsinv0 ( minus0r m ) ) a0 ).
Defined.
Lemma minuslth ( n m : nat ) ( p : natlth 0 n ) ( q : natlth 0 m ) :
natlth ( sub n m ) n.
Proof.
revert m p q. destruct n.
- auto.
- intros m p q. destruct m.
+ apply fromempty. exact ( isirreflnatlth 0%nat q).
+ apply ( natlehlthtrans _ n _ ).
× apply ( minusleh n m ).
× apply natlthnsn.
Defined.
Lemma natlthsntoleh ( n m : nat ) : natlth m ( S n ) → natleh m n.
Proof.
revert m. induction n.
- intros m p. destruct m.
+ apply isreflnatleh.
+ assert ( natlth m 0 ) as q by apply p.
apply fromempty. exact ( negnatgth0n m q ).
- intros m p. destruct m.
+ apply natleh0n.
+ apply ( IHn m ). assumption.
Defined.
Lemma natlthminus0 { n m : nat } ( p : natlth m n ) :
natlth 0 ( sub n m ).
Proof.
revert m p. induction n.
- intros m p. apply fromempty. exact ( negnatlthn0 m p ).
- intros m p. destruct m.
+ auto.
+ apply IHn. apply p.
Defined.
Lemma natlthsnminussmsn ( n m : nat ) ( p : natlth m n ) :
natlth ( sub ( S n ) ( S m ) ) ( S n ).
Proof.
revert m p. induction n.
- intros m p. apply fromempty. apply (negnatlthn0 m p).
- intros m p. destruct m.
+ assert ( sub ( S ( S n ) ) 1 = S n ) as f.
{ destruct n.
× auto.
× auto. }
rewrite f. apply natlthnsn.
+ apply ( istransnatlth _ ( S n ) _ ).
× apply IHn. assumption.
× apply natlthnsn.
Defined.
Lemma natlehsnminussmsn ( n m : nat ) ( p : natleh m n ) :
natleh (sub ( S n ) ( S m ) ) ( S n ).
Proof.
revert m p. induction n.
- intros m p. apply negnatgthtoleh. intro X. apply nopathsfalsetotrue. assumption.
- intros m p. destruct m.
+ apply natlthtoleh. apply natlthnsn.
+ apply ( istransnatleh( m := S n ) ).
× apply IHn. assumption.
× apply natlthtoleh. apply natlthnsn.
Defined.
Lemma pathssminus ( n m : nat ) ( p : natlth m ( S n ) ) :
S ( sub n m ) = sub ( S n ) m.
Proof.
revert m p. induction n.
- intros m p. destruct m.
+ auto.
+ apply fromempty.
apply nopathstruetofalse. apply pathsinv0. assumption.
- intros m p. destruct m.
+ auto.
+ apply IHn. apply p.
Defined.
Lemma natlehsminus ( n m : nat ) :
natleh ( sub ( S n ) m ) ( S (sub n m ) ).
Proof.
revert m. induction n.
- intros m. apply negnatgthtoleh. intro X. apply nopathstruetofalse.
apply pathsinv0. destruct m.
+ assumption.
+ assumption.
- intros m. destruct m.
+ apply isreflnatleh.
+ apply IHn.
Defined.
Lemma natlthssminus { n m l : nat } ( p : natlth m ( S n ) )
( q : natlth l ( S ( sub ( S n ) m ) ) ) : natlth l ( S ( S n ) ).
Proof.
apply ( natlthlehtrans _ ( S ( sub ( S n ) m ) ) ).
- assumption.
- destruct m.
+ apply isreflnatleh.
+ apply natlthtoleh. apply natlthsnminussmsn. assumption.
Defined.
Lemma natdoubleminus { n k l : nat } ( p : natleh k n ) ( q : natleh l k ) :
sub n k = sub ( sub n l ) ( sub k l ).
Proof.
revert k l p q. induction n.
- auto.
- intros k l p q. destruct k.
+ destruct l.
× auto.
× apply fromempty. exact ( negnatlehsn0 l q ).
+ destruct l.
× auto.
× apply ( IHn k l ); assumption.
Defined.
Lemma minusnleh1 ( n m : nat ) ( p : natlth m n ) : natleh m ( sub n 1 ).
Proof.
revert m p. destruct n.
- intros m p. apply fromempty. exact (negnatlthn0 m p ).
- intros m p. destruct m.
+ apply natleh0n.
+ apply natlthsntoleh.
change ( sub ( S n ) 1 ) with ( sub n 0 ).
rewrite minus0r. assumption.
Defined.
Lemma doubleminuslehpaths ( n m : nat ) ( p : natleh m n ) :
sub n (sub n m ) = m.
Proof.
revert m p. induction n.
- intros m p. destruct ( natlehchoice m 0 p ) as [ h | k ].
+ apply fromempty. apply negnatlthn0 with ( n := m ). assumption.
+ simpl. apply pathsinv0. assumption.
- intros. destruct m.
+ simpl. apply minusnn0.
+ change ( sub ( S n ) (sub n m ) = S m ).
rewrite <- pathssminus.
× rewrite IHn.
++ apply idpath.
++ assumption.
× apply ( minuslth ( S n ) ( S m ) ).
++ apply (natlehlthtrans _ n ). apply natleh0n. apply natlthnsn.
++ apply (natlehlthtrans _ m ). apply natleh0n. apply natlthnsn.
Defined.
Lemma boolnegtrueimplfalse ( v : bool ) ( p : neg ( v = true ) ) : v = false.
Proof.
intros. destruct v.
- apply fromempty. apply p; auto.
- auto.
Defined.
Definition natcoface ( i : nat ) : nat → nat.
Proof.
intros n. destruct ( natgtb i n ).
- exact n.
- exact ( S n ).
Defined.
Lemma natcofaceleh ( i n upper : nat ) ( p : natleh n upper ) :
natleh ( natcoface i n ) ( S upper ).
Proof.
intros.
unfold natcoface.
destruct ( natgtb i n ).
- apply natlthtoleh. apply (natlehlthtrans _ upper ).
assumption. apply natlthnsn.
- apply p.
Defined.
Lemma natgehimplnatgtbfalse ( m n : nat ) ( p : natgeh n m ) : natgtb m n = false.
Proof.
intros. unfold natgeh in p. unfold natgth in p.
apply boolnegtrueimplfalse.
intro q.
apply natlehneggth in p.
apply p. auto.
Defined.
Definition natcofaceretract ( i : nat ) : nat → nat.
Proof.
intros n. destruct ( natgtb i n ).
- exact n.
- exact ( sub n 1 ).
Defined.
Lemma natcofaceretractisretract ( i : nat ) :
funcomp ( natcoface i ) ( natcofaceretract i ) = idfun nat.
Proof.
simpl. apply funextfun.
intro n. unfold funcomp.
set ( c := natlthorgeh n i ). destruct c as [ h | k ].
- unfold natcoface. rewrite h. unfold natcofaceretract. rewrite h. apply idpath.
- assert ( natgtb i n = false ) as f.
{ apply natgehimplnatgtbfalse. assumption. }
unfold natcoface. rewrite f. unfold natcofaceretract.
assert ( natgtb i ( S n ) = false ) as ff.
{ apply natgehimplnatgtbfalse.
apply ( istransnatgeh _ n ).
apply natgthtogeh. apply natgthsnn. assumption. }
rewrite ff. rewrite minussn1. apply idpath.
Defined.
Lemma isinjnatcoface ( i x y : nat ) : natcoface i x = natcoface i y → x = y.
Proof.
intros p.
change x with ( idfun _ x).
rewrite <- ( natcofaceretractisretract i ).
change y with ( idfun _ y ).
rewrite <- ( natcofaceretractisretract i ).
unfold funcomp. rewrite p. apply idpath.
Defined.
Lemma natlehdecomp ( b a : nat ) :
( ∃ c : nat, ( a + c )%nat = b ) → natleh a b.
Proof.
revert a. induction b.
- intros a p. use (hinhuniv _ p).
intro t. destruct t as [ c f ]. destruct a.
+ apply isreflnatleh.
+ apply fromempty.
simpl in f .
exact ( negpathssx0 ( a + c ) f ).
- intros a p. use (hinhuniv _ p).
intro t. destruct t as [ c f ]. destruct a.
+ apply natleh0n.
+ assert ( natleh a b ) as q.
{ simpl in f.
apply IHb.
intro P.
intro s. apply s.
split with c.
apply invmaponpathsS.
assumption. }
apply q.
Defined.
Lemma natdivleh ( a b k : nat ) ( f : ( a × k )%nat = b ) :
natleh a b ⨿ ( b = 0%nat ).
Proof.
intros. destruct k.
- rewrite natmultcomm in f. simpl in f. apply ii2.
apply pathsinv0. assumption.
- rewrite natmultcomm in f. simpl in f. apply ii1.
apply natlehdecomp. intro P. intro g. apply g.
split with ( k × a )%nat. rewrite natpluscomm.
assumption.
Defined.
Local Open Scope ring_scope.
Lemma ringminusdistr { X : commring } ( a b c : X ) :
a × (b - c) = a × b - a × c.
Proof.
intros. rewrite ringldistr. rewrite ringrmultminus. apply idpath.
Defined.
Lemma ringminusdistl { X : commring } ( a b c : X ) :
(b - c) × a = b × a - c × a.
Proof.
intros. rewrite ringrdistr. rewrite ringlmultminus. apply idpath.
Defined.
Lemma multinvmultstable ( A : commring ) ( a b : A ) ( p : multinvpair A a )
( q : multinvpair A b ) : multinvpair A ( a × b ).
Proof.
intros. destruct p as [ a' p ]. destruct q as [ b' q ].
split with ( b' × a' ). split.
- change ( ( ( b' × a' ) × ( a × b ) )%ring = @ringunel2 A ).
rewrite ( ringassoc2 A b').
rewrite <- ( ringassoc2 A a' ).
change ( ( ( a' × a )%ring = @ringunel2 A ) ×
( ( a × a' )%ring = @ringunel2 A ) ) in p.
change ( ( ( b' × b )%ring = @ringunel2 A ) ×
( ( b × b' )%ring = @ringunel2 A ) ) in q.
rewrite <- ( pr1 q ). apply maponpaths.
assert ( a' × a × b = 1 × b ) as f by
apply ( maponpaths ( fun x ⇒ x × b ) ( pr1 p ) ).
rewrite ringlunax2 in f. assumption.
- change ( ( ( a × b ) × ( b' × a' ) )%ring = @ringunel2 A ).
rewrite ( ringassoc2 A a). rewrite <- ( ringassoc2 A b ).
change ( ( ( a' × a )%ring = @ringunel2 A ) ×
( ( a × a' )%ring = @ringunel2 A ) ) in p.
change ( ( ( b' × b )%ring = @ringunel2 A ) ×
( ( b × b' )%ring = @ringunel2 A ) ) in q.
rewrite <- ( pr2 q ). rewrite ( pr2 q ).
rewrite ringlunax2. apply (pr2 p).
Defined.
Lemma commringaddinvunique ( X : commring ) ( a b c : X )
( p : @op1 X a b = @ringunel1 X )
( q : @op1 X a c = @ringunel1 X ) : b = c.
Proof.
intros. rewrite ( pathsinv0 ( ringrunax1 X b ) ).
rewrite ( pathsinv0 q ).
rewrite ( pathsinv0 ( ringassoc1 X _ _ _ ) ).
rewrite ( ringcomm1 X b _ ).
rewrite p.
rewrite ringlunax1.
apply idpath.
Defined.
Lemma isapropmultinvpair ( X : commring ) ( a : X ) : isaprop ( multinvpair X a ).
Proof.
intros. unfold isaprop. intros b c.
assert ( b = c ) as f.
{ destruct b as [ b b' ].
destruct c as [ c c'].
assert ( b = c ) as f0.
{ rewrite <- ( @ringrunax2 X b ).
change ( b × @ringunel2 X ) with ( b × 1 )%multmonoid.
rewrite <- ( pr2 c' ).
change ( ( b × ( a × c ) )%ring = c ).
rewrite <- ( ringassoc2 X ).
change ( b × a )%ring with ( b × a )%multmonoid.
rewrite ( pr1 b' ).
change ( ( @ringunel2 X ) × c = c )%ring.
apply ringlunax2.
}
apply pathintotalfiber with ( p0 := f0 ).
assert ( isaprop ( c × a = ( @ringunel2 X ) ×
a × c = ( @ringunel2 X ) ) ) as is.
{ apply isofhleveldirprod.
- apply ( setproperty X ).
- apply ( setproperty X ).
}
apply is.
}
split with f. intros g.
assert ( isaset ( multinvpair X a ) ) as is.
{ unfold multinvpair. unfold invpair.
change isaset with ( isofhlevel 2 ).
apply isofhleveltotal2.
- apply ( pr2 ( pr1 ( pr1 ( rigmultmonoid X ) ) ) ).
- intros. apply isofhleveldirprod.
+ apply hlevelntosn.
apply ( setproperty X ).
+ apply hlevelntosn. apply (setproperty X ).
}
apply is.
Defined.
Close Scope ring_scope.
Local Open Scope hz_scope.
Lemma hzaddinvplus ( n m : hz ) : - ( n + m ) = ( - n ) + ( - m ).
Proof.
intros.
apply commringaddinvunique with ( a := n + m ).
- apply ringrinvax1.
- assert ( ( n + m ) + ( - n + - m ) = n + - n + m + - m ) as i.
{ assert ( n + m + ( - n + - m ) = n + ( m + ( - n + - m ) ) ) as i0 by
apply ringassoc1.
assert ( n + ( m + ( - n + - m ) ) = n + ( m + - n + - m ) ) as i1.
{ apply maponpaths. apply pathsinv0. apply ringassoc1. }
assert ( n + ( m + - n + - m ) = n + (- n + m + - m ) ) as i2.
{ apply maponpaths. apply ( maponpaths ( fun x ⇒ x + - m ) ).
apply ringcomm1. }
assert ( n + ( - n + m + - m ) = n + ( - n + m ) + - m ) as i3.
{ apply pathsinv0. apply ringassoc1. }
assert ( n + ( - n + m ) + - m = n + - n + m + - m ) as i4.
{ apply pathsinv0. apply ( maponpaths ( fun x ⇒ x + - m ) ).
apply ringassoc1. }
exact ( pathscomp0 i0 ( pathscomp0 i1 ( pathscomp0 i2 ( pathscomp0 i3 i4 ) ) ) ). }
assert ( n + - n + m + -m = 0 ) as j.
{ assert ( n + - n + m + - m = 0 + m + - m ) as j0.
{ apply ( maponpaths ( fun x ⇒ x + m + - m ) ).
apply ringrinvax1. }
assert ( 0 + m + - m = m + - m ) as j1.
{ apply ( maponpaths ( fun x ⇒ x + - m ) ).
apply ringlunax1. }
assert ( m + - m = 0 ) as j2 by apply ringrinvax1.
exact ( pathscomp0 j0 ( pathscomp0 j1 j2 ) ).
}
exact ( pathscomp0 i j ).
Defined.
Lemma hzgthsntogeh ( n m : hz ) ( p : hzgth ( n + 1 ) m ) : hzgeh n m.
Proof.
intros.
set ( c := hzgthchoice2 ( n + 1 ) m ).
destruct c as [ h | k ].
- exact p.
- assert ( hzgth n m ) as a by exact ( hzgthandplusrinv n m 1 h ).
apply hzgthtogeh. exact a.
- rewrite ( hzplusrcan n m 1 k ). apply isreflhzgeh.
Defined.
Lemma hzlthsntoleh ( n m : hz ) ( p : hzlth m ( n + 1 ) ) : hzleh m n.
Proof.
intros. unfold hzlth in p.
assert ( hzgeh n m ) as a by (apply hzgthsntogeh; exact p).
exact a.
Defined.
Lemma hzabsvalchoice ( n : hz ) :
( 0%nat = hzabsval n ) ⨿ ( ∑ x : nat, S x = hzabsval n ).
Proof.
intros.
destruct ( natlehchoice _ _ ( natleh0n ( hzabsval n ) ) ) as [ l | r ].
- apply ii2. split with ( sub ( hzabsval n ) 1 ).
rewrite pathssminus.
+ change ( sub ( hzabsval n ) 0 = hzabsval n ).
rewrite minus0r. apply idpath.
+ assumption.
- apply ii1. assumption.
Defined.
Lemma hzlthminusswap ( n m : hz ) ( p : hzlth n m ) : hzlth ( - m ) (- n ).
Proof.
intros. rewrite <- ( hzplusl0 ( - m ) ). rewrite <- ( hzrminus n ).
change ( hzlth ( n + - n + - m ) ( - n ) ).
rewrite hzplusassoc. rewrite ( hzpluscomm ( -n ) ).
rewrite <- hzplusassoc.
assert ( - n = 0 + - n ) as f.
{ apply pathsinv0. apply hzplusl0. }
assert ( hzlth ( n + - m + - n ) ( 0 + - n ) ) as q.
{ apply hzlthandplusr. rewrite <- ( hzrminus m ).
change ( m - m ) with ( m + - m ).
apply hzlthandplusr.
assumption. }
rewrite <- f in q.
assumption.
Defined.
Lemma hzlthminusequiv ( n m : hz ) :
( hzlth n m → hzlth 0 ( m - n ) ) ×
( hzlth 0 ( m - n ) → hzlth n m ).
Proof.
intros. rewrite <- ( hzrminus n ).
change ( n - n ) with ( n + - n ).
change ( m - n ) with ( m + - n ).
split.
- intro p. apply hzlthandplusr. assumption.
- intro p.
rewrite <- ( hzplusr0 n ).
rewrite <- ( hzplusr0 m ).
rewrite <- ( hzlminus n ).
rewrite <- 2! hzplusassoc.
apply hzlthandplusr.
assumption.
Defined.
Lemma hzlthminus ( n m k : hz ) ( p : hzlth n k ) ( q : hzlth m k )
( q' : hzleh 0 m ) : hzlth ( n - m ) k.
Proof.
intros.
destruct ( hzlehchoice 0 m q' ) as [ l | r ].
- apply ( istranshzlth _ n _ ).
+ assert ( hzlth ( n - m ) ( n + 0 ) ) as i0.
{ rewrite <- ( hzrminus m ).
change ( m - m ) with ( m + - m ).
rewrite <- hzplusassoc.
apply hzlthandplusr.
assert ( hzlth ( n + 0 ) ( n + m ) ) as i00.
{ apply hzlthandplusl. assumption. }
rewrite hzplusr0 in i00. assumption.
}
rewrite hzplusr0 in i0. assumption.
+ assumption.
- rewrite <- r.
change ( n - 0 ) with ( n + - 0 ).
rewrite hzminuszero. rewrite ( hzplusr0 n ). assumption.
Defined.
Lemma hzabsvalandminuspos ( n m : hz ) ( p : hzleh 0 n ) ( q : hzleh 0 m ) :
nattohz ( hzabsval ( n - m ) ) = nattohz ( hzabsval ( m - n ) ).
Proof.
intros. destruct ( hzlthorgeh n m ) as [ l | r ].
- assert ( hzlth ( n - m ) 0 ) as a.
{ change ( n - m ) with ( n + - m ).
rewrite <- ( hzrminus m ).
change ( m - m ) with ( m + - m ).
apply hzlthandplusr. assumption.
}
assert ( hzlth 0 ( m - n ) ) as b.
{ change ( m - n ) with ( m + - n ).
rewrite <- ( hzrminus n ).
change ( n - n ) with ( n + - n ).
apply hzlthandplusr. assumption.
}
rewrite ( hzabsvallth0 a ).
rewrite hzabsvalgth0.
+ change ( n - m ) with ( n + - m ).
rewrite hzaddinvplus.
change ( - - m ) with ( - - m )%ring.
rewrite ringminusminus.
rewrite hzpluscomm.
apply idpath.
+ apply b.
- destruct ( hzgehchoice n m r ) as [ h | k ].
+ assert ( hzlth 0 ( n - m ) ) as a.
{ change ( n - m ) with ( n + - m ).
rewrite <- ( hzrminus m ).
change ( m - m ) with ( m + - m ).
apply hzlthandplusr. assumption.
}
assert ( hzlth ( m - n ) 0 ) as b.
{ change ( m - n ) with ( m + - n ).
rewrite <- ( hzrminus n ).
apply hzlthandplusr.
apply h.
}
rewrite ( hzabsvallth0 b ).
rewrite hzabsvalgth0.
× change ( n + - m = - ( m + - n ) ).
rewrite hzaddinvplus.
change ( - - n ) with ( - - n )%ring.
rewrite ringminusminus.
rewrite hzpluscomm.
apply idpath.
× apply a.
+ rewrite k. apply idpath.
Defined.
Lemma hzabsvalneq0 ( n : hz ) ( p : hzneq 0 n ) :
hzlth 0 ( nattohz ( hzabsval n ) ).
Proof.
intros. destruct ( hzneqchoice 0 n p ) as [ left | right ].
- rewrite hzabsvallth0.
+ apply hzlth0andminus. apply left.
+ apply left.
- rewrite hzabsvalgth0.
+ assumption.
+ apply right.
Defined.
Definition hzrdistr ( a b c : hz ) : ( a + b ) × c = ( a × c ) + ( b × c ) :=
ringrdistr hz a b c.
Definition hzldistr ( a b c : hz ) : c × ( a + b ) = ( c × a ) + ( c × b ) :=
ringldistr hz a b c.
Lemma hzabsvaland1 : hzabsval 1 = 1%nat.
Proof.
apply ( isinclisinj isinclnattohz ).
rewrite hzabsvalgth0.
- rewrite nattohzand1.
apply idpath.
- rewrite <- ( hzplusl0 1 ). apply ( hzlthnsn 0 ).
Defined.
Lemma hzabsvalandplusnonneg ( n m : hz ) ( p : hzleh 0 n ) ( q : hzleh 0 m ) :
hzabsval ( n + m ) = ( ( hzabsval n ) + ( hzabsval m ) )%nat.
Proof.
intros.
assert ( hzleh 0 ( n + m ) ) as r.
{ rewrite <- ( hzrminus n ).
change ( n - n ) with ( n + - n ).
apply hzlehandplusl.
apply ( istranshzleh _ 0 _ ).
- apply hzgeh0andminus.
apply p.
- assumption.
}
apply ( isinclisinj isinclnattohz ).
rewrite nattohzandplus.
rewrite hzabsvalgeh0. - rewrite hzabsvalgeh0.
+ rewrite hzabsvalgeh0.
× apply idpath.
× assumption.
+ assumption.
- assumption.
Defined.
Lemma hzabsvalandplusneg ( n m : hz ) ( p : hzlth n 0 ) ( q : hzlth m 0 ) :
hzabsval ( n + m ) = ( ( hzabsval n ) + ( hzabsval m ) )%nat.
Proof.
intros.
assert ( hzlth ( n + m ) 0 ) as r.
{ rewrite <- ( hzrminus n ).
change ( n - n ) with ( n + - n ).
apply hzlthandplusl.
apply ( istranshzlth _ 0 _ ).
- assumption.
- apply hzlth0andminus.
assumption.
}
apply ( isinclisinj isinclnattohz ).
rewrite nattohzandplus.
rewrite hzabsvallth0.
- rewrite hzabsvallth0.
+ rewrite hzabsvallth0.
× rewrite hzaddinvplus. apply idpath.
× assumption.
+ assumption.
- assumption.
Defined.
Lemma hzabsvalandnattohz ( n : nat ) : hzabsval ( nattohz n ) = n.
Proof.
induction n.
- rewrite nattohzand0.
rewrite hzabsval0.
apply idpath.
- rewrite nattohzandS.
rewrite hzabsvalandplusnonneg.
+ rewrite hzabsvaland1. simpl. apply maponpaths. assumption.
+ rewrite <- (hzplusl0 1).
apply hzlthtoleh.
apply ( hzlthnsn 0 ).
+ rewrite <- nattohzand0.
apply nattohzandleh. apply natleh0n.
Defined.
Lemma hzabsvalandlth ( n m : hz ) ( p : hzleh 0 n ) ( p' : hzlth n m ) :
natlth ( hzabsval n ) ( hzabsval m ).
Proof.
intros.
destruct ( natlthorgeh ( hzabsval n ) ( hzabsval m ) ) as [ h | k ].
- assumption.
- apply fromempty.
apply ( isirreflhzlth m ).
apply ( hzlehlthtrans _ n _ ).
+ rewrite <- ( hzabsvalgeh0 ).
rewrite <- ( hzabsvalgeh0 p ).
apply nattohzandleh.
apply k.
apply hzgthtogeh.
apply ( hzgthgehtrans _ n _ ); assumption.
+ assumption.
Defined.
Lemma nattohzandlthinv ( n m : nat ) ( p : hzlth ( nattohz n ) (nattohz m ) ) :
natlth n m.
Proof.
intros.
rewrite <- ( hzabsvalandnattohz n ).
rewrite <- ( hzabsvalandnattohz m ).
apply hzabsvalandlth.
- change 0 with ( nattohz 0%nat ).
apply nattohzandleh.
apply natleh0n .
- assumption.
Defined.
Close Scope hz_scope.
Definition iscomparel { X : UU } ( R : hrel X ) :=
∀ x y z : X, R x y → R x z ⨿ R z y.
Definition isapart { X : UU } ( R : hrel X ) :=
isirrefl R × ( issymm R × iscotrans R ).
Definition istightapart { X : UU } ( R : hrel X ) :=
isapart R × ∀ x y : X, neg ( R x y ) → x = y.
Definition apart ( X : hSet ) := ∑ R : hrel X, isapart R.
Definition isbinopapartl { X : hSet } ( R : apart X ) ( opp : binop X ) :=
∀ a b c : X, ( pr1 R ( opp a b ) ( opp a c ) ) → pr1 R b c.
Definition isbinopapartr { X : hSet } ( R : apart X ) ( opp : binop X ) :=
∀ a b c : X, pr1 R ( opp b a ) ( opp c a ) → pr1 R b c.
Definition isbinopapart { X : hSet } ( R : apart X ) ( opp : binop X ) :=
isbinopapartl R opp × isbinopapartr R opp.
Lemma deceqtoneqapart { X : UU } ( is : isdeceq X ) : isapart ( neq X ).
Proof.
intros. split.
- intros a p. simpl in p. apply p. apply idpath.
- split.
+ intros a b p q.
simpl in p. apply p.
apply pathsinv0. assumption.
+ intros a c b p P s.
apply s. destruct ( is a c ) as [ l | r ].
× apply ii2. rewrite <- l. assumption.
× apply ii1. assumption.
Defined.
Definition isapartdec { X : hSet } ( R : apart X ) :=
∀ a b : X, pr1 R a b ⨿ ( a = b ).
Lemma isapartdectodeceq { X : hSet } ( R : apart X ) ( is : isapartdec R ) :
isdeceq X.
Proof.
intros y z. destruct ( is y z ) as [ l | r ].
- apply ii2. intros f. apply ( pr1 ( pr2 R ) z).
rewrite f in l. assumption.
- apply ii1. assumption.
Defined.
Lemma isdeceqtoisapartdec ( X : hSet ) ( is : isdeceq X ) :
isapartdec ( tpair _ ( deceqtoneqapart is ) ).
Proof.
intros a b. destruct ( is a b ) as [ l | r ].
- apply ii2. assumption.
- apply ii1. intros f. apply r. assumption.
Defined.
Local Open Scope ring_scope.
Definition acommring := ∑ (X : commring) (R : apart X),
isbinopapart R ( @op1 X ) × isbinopapart R ( @op2 X ).
Definition make_acommring := tpair ( P := fun X : commring ⇒
∑ R : apart X, isbinopapart R ( @op1 X ) × isbinopapart R ( @op2 X ) ).
Definition acommringconstr := make_acommring.
Definition acommringtocommring : acommring → commring := @pr1 _ _.
Coercion acommringtocommring : acommring >-> commring.
Definition acommringapartrel ( X : acommring ) : hrel (pr1 X) :=
pr1 ( pr1 ( pr2 X ) ).
Notation " a # b " := ( acommringapartrel _ a b ) :
ring_scope.
Definition acommring_aadd ( X : acommring ) : isbinopapart ( pr1 ( pr2 X ) ) op1 :=
pr1 ( pr2 ( pr2 X ) ).
Definition acommring_amult ( X : acommring ) : isbinopapart ( pr1 ( pr2 X ) ) op2 :=
pr2 ( pr2 ( pr2 X ) ).
Definition acommring_airrefl ( X : acommring ) : isirrefl ( pr1 ( pr1 ( pr2 X ) ) ) :=
pr1 ( pr2 ( pr1 ( pr2 X ) ) ).
Definition acommring_asymm ( X : acommring ) : issymm ( pr1 ( pr1 ( pr2 X ) ) ) :=
pr1 ( pr2 ( pr2 ( pr1 ( pr2 X ) ) ) ).
Definition acommring_acotrans ( X : acommring ) : iscotrans ( pr1 ( pr1 ( pr2 X ) ) ) :=
pr2 ( pr2 ( pr2 ( pr1 ( pr2 X ) ) ) ).
Definition aintdom := ∑ A : acommring,
( ringunel2 ( X := A ) ) # 0 ×
∀ a b : A, a # 0 → b # 0 → ( a × b ) # 0.
Definition make_aintdom := tpair ( P := fun A : acommring ⇒
( ringunel2 ( X := A ) ) # 0 ×
∀ a b : A, a # 0 → b # 0 → ( a × b ) # 0 ).
Definition aintdomconstr := make_aintdom.
Definition pr1aintdom : aintdom → acommring := @pr1 _ _.
Coercion pr1aintdom : aintdom >-> acommring.
Definition aintdomazerosubmonoid ( A : aintdom ) : @subabmonoid ( ringmultabmonoid A ).
Proof.
intros. split with ( fun x : A ⇒ x # 0 ).
split.
- intros a b. simpl in ×. apply (pr2 (pr2 A)).
+ simpl in a. apply (pr2 a).
+ apply (pr2 b).
- apply (pr2 A).
Defined.
Definition isaafield ( A : acommring ) :=
( ringunel2 ( X := A ) ) # 0 ×
∀ x : A, x # 0 → multinvpair A x.
Definition afld := ∑ A : acommring, isaafield A.
Definition make_afld ( A : acommring ) ( is : isaafield A ) : afld := tpair A is .
Definition pr1afld : afld → acommring := @pr1 _ _ .
Coercion pr1afld : afld >-> acommring.
Lemma afldinvertibletoazero ( A : afld ) ( a : A ) ( p : multinvpair A a ) : a # 0.
Proof.
intros. destruct p as [ a' p ].
assert ( a' × a # 0 ) as q.
{ change ( a' × a # 0 ).
assert ( a' × a = a × a' ) as f by apply ( ringcomm2 A ).
assert ( a × a' = 1 ) as g by apply (pr2 p).
rewrite f, g.
apply (pr2 A).
}
assert ( a' × a # a' × ( ringunel1 ( X := A ) ) ) as q'.
{ assert ( ringunel1 ( X := A ) = a' × ( ringunel1 ( X := A ) ) ) as f.
{ apply pathsinv0. apply ( ringmultx0 A ). }
rewrite <- f. assumption.
}
apply ( pr1 ( acommring_amult A ) a' ).
assumption.
Defined.
Definition afldtoaintdom ( A : afld ) : aintdom .
Proof.
split with ( pr1 A ). split.
- apply (pr2 A).
- intros a b p q.
apply afldinvertibletoazero.
apply multinvmultstable.
+ apply (pr2 (pr2 A)). assumption.
+ apply (pr2 (pr2 A)). assumption.
Defined.
Lemma timesazero { A : acommring } { a b : A } ( p : a × b # 0 ) :
a # 0 × b # 0.
Proof.
intros. split.
- assert ( a × b # 0 × b ) as h.
{ rewrite ( ringmult0x A ). assumption. }
apply ( pr2 ( acommring_amult A ) b ). assumption.
- apply ( pr1 ( acommring_amult A ) a ).
rewrite ( ringmultx0 A ). assumption.
Defined.
Lemma aaminuszero { A : acommring } { a b : A } ( p : a # b ) : ( a - b ) # 0.
Proof.
intros.
rewrite <- ( ringrunax1 A a ) in p.
rewrite <- ( ringrunax1 A b ) in p.
assert ( a + 0 = a + ( b - b ) ) as f.
{ rewrite <- ( ringrinvax1 A b ). apply idpath. }
rewrite f in p.
rewrite <- ( ringmultwithminus1 A ) in p.
rewrite <- ( ringassoc1 A) in p.
rewrite ( ringcomm1 A a ) in p.
rewrite ( ringassoc1 A b ) in p.
rewrite ( ringmultwithminus1 A ) in p.
apply ( pr1 ( acommring_aadd A ) b ( a - b ) 0 ).
assumption.
Defined.
Lemma aminuszeroa { A : acommring } { a b : A } ( p : ( a - b ) # 0 ) : a # b.
Proof.
intros.
change 0 with ( @ringunel1 A ) in p.
rewrite <- ( ringrinvax1 A b ) in p.
rewrite <- ( ringmultwithminus1 A ) in p.
apply ( pr2 ( acommring_aadd A ) ( -1 × b ) a b ).
assumption.
Defined.
Close Scope ring_scope.
Lemma horelim ( A B : UU ) ( P : hProp ) :
( ishinh_UU A → P ) × ( ishinh_UU B → P ) → A ∨ B → P.
Proof.
intros p q. simpl in q. apply q.
intro u. destruct u as [ u | v ].
- apply ( pr1 p ). intro Q. intro H. apply H. assumption.
- apply ( pr2 p ). intro Q. intro H. apply H. assumption.
Defined.
Lemma stronginduction { E : nat → UU } ( p : E 0%nat )
( q : ∀ n : nat, natneq n 0%nat → ( ∀ m : nat, natlth m n → E m ) → E n ) :
∀ n : nat, E n.
Proof.
intros. destruct n.
- assumption.
- apply q.
+ split.
+ induction n.
× intros m t.
rewrite ( natlth1tois0 m t ). assumption.
× intros m t.
destruct ( natlehchoice _ _ ( natlthsntoleh _ _ t ) ) as [ left | right ].
-- apply IHn. assumption.
-- apply q.
++ rewrite right. split.
++ intros k s. rewrite right in s. apply ( IHn k ). assumption.
Defined.
Lemma setquotprpathsandR { X : UU } ( R : eqrel X ) :
∀ x y : X, setquotpr R x = setquotpr R y → R x y.
Proof.
intros.
assert ( pr1 ( setquotpr R x ) y ) as i.
{ assert ( pr1 ( setquotpr R y ) y ) as i0.
{ unfold setquotpr. simpl. apply (pr2 (pr1 (pr2 R))). }
destruct X0. assumption.
}
apply i.
Defined.
Definition isdecnatprop ( P : nat → hProp ) :=
∀ m : nat, P m ⨿ neg ( P m ).
Lemma negisdecnatprop ( P : nat → hProp ) ( is : isdecnatprop P ) :
isdecnatprop ( fun n : nat ⇒ hneg ( P n ) ).
Proof.
intros n. destruct ( is n ) as [ l | r ].
- apply ii2. intro j.
assert hfalse as x.
{ simpl in j. apply j. assumption. }
apply x.
- apply ii1. assumption.
Defined.
Lemma bndexistsisdecnatprop ( P : nat → hProp ) ( is : isdecnatprop P ) :
isdecnatprop ( fun n : nat ⇒ ∃ m : nat, natleh m n × P m ).
Proof.
intros n. induction n.
- destruct ( is 0%nat ) as [ l | r ].
+ apply ii1. apply total2tohexists.
split with 0%nat. split.
× apply isreflnatleh.
× assumption.
+ apply ii2. intro j.
assert hfalse as x.
{ simpl in j. apply j. intro m.
destruct m as [ m m' ].
apply r.
change ( natleh m 0 × P m ) in m'.
rewrite ( natleh0tois0 ( pr1 m' ) ) in m'.
apply (pr2 m').
}
apply x.
- destruct ( is ( S n ) ) as [ l | r ].
+ apply ii1.
apply total2tohexists.
split with ( S n ).
split.
× apply ( isreflnatleh ( S n ) ).
× assumption.
+ destruct IHn as [ l' | r' ].
× apply ii1.
use (hinhuniv _ l').
intro m.
destruct m as [ m m' ].
apply total2tohexists.
split with m. split.
-- apply ( istransnatleh(m := n) ).
++ apply m'.
++ apply natlthtoleh. apply natlthnsn.
-- apply (pr2 m').
× apply ii2. intro j.
apply r'.
use (hinhuniv _ j).
intro m. destruct m as [ m m' ].
-- apply total2tohexists. split with m.
split.
++ destruct ( natlehchoice m ( S n ) ( pr1 m' ) ) as [ h | p ].
** apply natlthsntoleh. assumption.
** apply fromempty.
apply r.
rewrite <- p.
apply (pr2 m').
++ apply (pr2 m').
Defined.
Lemma isdecisbndqdec ( P : nat → hProp ) ( is : isdecnatprop P ) ( n : nat ) :
( ∀ m : nat, natleh m n → P m ) ⨿ ∃ m : nat, natleh m n × neg ( P m ).
Proof.
destruct ( bndexistsisdecnatprop _ ( negisdecnatprop P is ) n ) as [ l | r ].
- apply ii2. assumption.
- apply ii1. intros m j.
destruct ( is m ) as [ l' | r' ].
+ assumption.
+ apply fromempty.
apply r. apply total2tohexists.
split with m.
split; assumption.
Defined.
Lemma leastelementprinciple ( n : nat ) ( P : nat → hProp )
( is : isdecnatprop P ) : P n →
∃ k : nat, P k × ∀ m : nat, natlth m k → neg ( P m ).
Proof.
revert P is. induction n.
- intros P is u.
apply total2tohexists.
split with 0%nat. split.
+ assumption.
+ intros m i.
apply fromempty.
apply ( negnatgth0n m i ).
- intros P is u.
destruct ( is 0%nat ) as [ l | r ].
+ apply total2tohexists. split with 0%nat. split.
× assumption.
× intros m i.
apply fromempty.
apply ( negnatgth0n m i ).
+ set ( P' := fun m : nat ⇒ P ( S m ) ).
assert ( ∀ m : nat, P' m ⨿ neg ( P' m ) ) as is'.
{ intros m. unfold P'. apply ( is ( S m ) ). }
set ( c := IHn P' is' u ).
use (hinhuniv _ c).
intros k.
destruct k as [ k v ]. destruct v as [ v0 v1 ].
apply total2tohexists. split with ( S k ). split.
× assumption.
× intros m. destruct m.
-- intros i. assumption.
-- intros i. apply v1. apply i.
Defined.
END OF FILE